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Abstract

The notion of abstract Böhm tree has arisen as an operationally-oriented distil-
lation of works on game semantics, and has been investigated in two papers [9, 11].
This paper revisits the notion, providing more syntactic support and more examples
(like call-by-value evaluation) illustrating the generality of the underlying comput-
ing device. Precise correspondences between various formulations of the evaluation
mechanism of abstract Böhm trees are established.

1 Introduction

This paper is a contribution to the paradigm of computation as interaction, by which
we mean that a computation is described in terms of a game between two players, one
representing the expression to be computed, the other its context, containing information
such as the values of its free variables, or where the result should be returned to. This line
of work has been pursued in different, but related perspectives, giving rise to rich theories
and applications.

• The theory of sequential algorithms of Berry and Curien [4, 5] arose in the investiga-
tion of the full abstraction problem for PCF, a famous problem in the semantics of
programming languages. PCF is a core pure functional programming language [31],
and a fully abstract model is a model capturing the observable differences between
programs exactly. Sequential algorithms are mathematical objects that in addition
to input-output behaviour record some information about the order of computation.
They turned out to provide a fully abstract model, not of PCF, but of a natural
extension of PCF with a non-local control operator [8].

• Linear logic, and one of its models in particular – the geometry of interaction –
originated in a fine-grained analysis of the cut-elimination process in proof theory,
and has brought a wealth of new insights, such as formulas as resources, or proof
nets [18, 19].
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• Game semantics [10, 24, 2] was triggered by these previous works, and has allowed
to give a neat account of a variety of programming features, such as control, non-
determinism, references...

In this paper, we adopt a type-free, operationally-oriented view. Our work takes
inspiration mostly from the works of Coquand [10] and of the second author [21, 22], and
from those of Hyland, Ong, and Nickau [24, 28]. Our key object is the notion of abstract
Böhm tree, which is a generalization of that of Böhm tree. Böhm trees are (potentially
infinite) normal forms, and play an important role in the theory of the λ-calculus [3].
The main benefit of the generalization is that it offers the right level of generality for
explaining the mechanism of computation at hand in the λ-calculus and similar sequential
languages. Abstract Böhm trees have been defined and studied in the two articles [9, 11].
Here, we revisit the notion: we provide more syntactic support and more examples (like
call-by-value evaluation) illustrating the generality of the underlying computing device.
Precise statements on the correspondences between various formulations of the evaluation
mechanism of abstract Böhm trees are established.

The paper is organized as follows. Abstract Böhm trees are defined in section 2,
where we also introduce our computational engine, called the Geometric Abstract Machine
(GAM). A concrete term notation with bound variables, in the style of the λ-calculus, is
introduced at the end of this section. Section 3 is devoted to examples, that cover λ-
calculus (both normal and non-normal forms), and extensions: Pcf and classical Pcf;
call-by-value evaluation is also treated, and we show finally how Girard’s ludics fits in our
framework. A remarkable feature of our framework is that the computing device need not
be extended or adjusted: only the compilation of the different source languages varies,
and the machinery of abstract Böhm trees works as a “universal” device.

Sections 4 and 5 propose equivalent formulations of the GAM: the View Abstract Ma-
chine (VAM) highlights the important notion of view (basic to the works of Coquand [10],
and of Hyland and Ong [24]), while the Environment Abstract Machine is a straightfor-
ward generalization of (a stack-free version) of Krivine Abstract Machine [26]. In the
appendix, we establish precise correspondences between these machines.

In section 6, we show how to formalize a lazy, stream-like computational loop calling
the GAM again and again in order to produce the full result of a composition; each call
of the GAM gets us to the (abstract Böhm tree version of the) next head variable of the
composition along a given exploration path. In section 7, we show how to extend the
formalism of abstract Böhm trees and the GAM to “non-normal forms”.

Finally, in section 8, we discuss η-expansion, which is needed to evaluate (the compila-
tion of) untyped λ-terms. In this section, we also discuss the property of separation, which
is the ability of observing differences through execution against a fixed counter-strategy.

2



2 The Geometric Abstract Machine

In this section, we present the ingredients of our theory, starting with moves, positions,
strategies and counter-strategies (section 2.1), and continuing with our computing device
governing the interaction strategy / counter-strategy, the Geometrical Abstract Machine
(section 2.3). To this effect, we introduce the notions of multiplexed position, multiplexed
strategy, multiplexed counter-strategy (section 2.2), which accommodate the process of
duplication in the course of computation (when a function calls its argument several times).
The termination cases of the machine are spelled out (section 2.4). A new contribution of
this paper is section 2.5, where we provide a term notation for abstract Böhm trees.

2.1 Positions and strategies

We suppose given an alphabet A of move names, containing a special symbol •, which
is the initial move. Positions are sequences of moves with backward pointers for player’s
moves (that is, moves occurring at even places in the position). We choose to represent
pointers by numbers which count the number of opponent’s moves between the pointing
player’s move and the pointed opponent’s move. These pointers may be used to relate the
bound occurrences to their binders, or to relate values to their return address – i.e., to
the root of the subexpression of which they are a (possible) value. Both of these kinds of
pointing structure are present in the language Pcf (see section 3.2). An even position, or
response, i.e., a position of even length, is a sequence of the form:

a1[a2,
i1
←֓ ] . . . a2n−1[a2n,

in
←֓ ]

where aj ∈ A for all j ≤ 2n and il ∈ ω ∪ { } for all l ≤ n. An odd position, or query, is

defined in the same way, but ends with an opponent’s move a2n−1. In a position p[a,
i
←֓ ],

with i ∈ ω, the intention is that the move [a,
i
←֓ ] points to the move b of p which is at

distance 2i+1 from [a,
i
←֓ ]. For instance, if i = 0 and p = p1b, then [a,

i
←֓ ] points to b. The

number i has to be small enough to guarantee that the corresponding b exists. We will

always assume this, and it will be an (easy) invariant of all the abstract machines presented
in this paper that these pointers never become dangling while execution progresses. We
use to designate free occurrences of player’s moves.

We shall let q and r range over queries and responses, respectively. We shall use [a,
κ
←֓ ]

to designate either [a,
i
←֓ ] or [a, ←֓ ].

A strategy is a set φ of positions sucht that:

- all positions of φ are of even length, and of the form •p, where • does not occur in
p,
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- φ is closed under prefix,

- if q[a1,
κ1
←֓ ], q[a2,

κ2
←֓ ] ∈ φ, then [a1,

κ1
←֓ ] = [a2,

κ2
←֓ ].

The last property ensures that a “query”, that is, a position of odd length, is uniquely
answered in a strategy. Another presentation of a strategy is as a partial function, also
written φ, from queries (whose player’s moves are irrelevant) to player’s moves . We write
dom(φ) to denote the domain of definition of this partial function. We shall freely use
either of the two presentations.

A counter-strategy is a forest of strategies, where the roots are renamed so as to hook-
up with the free moves of the strategy against which they are placed to play with. The
renaming is defined as follows:

[a← φ] = {ar | •r ∈ φ}

Hence [a← φ]’s root is labelled by a. A counter-strategy ψ is a union of renamed strategies
[a1 ← φ1], . . . , [an ← φn] (with all the ai’s distinct and 6= •). We write ψ as:

ψ = [a1 ← φ1, . . . , an ← φn]

We assume that • is not only the initial move of all positions of φ, but does not occur
either in ψ. (These conventions about • apply everywhere in the paper except in section
3.4, where • will be a “real” move expressing the convergence of a function in the weak
sense, i.e. the presence of a head λ.)

Nothing prevents us from having infinite horizontal branching after player’s moves,
although in most examples branching will only be finite. Nothing prevents us either from
having infinite positions and infinite depth strategies.

2.2 Multiplexing

Next we introduce multiplexed strategies, which will serve to trace dialogues between
strategies and counter-strategies. The idea is that during the course of evaluation, nodes
may be visited several times, whence the idea of “opening new copies” (see also section
??). A multiplexed even position is a sequence p of the form:

〈a1, j1〉[a2,
i1
←֓ ], . . . , 〈a2n−1, jn〉[a2n,

in
←֓ ]

where the a’s and the i’s are as for positions, and where j1, . . . , jn ∈ ω encode the mul-
tiplexing of opponent’s moves. In [11], we used the terminology “dynamic” for what
we call “multiplexed” here. The new terminology reflects better the underlying idea of
duplication. We could also use the word “thick”, following [6].
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A multiplexed strategy is defined as a tree Φ of multiplexed positions respecting the
same conditions as a strategy, plus the following one: the collection of opponent’s moves
〈a, j〉 occurring in Φ is in one-to-one correspondence with the set of their second compo-
nents j. In other words, the multiplexing indices describe a traversal of the multiplexed
tree. Moreover, if 〈a, j〉 appears in a multiplexed position p of Φ, then all the 〈a′, j′〉’s
occurring before 〈a, j〉 in p must be such that j′ < j. This is a common constraint of tree
traversals: a node cannot be visited unless all its descendants have been visited before.

2.3 The machine

The Geometric Abstract Machine, or GAM, is a simple device describing the interaction
between a strategy φ and a counter-strategy ψ. The machine duplicates progressively and
in alternation (greater and greater portions of) φ and ψ. The state of the machine consists
of a sequence Γ of multiplexed positions:

GAM states: Γ ::= {1← 〈•,1〉} | Γ{ν ← p}

The successive items of Γ are numbered 1, 2, 2, 3, 3, . . . , n, n+ 1, . . . (and we use ν to range
over these step numbers). The sequence Γ can be put apart, yielding two multiplexed
strategies:

Φ = {p | ∃n Γ•(2n− 1) = p or Γ•2n = p}

Ψ = {p | ∃n Γ•(2n) = p or Γ•2n+ 1 = p}

Clearly, Φ and Ψ keep exactly the same information as Γ, thanks to the time stamps
embodied in the opponent’s moves. And while it is simpler to write Γ than to write the
pair of Φ and Ψ, it is really Φ and Ψ that we have in mind, and that we shall draw in
examples.

Here is some additional notation.

- Given an odd multiplexed position q ending with 〈a,n〉, we set n = π′(q).

- Given a multiplexed position p, erase(p) is the position obtained by erasing the
multiplexing information from p.

- Given an odd multiplexed position q = q1[a1,
i
←֓ ]〈a2, j〉, we write q1 = pop(q).

The transition rule of the GAM are presented in figure 1. Notice that the transitions
(2n) and (2n+ 1) are essentially the same, the only difference being the exchange of φ and
ψ. Similarly, the only difference between the transitions (2n)b and (2n+1) lies in parities.
The transition (2n)f is a variation of (2n)b which is linked to our choice of encoding for
free variables.

Less formally, the transitions (2n) and (2n)b can be described as follows:
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(1)

7→ {1← 〈•,1〉}

(2n)
hd(Γ) = {2n− 1← q} φ(erase(q)) = [a,

κ
←֓ ]

Γ 7→ Γ{2n← q[a,
κ
←֓ ]}

(2n)b
hd(Γ) = {2n← q[a,

i
←֓ ]} π′(pop i(q)) = 2m− 1 Γ•2m− 1 = r′

Γ 7→ Γ{2n← r′〈a,2n〉}

(2n)f
hd(Γ) = {2n← q[a, ←֓ ]}

Γ 7→ Γ{2n← 〈a,2n〉}

(2n + 1)
hd(Γ) = {2n← q} ψ(erase(q)) = [a,

κ
←֓ ]

Γ 7→ Γ{2n+ 1← q[a,
κ
←֓ ]}

(2n+ 1)
hd(Γ) = {2n+ 1← q[a,

i
←֓ ]} π′(pop i(q)) = 2m Γ•2m = r′

Γ 7→ Γ{2n + 1← r′〈a,2n + 1〉}

Figure 1: The Geometric Abstract Machine (GAM)
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- At stage (2n− 1), the machine has reached (a copy of) an opponent’s position in φ.

It looks up in φ a uniquely determined player’s move [a,
κ
←֓ ], and feeds it in Γ.

- The machine is now at stage (2n), and points to a position q[a,
i
←֓ ]. The machine

uses the information i to retrieve the stage (2m − 1) at which the prefix of q to

which [a,
i
←֓ ] points has been built. At the stage (2m− 1) immediately preceding

stage (2m − 1), the machine pointed to a position r′ of ψ. Then the machine will
place the move a right at the end of r′, together with a multiplexing information,
which is conveniently encoded as the current machine stage (2n).

In summary, two mechanisms are mixed together:

1. The determinacy of φ and ψ are put to profit for resolving in turn conflicts about
which among the possible opponent’s moves pending from a given player’s position
should be played next.

2. The pointer structure together with the multiplexing structure is used to determine
under which player’s position the next opponent’s move is to be placed.

We refer to these two ingredients of the machinery as to the tree interaction and pointer
interaction, respectively.

2.4 Termination

There are exactly three situations in which the GAM is prevented to proceed further.

1. Suppose that when attempting to perform step (2n)b we find m = 1. Then since
there is no step (1) the machine stops. This is what happens in the example of
section 3.2: the final move points to the root of φ.

2. Suppose that performing step (2n + 1) results in adding a move [a, ←֓ ]. Then the
machine is unable to perform step (2n + 1), because there is no counterpart of rule
(2n)f for the counter-strategy. This is what happens in the example of section 3.1:
the computation terminates because a free variable of ψ has been met.

3. Let p be the opponent’s multiplexed position reached at a stage (2n− 1), then step
2n can be performed only if erase(p) ∈ dom(φ) (and similarly for (2n) and ψ).

We make some observations:

• In [9] we have defined a notion of (abstract) typing that guarantees that case (3)
of termination never occurs. An important instance is that of typed, η-long Böhm
trees, where each occurrence of a variable is applied to all its arguments, and in
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each sequence of abstractions λ~x.M the number of parameters x1, . . . , xn is exactly
the number of arguments N1, . . . , Nn that the term λ~x.M accepts, according to the
types. We consider that case (3) of termination is improper, and in section 8 we
examine how to continue the execution when this case shows up.

• In [9] it is also proved, as a corollary of a result of Coquand [10], that the GAM
stops after a finite number of steps, provided both φ and ψ have finite depth. This
result holds without any typing assumptions, unlike usual termination results. This
is because β-reduction is in fact more liberal than the GAM and embodies implicit
η-expansions (see section 8), which are the only source of non-termination.

• Even when the machine stops satisfactorily (cases (1) or (2)), we may not have the
final word on the composition of φ and ψ. Consider for example (λy.y(x))[x ← tt ]
in Pcf. Then the GAM does not produce (λy.y(tt)), but (λy.y(x[x← tt ])). This is
similar to the situation with environment machines, which do not compute under λ’s.
In section 6, we show how to compute (arbitrary long positions) of the composition
φ ◦ ψ.

2.5 Syntax for abstract Böhm trees

Rather than defining strategies as sets of positions, one can define them (co-recursively)
trough the following equations, which specify an abstract syntax for abstract Böhm trees.

Abstract syntax:

P ::= [a,
κ
←֓ ] {(b,Mb) | b ∈ B} (κ = i or κ = )

M ::= (P )

Note that the root of a term M is not named, unlike internal opponent’s nodes (Mb is
named by b). This is the syntactic counterpart of our convention to denote the initial
move of a strategy by the special symbol •.

For example, the abstract term denoting

•[a1, ←֓ ]

{

a2[a3,
1
←֓ ]

a4[a5,
0
←֓ ]

is ([a1, ←֓ ] {(a2, ([a3,
1
←֓ ]{ })), (a4, ([a5,

0
←֓ ]{ }))}).

This syntax is reminiscent of De Bruijn notation for the λ-calculus [7], and hence by
“reverse engineering” suggests to replace pointers by bound variables. This leads us to
the following concrete syntax:
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Concrete syntax:

P ::= [a, ⋆] {(b,Mb) | b ∈ B} (⋆ = x or ⋆ = )
M ::= (λx.P )

There are free variables [a, ], and bound variables [a, x], where x stands for a set of
variables bound at the same place. When x does not occur free in P , we shall freely
write just (P ) instead of (λx.P ) (note that the parenthesis is meaningful, as it signals the
player’s move from (P ) to P ).

The compilation from concrete to abstract syntax (see section 5.2 for a translation in
the converse direction) takes as paramater a list of variable names (taken to be empty
initially):

⌈(λx.P )⌉caL = (⌈P ⌉cax•L)
⌈[a, ] {(b,Mb) | b ∈ B}⌉

ca
L = [a, ←֓ ] {(b, ⌈Mb⌉

ca
L ) | b ∈ B}

⌈[a, x] {(b,Mb) | b ∈ B}caL⌉
=[a,

Lx

←֓ ] {(b, ⌈Mb⌉
ca
L ) | b ∈ B}

where

(x•L)x = 0

Lx = i x 6= y

(y•L)x = i+ 1

The Geometrical Abstract Machine can be formulated in terms of this syntax (see section
5.2).

3 Examples

In this section, we present a collection of examples of abstract Böhm trees. We start with
the simplest and motivating example of Böhm trees (or λ-terms in normal form) (section
3.1). (We will show later how to fit λ-terms in general (section 7), up to the problem
of η-conversion, which is discussed separately (section 8).) We next move on to a small
variation, the Pcf trees, which are λ-terms with case statements (section 3.2). A further
variation is to add control, à la λµ-calculus [29] (section 3.3). The last two examples are
new to this paper: in section 3.4, we present call-by-value trees and show how to compile
them into abstract Böhm trees, and in section 3.5 we show how to fit Girard’s designs (the
notion central to ludics [20]) in our framework. These examples reinforce the generality
and relevance of the notion of abstract Böhm tree. It is in particular remarkable that in
order to execute call-by-value we do not need to change our engine: all happens during
the compilation, much like in continuation-passing-style translations [30].
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3.1 Böhm trees

We represent Böhm trees, or (potentially infinite) λ-terms in normal form, as trees with
pointers. The traditional nodes λx1 . . . xm.y of Böhm trees are split in a pair of moves:
an opponent’s move λ~x and a player’s move y.

B ::= (λx1 . . . xm.P )
P ::= yB1 . . . Bn

The alphabet is A = ω∪Var , where the variables x ∈ Var are only used as player’s moves
of the form [x, ←֓ ].

We next show how to compile Böhm trees (through the concrete syntax of section
2.5). For defining the translation, it is convenient to prepare the source term in such a
way that each bound variable has an indexed format xi, and that each free variable has
a non-indexed format x. Then the translation into the concrete syntax of abstract Böhm
trees is straightforward:

⌈xB1 . . . Bn⌉ = [x, ]{(1, ⌈B1⌉), . . . , (n, ⌈Bn⌉)}
⌈xiB1 . . . Bn⌉ = [i, x]{(1, ⌈B1⌉), . . . , (n, ⌈Bn⌉)}

⌈λx1 . . . xm.P ⌉ = (λx.⌈P ⌉) (m ≥ 0)

We illustrate this with an example.

Strategy for (u(λx.u(λy.x))):

(

•
u

[u, ←֓ ]







(λx

1

u

[u, ←֓ ]

{

(λy

1

x

[1,
1
←֓ ]

Strategy for [u← (λr.r(r(z)))]

(λr

u

r

[1,
0
←֓ ]







(

1

r

[1,
1
←֓ ]

{

(

1 [z, ←֓ ]

The trace of the execution of (u(λx.u(λy.x))[u ← (λr.r(r(z)))], is displayed below. The
boxed information (in this example, and in others to follow) maintains some reminders of
the underlying concrete syntax that may help the reader to follow what is going on.

Function multiplexed tree:
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(

〈•,1〉
u

[u, ←֓ ]































(λx

〈1,3〉
u

[u, ←֓ ]

{

(λy

〈1,5〉

x

[1,
1
←֓ ]

(λx

〈1,7〉
u

[u, ←֓ ]

{

(λy

〈1,9〉

x

[1,
1
←֓ ]

Argument multiplexed tree:















































(λr

〈u,2〉

r

[1,
0
←֓ ]







(

〈1,6〉

r

[1,
1
←֓ ]

{

(

〈1,10〉 [z, ←֓ ]

(λr

〈u,4〉

r

[1,
0
←֓ ]

(λr

〈u,8〉

r

[1,
0
←֓ ]

Here the strategy and counter-strategy are just paths, hence we could hardly illustrate
the tree interaction. But we did illustrate pointer interaction. Let us describe the first
steps of the execution. We start by applying rule (1), which lets us point to the root of
the strategy:

(

〈•,1〉

Then we apply rule (2), which leads us to a free move:

(

〈•,1〉
u

[u, ←֓ ]

Therefore, we apply rule (2)f , and we point now to the root of the (unique tree of the)
counter-strategy:

(λr

〈u,2〉

By rule (3) we reach a move 1 which points to the move reached at step (2), let us say for
short that it points to 2:

(λr

〈u,2〉

r

[1,
0
←֓ ]

Hence the move at step (3) is played under 2:
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(

〈•,1〉
u

[u, ←֓ ]

{

(λx

〈1,3〉

Step (4) leads us then to open a new copy of the counter-strategy:

(

〈•,1〉
u

[u, ←֓ ]

{

(λx

〈1,3〉
u

[u, ←֓ ]

This is where multiplexing begins:

(λr

〈u,4〉

A little later, say, when we have performed step (7), we arrive to a move 1 which points
to 2:



























(λr

〈u,2〉

r

[1,
0
←֓ ]

{

(

〈1,6〉

r

[1,
1
←֓ ]

(λr

〈u,4〉

r

[1,
0
←֓ ]

Then (7) tells us to play 7 under 2, opening a new copy of (a subtree of the) strategy:

(

〈•,1〉
u

[u, ←֓ ]























(λx

〈1,3〉
u

[u, ←֓ ]

{

(λy

〈1,5〉

x

[1,
1
←֓ ]

(λx

〈1,7〉

Etc... (in general, when n points to m, then n is to be placed under m). Note the
importance of keeping the multiplexing information precise: for example, the move 10
points to 7, not to 3, and this is precisely what gets us out of a loop.

3.2 Pcf trees

Our next example comes from the language Pcf. We refer to [1] for background. Let us
just mention here that the trees presented here, which we call Pcf trees, provide a term
model for the language Pcf, a core functional programming language which has been a
subject of focus of many works in denotational semantics, much in the same way as Böhm
trees provide a term model for λ-calculus. Pcf trees have the form

B ::= (λ~x.P )
P ::= case yB1 · · ·Bn [n1 ⇒ B′1, . . . , ni ⇒ B′i, . . .]
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where the ni’s are distinct natural numbers (or boolean values). (We use underlining for
integer constants to distinguish them from the moves i used in the compilation of variables
and arguments.) We compile Pcf Böhm trees much like Böhm trees, adopting the same
convention about variables (cf. section 3.1):

⌈case xB1 · · ·Bn [. . . , ni ⇒ B′i, . . .]⌉ = [x, ]{(1, ⌈B1⌉), . . . , (n, ⌈Bn⌉), . . . , (ni, ⌈B
′
i⌉), . . .}

⌈case xjB1 · · ·Bn [. . . , ni ⇒ B′i, . . .]⌉ = [j, x]{(1, ⌈B1⌉), . . . , (n, ⌈Bn⌉), . . . , (ni, ⌈B
′
i⌉), . . .}

⌈λx1 . . . xm.P ⌉ = (λx.⌈P ⌉) (m ≥ 0)

With respect to λ-calculus, we add the constants to the alphabet (in this section as
well as in section 3.3). So, if we limit ourselves to the type hierarchy built over Bool , the
alphabet is A = ω ∪ Var ∪ {tt ,ff }. The example below illustrates tree interaction.

Strategy for (case f(tt) [ff ⇒ tt ]):

(

•

case f

[f, ←֓ ]











(

1 [tt ,
0
←֓ ]

ff [tt ,
1
←֓ ]

Strategy for [f ← (λx.case x [tt ⇒ ff ,ff ⇒ tt ])]:

(λx

f

case x

[1,
0
←֓ ]

{

tt [ff ,
1
←֓ ]

ff [tt ,
1
←֓ ]

Function multiplexed tree:

(

〈•,1〉

case f

[f, ←֓ ]











(

〈1,3〉 [tt ,
0
←֓ ]

〈ff ,5〉[tt ,
1
←֓ ]

Argument multiplexed tree:

(λx

〈f,2〉

case x

[1,
0
←֓ ]

{

〈tt ,4〉[ff ,
1
←֓ ]

13



3.3 Classical Pcf

The following variant of Pcf allows us to introduce explicit control on where the values
are to be sent to.

M ::= (λ~x.µβ.c)

c ::= case x ~M [~n→ ~c] | [α]n

Terms of this syntax are called classical Pcf trees. Their execution is driven by the
following abstract machine:

ρ(x) = (λ~zµβ.c′)[ρ′]

〈case x ~M [~n→ ~c] | ρ〉 −→ 〈c′ | ρ′[~z ← ~M [ρ], β ← [~n→ ~c][ρ]]〉

ρ(α) = [~n→ ~c[ρ′] and n = ni

〈[α]n | ρ〉 −→ 〈ci | ρ
′〉

The compilation in concrete syntax is as follows (again, we assume that bound variables
take an indexed format xi and that free variables take a non-indexed format x):

⌈(λ~xµβ.c)⌉ρ = (λx.⌈c⌉
ρ[β←x])

⌈[α]n⌉ρ = (!n, ρ(α))

⌈case xM1 . . .Mm[. . . , nj → cj , . . .]⌉ρ
= [x, ] {. . . , (?i, ⌈Mi⌉ρ), . . . , (!nj , (⌈cj⌉ρ), . . .}

⌈case xiM1 . . .Mm[. . . , nj → cj , . . .]⌉ρ
= [i, x] {. . . , (?i, ⌈Mi⌉ρ), . . . , (!nj , (⌈cj⌉ρ), . . .}

3.4 Classical call-by-value Pcf

In call-by-value λ-calculus [30], the β-rule (λx.M)N → [M ← x]N is allowed only when
N is a value, where a value V is an abstraction λx.N ′ or a variable. Hence a non-value is
a term of the form MN . Then, if V,M1 are normal forms, (λy.M1)(xV ) is also a normal
form. It is more readable and suggestive to write the latter let y = xV in M1. Adding
case statements and control as in section 3.3, we arrive at the following syntax of classical

call-by-value Böhm trees:

Values V ::= λ(z, β).c | n | x
Commands c ::= let x = yV in c | case x [~n→ ~c] | [α]V

14



(An alternative syntax for (λ(z, β) is λzµβ.) The expressions of the second category are
called commands, and in a typed setting have the special type ⊥ (see below). In this
syntax, a value x is meant to be of basic type (and is indeed of basic type in the typed
version given at the end of the section). This is not restrictive in terms of expressive power,
as we can express higher-type variables y as values in η-expanded form. For example, at
first-order:

λ(z, α).(let u = yz in [α]u) .

It is not restrictive either to limit application of a variable to one argument, as we can
encode (let xV1V2) as (let z = xV1 in let y = g). Moreover, a key difference between call-
by-name and call-by-value is that in call-by-value an abstraction is a value, or a result
of computation. Hence the evaluation stops at the first abstraction met, while in call
by–name, the machine treats abstractions by blocks and proceeds until it finds the head
variable. Compare for example

λxy.xM call-by-name
λ(x, α).[α](λ(y, β).(let z = xV in [α]z) call-by-value

In the call-by-name case, the dialogue behind λxy.xM can be paraphrased as:

- Question: What is the value of the head variable?

- Answer: x.

In the call-by-value setting, we must also know y, even it if does not occur in V . So the
dialogue that we want to formalize is different:

- Answer: I am an abstraction (λ(x, α)).

- Question: If I give you an abstraction as value for x, what more can you tell me
about you?

- Answer: I shall become an abstraction (λ(y, β)) and my result should be returned
to where α was declared bound.

- If I give you a value for y, what will you do next?

- I shall apply x to V .

We hope that these intuitions will be helpful for the rest of this section, which is a bit
technical. The two syntactic categories are called values and commands, respectively.

The evaluation of our call-by-value trees is performed by the following abstract machine
(we refer to [12]) for background on the notation µ̃):
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ρ(y) = (λ(z, β).c′)[ρ′]

〈let x = yV in c | ρ〉 −→ 〈c′ | ρ′ [z ← V [ρ], β ← (µ̃x.c)[ρ]]〉

ρ(x) = ni[ρ
′]

〈case x [~n→ ~c] | ρ〉 −→ 〈ci | ρ〉

ρ(α) = (µ̃x.c′)[ρ′]

〈[α]V | ρ〉 −→ 〈c′ | ρ′〉x← V [ρ]]

Here is the compilation into our concrete syntax (we have been guided by the game se-
mantics of call-by-value proposed by Honda and Yoshida [23]):

⌈λ(zι, β).c⌉ρ = • {. . . , (?n, (λx.⌈c⌉
ρ[z←n,β←x])), . . .} (x fresh)

⌈λ(zσ1→σ, β).c⌉ρ = • {(?•, (λx.⌈c⌉
ρ[z←x,β←x]))} (x fresh)

⌈n⌉ρ = n

⌈xι⌉ρ = ρ(x)

⌈case x [~n→ ~c]⌉ρ = ⌈ci⌉ρ (ρ(x) = ni)

⌈[α]V ⌉ρ = [!∗, ρ(α)] {~T } (ρ(α) ↓, ⌈V ⌉ρ = ∗ {~T})

⌈[α]V ⌉ρ = [(!∗, α), ] {~T} (ρ(α) ↑, ⌈V ⌉ρ = ∗ {~T})

⌈let xι = yV in c⌉ρ = [?∗, ρ(y)] {~T , . . . , (!n, (⌈c⌉
ρ[x←n])), . . .} (ρ(y) ↓, ⌈V ⌉ρ = ∗ {~T})

⌈let xι = yV in c⌉ρ = [(?∗, y), ] {~T , . . . , (!n, (⌈c⌉
ρ[x←n])), . . .} (ρ(y) ↑, ⌈V ⌉ρ = ∗ {~T})

⌈let xσ1→σ = yV in c⌉ρ = [?∗, ρ(y)] {~T , (!•, (λz.⌈c⌉ρ[x← z))} (ρ(y) ↓, ⌈V ⌉ρ = ∗ {~T}, z fresh)

⌈let xσ1→σ = yV in c⌉ρ = [(?∗, y), ] {~T , (!•, (λz.⌈c⌉ρ [x← z]))} (ρ(y) ↑, ⌈V ⌉ρ = ∗ {~T}, z fresh)

⌈c [. . . , xi ← ni, . . . , xj ← V ι→σ
j , . . . , xk ← V

(σ3→σ2)→σ1

k , . . .]⌉[] =

⌈c⌉[...xi←ni,...] [. . . , (?n, xj)← (?n, Tn), . . . , (?•, xk)← (?•, T )]

(⌈Vj⌉[] = • {. . . , (?n, Tn), . . .}, ⌈Vk⌉[] = • {(?•, T )})

The following explanations should help parsing the definition. The compilation is
relative to an environment, which records the values of variables of basic types, and which
also rearranges the names of bound variables so as to pass correctly from the syntax
of call-by-value Böhm trees to the syntax of abstract Böhm trees. The compilation of
λ(z, β).c is conform to the informal dialogue suggested above. The compilations of n
and x are self-explanatory (remember that x must have a basic type in our syntax). As
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for commands, the compilation of case x [~n → ~c] is easy, since the environment ρ has
“precomputed” the branch to be chosen. The compilation of [α]V splits into two cases
according to whether α is bound or free. The compilation of let x = yV in c splits into
four cases, taking additionally into account the type (basic or not) of x. The common idea
between the four cases for the let construct is that the compilation of let x = yV in c with
respect to ρ is obtained by adding sons to the root of the compilation of V (with respect
to ρ) corresponding to the different possible values of yV , under which the compilation of
c (with respect to ρ extended with a suitable value for x) is placed.

The notation (?n, xj) ← (?n, Tn) is an obvious variation on the notation [a ← φ] of
section 2.1. (Note also that in this section • is a player’s move from the point of view of
the strategy φ. In call-by-value we use the symbol • to denote the information “I am a
function”.) Finally, we notice that the translation fixes some details about the names of
moves. Our use of ! and ? here is somewhat reminiscent of the use of n and n in the two
previous sections to distinguish between arguments and continuations.

The alphabet in this section is thus the following:

A ::= (?•, ξ) | (?n, ξ) |?• |?n |!• |!n

where ξ ranges over ordinary variables x and continuation variables α.

As an illustration, take:

let y = x(λ(z, β).case z [3→ [β]5, 4 → [β]9]) in let u = vy in [α]u
[x← λ(t, γ).let r = t3 in case r [5→ [γ]7] , v ← λ(w, δ).case w [7→ [δ]8]]

The compilation gives:

[(?•, x), ←֓ ]{(?3, (λx1.[!5, x1])), (?4, (λx1.[!9, x1])), ..,
(!a, ([(?a, v), ←֓ ]{.., (!b, ([(!b, α), ←֓ ])), ..})), ..}











((?•, x), (λx2.[?3,
x2
←֓ ]{(!5, ([!7,

x2
←֓ ]}))

((?7, v), (λx3.[!8,
x3
←֓ ]))

Or, as trees with pointers:
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φ [(?•, x), ←֓ ]



























































?3[!5,
0
←֓ ]

?4[!9,
0
←֓ ]

...

!a[(?a, v), ←֓ ]















...
!b[(!b, α), ←֓ ]
...

...

ψ











(?•, x)[?3,
0
←֓ ]!5[!7,

1
←֓ ]

(?7, v)[!8,
0
←֓ ]

Here is the execution:

φ [(?•, x), ←֓ ]

{

〈?3,3〉[!5,
0
←֓ ]

〈!7,5〉[(?7, v), ←֓ ]
{

〈!8,7〉[(!8, α), ←֓ ]

ψ











〈(?•, x),2〉[?3,
0
←֓ ]〈!5,4〉[!7,

1
←֓ ]

〈(?7, v),6〉[!8,
0
←֓ ]

Notice that the first move is 2: in call-by-value, it is Player who starts! The final result is
the value 8, which is sent to the continuation α. The reader may check that the machine
given above indeed yields this result when it is run on the source code. (In later work, we
intend to prove formally that this source machine is correctly simulated by the GAM.)

We give two further examples, in less detail. The compilation of

let x = y3 in let v = x4 in [γ]v [y ← (λ(z, α).[α](λ(u, β).[β](u + z)]

(assuming a binary adddition operation) is:

[(?3, y), ←֓ ]















!• [?4,
0
←֓ ]















...
!m[(!m,γ), ←֓ ]
...
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





































...

(?n, y)[!•,
0
←֓ ]















...

?p [!(n + p),
0
←֓ ]

...
...

with the following execution:

[(?3, y), ←֓ ]
{

〈!•,3〉[?4,
0
←֓ ]

{

〈!7,5〉[(!7, γ), ←֓ ]
{

〈(?3, y),2〉[!•,
0
←֓ ]

{

〈?4,4〉 [!7,
0
←֓ ]

The compilation of

let x = y(λ(z, β).[β]z) in [α]x [y ← (λ(f, γ).let u = f3 in [γ]u)]

is:

[(?•, y), ←֓ ]



































...

?n[!n,
0
←֓ ]

...
!p[(!p, α), ←֓ ]
...















(?•, y)[?3,
0
←֓ ]















...

!n[!n,
1
←֓ ]

...

with the following execution:

[(?•, y), ←֓ ]

{

〈?3,3〉[!3,
0
←֓ ]

〈!3,5〉[(!3, α, ←֓ ]
{

〈(?•, y),2〉[?3,
0
←֓ ]

{

〈!3,4〉[!3,
1
←֓ ]

We end the section by a short incursion into types. In figure 2, we present typing rules
for classical Pcf call-by-value trees, in a simple type system built over the base type ι of
naturals, and over the function type:

σ :: ι | (σ → σ)

There is also a special type ⊥, which is not used in compound types and serves only
to type commands. A typing context consists of a pair Γ;∆ of two multisets containing
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Γ;∆ ⊢ n : ι Γ, x : ι;∆ ⊢ x : ι

Γ, z : σ;∆, β : τ ⊢ c : ⊥

Γ : ∆ ⊢ λ(z, β).c : σ → τ

Γ;∆, α : σ ⊢ V : σ

Γ;∆, α : σ ⊢ [α]V : ⊥

∀ i Γ, x : ι;∆ ⊢ ci : ⊥

Γ, x : ι;∆ ⊢ case x [~n→ ~c] : ⊥

Γ, y : σ → τ, x : τ ;∆ ⊢ c : ⊥ Γ, y : σ → τ ;∆ ⊢ V : σ

Γ, y : σ → τ ;∆ ⊢ let x = yV in c : ⊥

Figure 2: Typed classical Pcf call-by-value trees

declarations x : σ (ordinary variables) and α : σ (continuation variables), respectively. We
can type the successive states as closed judgements ⊢ 〈c |ρ〉 : ⊥, with Γ;∆ ⊢ c : ⊥ for some
Γ and ∆ such that for all x : σ (resp. α : τ) appearing in Γ (resp. ∆), we have ⊢ ρ(x) : σ
(resp. ⊢ ρ(α) : τ). The construct µ̃ is typed as follows:

Γ, x : τ ;∆ ⊢ c : ⊥

Γ;∆ ⊢ µ̃x.c : τ

Moreover, well-typed states are guaranteed to evolve without encountering the “bad”
termination case of section 2.4. We omit the details, since we do not want to put emphasis
on types here.

3.5 Ludics

Ludics [20] is a recent theory whose aim is to reconstruct logic on interactive principles.
While denotational semantics has been category-theory-oriented and type-oriented in the
last 25 years, ludics deliberately adopts the view that computation is untyped, and that
types may be built out of untyped objects as collections of such objects “behaving the
same way”. The objects of ludics, called designs, are derived from the skeletons of proofs
in linear logic obtained after removing the type information (just retaining the subformula
relations).

In [15], we have shown that the designs can be presented by a syntax which is accessible
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without prior knowledge of linear logic and of the genesis of ludics:

M ::= {J = λ{xj | j ∈ J}.PJ | J ∈ Pf (ω)}
P ::= (x · I){Mi | i ∈ I} | Ω | z

Girard’s original ludics enforces affinity assumptions (see [15] for details). Without these
assumptions, this syntax reflects Maurel’s exponential ludics [27].
The execution is driven by the following abstract machine.

〈(x · I){Mi | i ∈ I} | ρ〉 −→ 〈PI | ρI{xi ←Mi[ρ] | i ∈ I}〉

where ρ(x) = {. . . , I = (λ{xi | i ∈ I}.PI)[ρI ], . . .}. The reduction combines substitution
of actual parameters (the Mi’s) for formal ones (the xi’s), typical of β-reduction, with a
prior selection of a “field” I. In this framework, abstractions are replaced by a collection
of abstractions, one for each possible indexing set I. Whence our choice of a notation
reminiscent of that used for records in some object-oriented programming languages.

We say that the evaluation converges when it reaches a stage 〈z|ρ〉, and that it diverges
if either it reaches a stage 〈Ω | ρ〉, or the computation never ends (this cannot happen if
both the design and the counter-design have finite depth, cf. section 2.4).

It is easy to make this syntax fit into the format of abstract Böhm trees. One first
groups the two layers of indexing (by i ∈ I and by J ∈ Pf (ω)). This gives (by a textual
transformation):

(x · I){((i, J), (λ{xj | j ∈ J}.Pi,J )) | i ∈ I, J ∈ Pf (ω)}

One then replaces {xj | j ∈ J} by x and every (bound) (xj.K) by ((j,K), x). The two
constants can be treated as special (terminal) free player’s moves.

4 The View Abstract Machine

In this section, we give a “lighter” version of the GAM, where the state is a sequence of
moves, called a play rather than a sequence of positions. The price to pay is that relevant
information must be reconstructed at each step on the fly. This version of the GAM is
called the View Abstract Machine (VAM).

Before we define it formally, let us examine the play underlying the execution of the
example in section 3.1. The following moves are played successively at steps (1), (2) and

(2), (3) and (3), etc...: •, [u, ←֓ ] and u, [1,
0
←֓ ] and 1, etc... . But the resulting sequence

is not a position (but rather an interleaving of positions) of φ or ψ. At each step (2n− 1)
(resp. (2n)), we have to reconstruct the appropriate position of φ (resp. ψ) – the view at
this step –, in order to apply φ (resp. ψ), as before. For example, the view at step (2)
consists of u only.
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The syntax of VAM states is as follows:

VAM states: Γ ::= {1← •} | Γ{n← [a,
κ
←֓ ]} | Γ{2n← a} | Γ{n← 〈a,m〉}

We next define jumps and views, which are our tools for reconstructing information:

Γ•n = 〈a,m〉

jumpΓ(n) = m− 1

viewΓ(1) = •

Γ•(2n) = a

viewΓ(2n) = a

Γ•n = 〈a,m〉

viewΓ(n) = viewΓ(m− 1) (Γ•m) a

The rules of the VAM are given in figure 3.

We collect here a few observations.

• Most works on game semantics do not define strategies as sets of views like we do.
For example, Hyland and Ong’s interpretation of (u(λx.u(λy.x)) (cf. section 3.1)
contains the position

• [u, ←֓ ] 1 [u, ←֓ ] 1 [1,
1
←֓ ] 1[u, ←֓ ]

whose view • [u, ←֓ ] 1 [u, ←֓ ] is obtained by removing the underlined portion. There
are some advantages to this “plethorous” definition of strategies:

– In such positions, there is no dissymetry between Player and Opponent, since
one has broken the requirement that Opponent always plays just below Player
(this is why there are no pointers originating from opponent’s moves in abstract
Böhm trees).

– The composition of strategies can be defined algebraically in one line as “com-
position + hiding” [24, 2].

The drawback is that it gives an infinite representation of finite objects, since, say,
also

• [u, ←֓ ] 1 [u, ←֓ ] 1 [1,
1
←֓ ] 1[u, ←֓ ] 1[u, ←֓ ]

etc... belong to the strategy. The existence of these two kinds of representation of a
strategy – the sober one, isomorphic to the underlying term, and the plethoric one –
was first recognized by Felscher, who calls them E-dialogue and D-dialogue, respec-
tively [17]. (Felscher’s work continues a school of thought initiated by Lorenz and
Lorenzen, where proofs are viewed as a dialogue between a defendant and an oppo-
nent, a bit like in a PhD defence. Unfortunately, these works emphasized provability
rather than proofs.)
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(1)

7→ {1← •}

(2n)
φ(viewΓ(2n − 1)) = [a,

κ
←֓ ]

Γ 7→ Γ{2n← [a,
κ
←֓ ]}

(2n)b
hd(Γ) = {2n← [a,

i
←֓ ]} jumpiΓ(2n − 1) = 2m− 1

Γ 7→ Γ{2n← 〈a, 2m − 1〉}

(2n)f
hd(Γ) = {2n← p[a, ←֓ ]}

Γ 7→ Γ{2n← a}

(2n + 1)
ψ(viewΓ(2n)) = [a,

κ
←֓ ]

Γ 7→ Γ{2n + 1← [a,
κ
←֓ ]}

(2n + 1)
hd(Γ) = {2n + 1← [a,

i
←֓ ]} jumpiΓ(2n) = 2m

Γ 7→ Γ{2n+ 1← 〈a, 2m〉}

Figure 3: The View Abstract Machine (VAM)
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• The translation from a VAM state to a GAM state (see section A.1) can be under-
stood as a desenquentialization process: the play Γ gets translated to a collection of
views (with repetitions) – a thick tree of views. The equivalence between the GAM
and the VAM (again, see section A.1) guarantees that the information collected in
the multiplexed opponent’s moves of the translation contains all the original sequen-
tial information, implicitly. However, by moving to the tree isomorphism class of
⌈Γ⌉VG , this information is really lost, and then it makes sense to talk about dese-
quentialization. This forgetful desequentialization is close in spirit to the work of
Boudes [6] on the analysis of the relation between game semantics and coherence
semantics (a more traditional kind of model).

• The concept of multiplexing is not only relevant for dynamic issues, but also for
static ones. In a typed setting, each position in a strategy encodes a multiplexed
traversal of its type. The two kinds of multiplexing obey a dual discipline: the
dynamic one multiplexes the opponent’s moves, whereas the static one multiplexes
the player’s moves. We illustrate this with a simple example: the most general type
of M = (λu.u(λx.u(λy.x))), in Hindley’s sense, is

((X → Y )→ Y )→ Y

which we represent as
Y

{

Y
{

Y
{

X

We show how M , which consists of one path only, encodes a multiplexing of its type:

(λu

Y























u1

〈Y,2〉

{

(λx

Y

{

x

〈X,6〉
u2

〈Y,4〉

{

(λy

We shall make a timid incursion in linear logic, by suggesting that this multiplexing
of types can be understood as rewriting of trees by means of the rule !A→ (!A⊗A).
For example, the type ((X → Y3) → Y2) → Y1, expressed in linear logic (→ being
now the linear arrow), is:

!(!(!X → Y3)→ Y2)→ Y1

and can be rewritten to:

(!(!(!X → Y3)→ Y2)⊗!(!X → Y3)→ Y2)→ Y1

which corresponds to the multiplexing above.
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5 A concrete version of the GAM

In this section, we complete the operational picture by introducing two other formulations
of the GAM: the Strategic Abstract Machine (SAM), and its concrete version, the Envi-
ronment Abstract Machine (EAM), formulated in terms of the concrete syntax of section
2.5.

5.1 Strategic abstract machine

Instead of marking the multiplexed nodes with numbers n, which in their form n point
us to player’s positions in the other strategy, we could directly mark them with these
positions. This yields the following version of the GAM:

7→ {1← •}

hd(Γ) = {2n− 1← p} φ(erase(p)) = [a,
i
←֓ ]

Γ 7→ Γ{2n← p[a,
i
←֓ ]}

hd(Γ) = {2n← p[a,
i
←֓ ]} π′(pop i(p)) = q

Γ 7→ Γ{2n← q〈a, p[a,
i
←֓ ]〉}

hd(Γ) = {2n← p[a, ←֓ ]}

Γ 7→ Γ{2n← 〈a, p[a, ←֓ ]〉}

hd(Γ) = {2n← p} ψ(erase(p)) = [a,
i
←֓ ]

Γ 7→ Γ{2n + 1← p[a,
i
←֓ ]}

hd(Γ) = {2n + 1← p[a,
i
←֓ ]} π′(pop i(p)) = q

Γ 7→ Γ{2n+ 1← q〈a, p[a,
i
←֓ ]〉}

The distinction between n and n becomes then useless, but we keep it in order to stay
with the same number of rules.
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But now we observe that the machine, expressed in this format, is “history-free”. We
can thus remove Γ altogether, and describe the machine as a rewriting system on (nested)
positions:

n n

SAM states q ::= • | 〈a, r〉 | r′〈a, r〉 r ::= q[a,
κ
←֓ ]

We arrive at the machine described in figure 4, called here Strategic Abstract Machine
(SAM).

5.2 The Environment Abstract Machine

The SAM can be formulated in terms of the concrete syntax of section 2.5, and in this
form, it appears as the natural generalization of (a stack-free version of) Krivine abstract
machine. We call it the Environment Abstract Machine. The states of the EAM are pairs
(code, environment), recursively defined as follows:

Closures: M [ρ]
Environments: maps ρ from variables to closures
EAM states: 〈P | ρ〉

The rules of the EAM are given in figure 5.

6 Strong reduction

In this section, we show how to extend the GAM to a strong machine, which computes
a complete strategy. The strong machine which we present can build on demand, in
a stream-like fashion, any position of the composition of φ and ψ. The initial step of
the machine builds the initial position • of the composition. Either of the (two first)
terminating states discussed in section 2.4, when first encountered, produces a player’s
move in the composition that answers the initial query •: in the first case this player’s
move is written [a, 1], in the second case, it is written as usual [a, ←֓ ]. Then the pilot of
the strong machine may decide to raise a new query, expressed as a position •[a, 1]〈b,2n〉
(in the first case) or •[a, ←֓ ]〈b,2n + 1〉 (in the second case). Note that the alternation
is broken: this new step, which is of the form (2n) in the first case, and (2n + 1) in the
second case, is performed in the same strategy as the previous step.

The machine states consist now of triplets of the form:

- (Γ ? q), where Γ is as before, and where ? witnesses that we are working on answering
a query q,
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(1)
1
−→ •

(2n)

φ(erase(q)) = [a,
κ
←֓ ]

q
2n
−→ q[a,

κ
←֓ ]

(2n)b

π′(pop i(q)) = r′

q[a,
i
←֓ ]

2n
−→ r′〈a, q[a,

i
←֓ ]〉

(2n)f
q[a, ←֓ ]

2n
−→ 〈a, q[a, ←֓ ]〉

(2n+ 1)

ψ(erase(q)) = [a,
κ
←֓ ]

q
2n+1
−→ q[a,

κ
←֓ ]

(2n+ 1)

π′(pop i(q)) = r′

q[a,
i
←֓ ]

2n+1
−→ r′〈a, q[a,

i
←֓ ]〉

Figure 4: The Strategic Abstract Machine (SAM)
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ρ([a, ⋆]) = (λy.Q)[ρ′]

〈[a, ⋆] {(b,Mb) | b ∈ B} | ρ〉 −→ 〈Q | ρ′[[b, y]←Mb[ρ] | b ∈ B]〉

ρ([a, ⋆]) = (Q)[ρ′]

〈[a, ⋆] { } | ρ〉 −→ 〈Q | ρ′〉

Figure 5: The Environment Abstract Machine (EAM)

- (Γ ! r), where Γ is as before, and where ! witnesses that the query at the previous
stage is just answered.

The complete set of rules of the strong GAM is given in figure 6. The rules (1)s, (n)sφ,
(n)sb,φ, (n)sf,φ, (n)sψ, and (n)sψ, are just rephrasings of the rules of the (weak) GAM.

We have been a bit vague about the syntax of the positions appearing as the third
component of the states of the machine. The point is that the dynamics of the computation
does not allow us to immediately extract pointers encoded as offsets like those we had for
the positions of φ, ψ we started with. Instead, we have pointers in the form of addresses:
when a position q[a,m] is reached (at a step (!)sφ or (!)sb,ψ), we mean that the move [a,m]
points to the unique opponent’s move of q of the form 〈a,m〉.

We have already remarked that when going from “weak” to “strong”, the nice alterna-
tion between φ and ψ is broken (rules (?)sφ and (?)sψ). This could be one abstract definition
of weak evaluation: evaluation is weak as long as it strictly alternates between the strategy
and the counter-strategy.

The composition of φ and ψ is defined as the collection of the positions obtained
through the various non-deterministic executions of the GAM (recompiled in order to
obtain standard abstract Böhm tree positions). We obtain in this way a category (actually,
a multicategory, where morphisms have a sequence or set of objects as domain and an
object as codomain) of strategies (see [9]). The identities, which in the multicategorical
setting are in fact projections (from the domain to one of the objects of the domain), are
so-called copy-cat or fax strategies (see section 8). The associativity of the composition
amounts to define a three-way machine that lets all the strategies involved interact.

We give two examples which illustrate the use of the new rules:

Example 1

Function: the strategy for (λu.x(λv.u(v))) is:
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(1)s

7→ ({1
φ
← 〈•,1〉} ? 〈•, 1〉)

(n)sf,φ

hd(Γ) = {n
φ
← q[a, ←֓ ]}

(Γ ? r) 7→ (Γ{n
ψ
← 〈a,n〉} ? r)

(n)sφ

hd(Γ) = {n− 1
φ
← q} φ(erase(q)) = [a,

i
←֓ ]

(Γ ? r) 7→ (Γ{n
φ
← q[a,

i
←֓ ]} ? r)

(n)sb,φ

hd(Γ) = {n
φ
← q[a,

i
←֓ ]} π′(pop i(q)) = m Γ•m = r′ ∈ ψ

(Γ ? r) 7→ (Γ{n
ψ
← r′〈a,n〉} ? r)

(n)sψ

hd(Γ) = {n− 1
ψ
← q} ψ(erase(q)) = [a,

i
←֓ ]

(Γ ? r) 7→ (Γ{n
ψ
← q[a,

i
←֓ ]} ? r)

(n)sψ

hd(Γ) = {n
ψ
← q[a,

i
←֓ ]} π′(pop i(q)) = m Γ•m = r′ ∈ φ

(Γ ? r) 7→ (Γ{n
φ
← r′〈a,n〉} ? r)

(!)sφ
hd(Γ) = {n

φ
← q[a,

i
←֓ ]} π′(pop i(q)) = m (m = 1 or Γ•m ∈ φ)

(Γ ? r) 7→ (Γ ! r[a,m])

(!)sb,ψ
hd(Γ) = {n

ψ
← q[a,

i
←֓ ]} π′(pop i(q)) = m Γ•m ∈ ψ

(Γ ? r) 7→ (Γ ! r[a,m])

(!)sf,ψ
hd(Γ) = {n

ψ
← q[a, ←֓ ]}

(Γ ? r) 7→ (Γ ! r[a, ])

(?)sχ

hd(Γ) = {n
φ
← r′} erase(r′)a ∈ dom(χ) (χ = φ or ψ)

(Γ ! r) 7→ (Γ{n
χ
← p〈a,n〉} ? r′〈a, n〉)

Figure 6: The Strong GAM
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(λu

• [x, ←֓ ]







(λv

1

u

[1,
1
←֓ ]

{

(

1

v

[1,
1
←֓ ]

Argument: the strategy for [x← (λr.r(z))] is:

(λr

x

r

[1,
0
←֓ ]

{

(

1 [z, ←֓ ]

Function multiplexed tree:

(λu ?

〈•,1〉 [x, ←֓ ]











〈1,3〉

u !φ

[1,
1
←֓ ]

{

( ?φ

〈1,4〉 [1,
1
←֓ ]

Argument multiplexed tree:

〈x,2〉[1,
0
←֓ ]

{

〈1,5〉

!f,ψ

[z, ←֓ ]

Reading back of the composition: (λu.u(z)).

Example 2

Function: the strategy for (x(λu.u)) is:

(

• [x, ←֓ ]

{

(λu

1

u

[1,
0
←֓ ]

Argument: the strategy for [x← (λz.y(λt.z(t)))] is:

(λz

x [y, ←֓ ]







(λt

1

z

[1,
1
←֓ ]

{

(

1

t

[1,
1
←֓ ]

Function multiplexed tree:

( ?

〈•,1〉 [x, ←֓ ]
{

〈1,4〉[1,
0
←֓ ]
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Argument multiplexed tree:

〈x,2〉

!f,ψ

[y, ←֓ ]







(λt ?ψ

〈1,3〉 [1,
1
←֓ ]

{

〈1,5〉

t !b,ψ

[1,
1
←֓ ]

- Reading back of the composition: (y(λt.t)).

7 Evaluating non-normal forms

The syntactic formulation of abstract Böhm trees (cf. section 2.5) suggests us to extend
the syntax to “non-normal forms”, as follows:

P ::= M {(b,Mb) | b ∈ B} | [a, ⋆] {(b,Mb) | b ∈ B} (⋆ = x or ⋆ = )
M ::= (λx.P )

and to equip the language with the following notion of reduction (a generalized version of
the β-rule of the λ-calculus):

(λx.P ) {(b,Mb) | b ∈ B} −→ P [[b,
x
←֓ ]←Mb | b ∈ B]

The machinery of the GAM can be extended to such terms. Expressed in terms of λ-
calculus, the basic idea, which is somewhat folklore, is to replace any redex (λx.M)N by
an indirection of the form (⋆(N))[⋆ ← (λx.M)], where ⋆ is a special variable name. We
make the following ajustments:

1. We compile the terms in two steps. First we obtain a term of the core syntax of
normal forms, where we have reserved a second special move ⋆:

⌈M {. . . , (b,Mb), . . .}⌉
⋆ = ([⋆, ←֓ ] {(⋆,M), . . . , (b,Mb), . . .}

And then we compile the core term.

2. We add the following rule to the GAM:

(n)⋆
hd(Γ) = {n← q[⋆, ←֓ ]}

Γ 7→ Γ{n← q[⋆, ←֓ ]〈⋆,n〉}

In addition, the rules (2n) and (2n+ 1) collapse in a single rule (n), since there is
now a single strategy χ interacting internally with itself. Similarly, the rules (2n)b
and (2n + 1) become just one rule (n), and the rule (2n)f disappears. The changes
are summarized in figure 7, and the resulting machine is called the GAM⋆.
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(1)

7→ {1← 〈•,1〉}

(n)

hd(Γ) = {n − 1← q} χ(erase(q)) = [a,
i
←֓ ]

Γ 7→ Γ{n← q[a,
i
←֓ ]}

(n)
hd(Γ) = {n← q[a,

i
←֓ ]} π′(pop i(q)) = m Γ•m = r′

Γ 7→ Γ{n← r′〈a,n〉}

(n)⋆
hd(Γ) = {n← q[⋆, ←֓ ]}

Γ 7→ Γ{n← q[⋆, ←֓ ]〈⋆,n〉}

Figure 7: The GAM⋆

With this machine we can accommodate λ-terms. We illustrate the GAM⋆ with a simple
example, which is a variation on the theme of static binding. Let

M = ((λx.(λf.(λx.f(t))(λz.u))(λy.x(y)))(λz.z))

which is easier to read with syntactic sugar:

M = (let x = (λz.z) in (let f = (λy.x(y)) in (let x = (λz.u) in (f(t)))))

It illustrates static binding: the final result is t, not u, i.e., the relevant value for x is
(λz.z), which was the value of x at the time of declaration of f , and not (λz.u) which is
the execution time value of x when f is called.

We can define the compilation of λ-terms by factoring through the term notation of
section 2.5. One adds the following obvious clause in the translation of section 3.1:

⌈MB1 . . . Bn⌉ = M{(1, ⌈B1⌉), . . . , (n, ⌈Bn⌉)}
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Here is the full compilation of M :

(

• [⋆, ←֓ ]



































































(λz

1

z

[1,
0
←֓ ]

(λx

⋆ [⋆, ←֓ ]



















































(λy

1

x

[1,
1
←֓ ]

{

(

1

y

[1,
1
←֓ ]

(λf

⋆ [⋆, ←֓ ]























(λz

1 [u, ←֓ ]

(λx

⋆

f

[1,
1
←֓ ]

{

(

1 [t, ←֓ ]

We now execute this term, using the acquired skills.

Multiplexed (compilation of) M :

(

〈•,1〉 [⋆, ←֓ ]







































































(λz

〈1,6〉

z

[1,
0
←֓ ]

(λx

〈⋆,2〉 [⋆, ←֓ ]



















































(λy

〈1,5〉

x

[1,
1
←֓ ]

{

(

〈1,7〉

y

[1,
1
←֓ ]

(λf

〈⋆,3〉 [⋆, ←֓ ]



























(λz

1 [u, ←֓ ]

(λx

〈⋆,4〉

f

[1,
1
←֓ ]

{

(

〈1,8〉 [t, ←֓ ]

8 Evaluating and separating untyped λ-terms

Consider the following very simple example, expressed in concrete syntax:

〈[x, ]{ } | [x← (λy.[a, y]]〉

whose compilation in terms of trees of positions is:

•[x, ←֓ ]

x[a,
0
←֓ ]

The computation is blocked at step (3) (third case of termination, cf. section 2.4):
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〈•,1〉[x, ←֓ ]

〈x,2〉[a,
0
←֓ ]

The problem is that x should have an argument. Evaluation can proceed if we perform
an η-expansion of x. Recall that in the λ-calculus, the η-rule asserts

λx.Mx = x

for all M and x such that x does not occur freely in M . In the present setting, we need to
replace ([x, ]) by (λz.[x, ]{(a, ([1, z]))}. This looks simple enough, but, in fact, we cannot
really do this for arbitrary abstract Böhm trees. Consider λx1 . . . xp.yM1 . . .Mq which
η-expands to

λx1 . . . xpz.yM1 . . .Mqz .

In compiled form, we have that λx.[y, ]{(1, B1), . . . , (q,Bq)} expands to

λx.[y, ]{(1, B1), . . . , (q,Bq), (q + 1, ([p + 1, x]))}

The point is that we need to name (or give an address to) the two moves which have been
added: the new opponent’s move has address q+1 since z is to be the (q+1)-th argument
of y, and the new player’s move has address p+1 since it is to be the (p+1)–th abstracted
variable. This supposes a notion of sequencing among arguments and abstracted variables,
which is present in the examples treated in sections 3.1, 3.2, 3.3, and 3.4, but was “lost in
translation”. In particular, in order to evaluate untyped λ-terms, we need to record more
information during the compilation (section 8.1).

The η-expansion plays an essential role in the proof of an important theorem of the λ-
calculus due to Corrado Böhm. We briefly recall what this theorem is about, and illustrate
it through an example (section 8.2).

There is however one instance where η-expansion makes sense for arbitrary Böhm
trees: when the sets of arguments and abstracted variables are empty. This special case is
very important, since it provides us with the missing bit of section 6: the projections, or
copy-cat (or fax, in the nice terminology of [20]) strategies (section 8.3). We conclude with
a discussion contrasting Böhm’s theorem with the separation theorem of ludics (section
8.4).

8.1 Incorporating η into the GAM

We redefine the compilation of Böhm trees, keeping now the number of abstracted variables
(resp. the number of arguments) as a superscript on opponent’s moves (resp. on player’s
moves):
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Abstract syntax:

P ::= [a,
κ
←֓ ]m {(1n1 ,M1), . . . , (m

nm ,Mm)}
M ::= (P )

Concrete syntax:
P ::= [a, ⋆]m {(1,M1), . . . , (m,Mm)}
M ::= (λxn.P )

Compiling from untyped λ-calculus to concrete syntax:

⌈xB1 . . . Bm⌉ = [x, ]m{(1, ⌈B1⌉, . . . , (m, ⌈Bm⌉
)}

⌈xiB1 . . . Bm⌉ = [i, x]m{(1, ⌈B1⌉, . . . , (m, ⌈Bm⌉
)}

⌈λx1, . . . , xn.P ⌉ = (λxn.⌈P ⌉)

Compiling from concrete syntax to abstract syntax:

⌈(λxn.P )⌉caL = (⌈P ⌉cax•L)n

⌈[a, ]m {(1,M1), . . . , (m,Mm) |⌉}caL
= [a, ←֓ ]m {c((1, ⌈M1⌉

ca
L )), . . . , c((m, ⌈Mm⌉

ca
L ))}

⌈[a, x]m {(1,M1), . . . , (m,Mm) |⌉}caL

= [a,
Lx
←֓ ] {c((1, ⌈M1⌉

ca
L )), . . . , c((m, ⌈Mm⌉

ca
L ))}

where c((i,Mn) = (in,M).

The execution is driven by a variant of the GAM, which we call GAMη. The GAMη

continues to manipulate positions which do not have superscripts. But the function which
maps the positions of φ to the same positions where the superscripts have been erased
is injective. We use the notation filter(r, φ) to denote the inverse to this injection (the
execution keeps within the range of the injection).

The η-expansion process is taken care of by the following additional rules:

(2n)η

hd(Γ) = {2n− 1← q} q = r〈m,2n− 1〉

filter (r, φ) = r1a
n1 [b,

κ
←֓ ]n2 m > n2

Γ 7→ Γ{2n← q[m− n2 + n1,
1
←֓ ]}

(Φ,Ψ) 7→ (Φ ∪ {filter (r, φ)m0[m− n2 + n1,
1
←֓ ]0},Ψ)

(2n+ 1)η

hd(Γ) = {2n← q} q = r〈m,2n− 1〉

filter (r, ψ) = r1a
n1[b,

κ
←֓ ]n2 m > n2

Γ 7→ Γ{2n + 1← q[m− n2 + n1,
1
←֓ ]}

(Φ,Ψ) 7→ (Φ,Ψ ∪ {filter (r, φ)m0[m− n2 + n1,
1
←֓ ]0})
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Notice that Φ and Ψ are progressively updated: they are η-expanded, as the need arises.

We can now complete the execution of the example of the preamble of this section:

〈•,1〉[x, ←֓ ]
{

〈a,3〉[a,
1
←֓ ]

〈x,2〉[a,
0
←֓ ]

An example of endless η-expansion is provided by the well-known term ∆∆ (with
∆ = λx.xx):

(x(x))[x← (λy.y(y))]

The terms (x(x)) and (λy.y(y)) are not η-long – a concept which is meaningless without
types. So the machine has to make η-expansions dynamically.

Strategy for (x(x)):

(

•

x1

[x, ←֓ ]

{

(

1

x2

[x, ←֓ ]

Strategy for [x← (λy.y(y))]:

(λy

x

y1

[1,
0
←֓ ]

{

(

1

y2

[1,
1
←֓ ]

We display the steps of the GAMη up to step (21). Note the (exponential) explo-
sion of steps related with the traversal of the expansion variables that are progressively
introduced. Notice also that the GAM is stuck as early as step (5).

Multiplexed, expanded strategy for (x(x)):

〈•,1〉[x, ←֓ ]























































































〈1,3〉[x, ←֓ ]











































〈1,5〉

x
η
2

[
1
←֓ ]





 〈1,11〉

x
2η
2

[
1
←֓ ]

〈1,13〉

x
η
2

[
1
←֓ ]





 〈1,19〉

x
2η
2

[
1
←֓ ]

〈1,7〉[x, ←֓ ]

{

〈1,9〉

x
η
2

[
1
←֓ ]

〈1,15〉[x, ←֓ ]

{

〈1,17〉

x
η
2

[
1
←֓ ]
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Multiplexed, expanded strategy for [x← (λy.y(y))]:







































































〈x,2〉[
0
←֓ ]



























〈1,6〉[
1
←֓ ]

{

〈1,10〉

y
η
2

[
1
←֓ ]

〈1,14〉[
1
←֓ ]

{

〈1,18〉

y
η
2

[
1
←֓ ]

〈x,4〉[
0
←֓ ]

{

〈1,12〉[
1
←֓ ]

{

〈1,20〉

y
η
2

[
1
←֓ ]

〈x,8〉[
0
←֓ ]

〈x,16〉[
0
←֓ ]

8.2 Böhm’s theorem

Böhm’s theorem asserts that in the λ-calculus one can separate two distinct normal forms
M1 and M2 that are not η-convertible [3]. This means that we can find a context (that is,
a term with a hole) C such that C[M1] (C whose hole has been filled with M1) and C[M2]
β-reduce to distinct (fresh) variables. This result in turn entails that βη is a maximal
consistent theory, since adding any new equation (between normalizable terms) would
result in equating all pairs of terms.

As an illustration, we show how to separate xy et x(xy). We follow Joly’s proof of
Böhm’s theorem [25]. Instead of distinct fresh variables, we use distinct constants Ω and
z, as in ludics (cf. section 3.5).

Joly’s proof makes use of auxiliary terms:

0 = λxy.y

1 = λxy.x

(M,N)n = λy1 . . . ynz.z(My1 . . . yn)(Ny1 . . . yn)
R = λz.1
S = 0

We observe:
(M,N)00→ N

(M,N)01→M

(M,N)k+1P → (MP,NP )k

The separating context is the following:

[ ][x← (λx.0, λx.x)3, y ← 1]RS01Ωz
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We set P ≡ y or P ≡ xy, and P ′ ≡ P [x← (λx.0, λx.x)3, y ← 1]. We have:

(xP )[x← (λx.0, λx.x)3, y ← 1]RS01Ωz

≡ (λx.0, (λx.x)3P
′RS01Ωz

→∗ ( , λx.x)P ′RS)001Ωz

→ (λx.x)P ′RS1Ωz

→ P ′RS1Ωz

• P = y. Then P ′ ≡ 1 and:

P ′RS1Ωz ≡ 1RS1Ωz

→ R1Ωz ≡ (λz.1)1Ωz

→ 1Ωz

→ Ω

• P = xy. Then P ′ ≡ (λx.0, λx.x)31 and:

P ′RS1Ωz ≡ (λx.0, λx.x)31RS1Ωz

→∗ ((λx.0)1RS, )01Ωz

→ (λx.0)1RSΩz

→ 0RSΩz → SΩz

→ z

Here is the execution (case P ≡ y). The compilation of

(zRS01Ωz)[z ← (xy)[x← Q, y ← 1]]

where
Q = (λx1x2x3z.z(ax1x2x3)(bx1x2x3))[a← λx.0, b← λx.x]

is as follows:

•0[z, ←֓ ]6











































13[2,
0
←֓ ]0

22[2,
0
←֓ ]0

32[2,
0
←֓ ]0

42[1,
0
←֓ ]0

50[Ω, ←֓ ]
60[z, ←֓ ]

z0[x, ←֓ ]1
{

10[y, ←֓ ]0
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x4[4,
0
←֓ ]2















































10[a, ←֓ ]3















10[1,
2
←֓ ]0

20[2,
2
←֓ ]0

30[3,
2
←֓ ]0

20[b, ←֓ ]3















10[1,
2
←֓ ]0

20[2,
2
←֓ ]0

30[3,
2
←֓ ]0

a3[3,
0
←֓ ]0

b1[1,
0
←֓ ]0

y2[1,
0
←֓ ]0

And here is the dynamics:

〈•,1〉[z, ←֓ ]















〈1,17〉[2,
0
←֓ ]

〈3,5〉[2,
0
←֓ ]

{

〈2,29〉[4,
1
←֓ ]

〈5,33〉[Ω, ←֓ ]

〈z,2〉[x, ←֓ ]























































〈1,10〉[y, ←֓ ]







〈1,12〉[1,
1
←֓ ]

{

〈2,22〉[2,
1
←֓ ]

〈4,24〉[4,
1
←֓ ]

〈2,16〉[1,
1
←֓ ]

{

〈2,18〉[2,
1
←֓ ]

〈4,4〉[3,
1
←֓ ]







〈2,6〉[2,
1
←֓ ]

{

〈2,28〉[2,
1
←֓ ]

〈4,30〉[4,
1
←֓ ]

〈6,32〉[5,
1
←֓ ]

〈x,3〉[4,
0
←֓ ]







































〈2,7〉[b, ←֓ ]































〈1,9〉[1,
2
←֓ ]







〈1,13〉[1,
1
←֓ ]

{

〈2,21〉[2,
1
←֓ ]

〈4,25〉[4,
1
←֓ ]

〈2,15〉[2,
2
←֓ ]

{

〈2,19〉[2,
1
←֓ ]

〈5,27〉[2,
1
←֓ ]

〈4,31〉[6,
1
←֓ ]

〈b,8〉[1,
0
←֓ ]







〈1,14〉[2,
1
←֓ ]

{

〈2,20〉[2,
1
←֓ ]

〈4,26〉[5,
1
←֓ ]
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〈y,11〉[1,
0
←֓ ]

{

〈2,23〉[4,
1
←֓ ]

Taking now P = xy, we replace the tree starting with z by the following one:

z0[x, ←֓ ]1
{

10[x, ←֓ ]1
{

10[y, ←֓ ]0

The execution is the same until step 10, where the visit of P starts. We give the full
execution below:

〈•,1〉[z, ←֓ ]















































〈2,39〉[2,
0

←֓ ]

〈3,5〉[2,
0

←֓ ]















〈1,17〉[3,
1

←֓ ]







〈1,25〉[1,
1

←֓ ]
{

〈2,53〉[2,
1

←֓ ]

〈4,61〉[4,
1

←֓ ]

〈3,73〉[5,
1

←֓ ]

〈4,21〉[1,
0

←֓ ]
{

〈2,57〉[4,
1

←֓ ]

〈6,77〉[z, ←֓ ]

〈z,2〉[x, ←֓ ]















































































































































〈1,10〉[x, ←֓ ]



























〈3,34〉[2,
1

←֓ ]
{

〈2,44〉[2,
1

←֓ ]

〈4,12〉[3,
1

←֓ ]







〈1,30〉[1,
1

←֓ ]
{

〈2,48〉[2,
1

←֓ ]

〈4,66〉[4,
1

←֓ ]

〈6,68〉[5,
1

←֓ ]

〈3,38〉[2,
1

←֓ ]
{

〈2,40〉[2,
1

←֓ ]

〈4,4〉[3,
1

←֓ ]



















































〈2,6〉[2,
1

←֓ ]















〈1,16〉[1,
1

←֓ ]







〈1,26〉[1,
1

←֓ ]
{

〈2,52〉[2,
1

←֓ ]

〈4,62〉[4,
1

←֓ ]

〈3,72〉[3,
1

←֓ ]

〈3,18〉[3,
1

←֓ ]







〈1,24〉[1,
1

←֓ ]
{

〈2,54〉[2,
1

←֓ ]

〈4,60〉[4,
1

←֓ ]

〈5,74〉[5,
1

←֓ ]

〈5,20〉[4,
1

←֓ ]







〈1,22〉[1,
1

←֓ ]
{

〈2,56〉[2,
1

←֓ ]

〈4,58〉[4,
1

←֓ ]

〈7,76〉[6,
1

←֓ ]
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〈x,3〉[4,
0

←֓ ]















































































































〈2,7〉[b, ←֓ ]











































































〈1,9〉[1,
2

←֓ ]



























〈2,35〉[2,
1

←֓ ]
{

〈2,43〉[2,
1

←֓ ]

〈3,13〉[3,
1

←֓ ]







〈1,29〉[1,
1

←֓ ]
{

〈2,49〉[2,
1

←֓ ]

〈4,65〉[4,
1

←֓ ]

〈5,69〉[5,
1

←֓ ]

〈3,37〉[3,
2

←֓ ]
{

〈2,41〉[2,
1

←֓ ]

〈4,15〉[1,
1

←֓ ]







〈1,27〉[1,
1

←֓ ]
{

〈2,51〉[2,
1

←֓ ]

〈4,63〉[4,
1

←֓ ]

〈6,71〉[3,
1

←֓ ]

〈3,19〉[5,
1

←֓ ]







〈1,23〉[1,
1

←֓ ]
{

〈2,55〉[2,
1

←֓ ]

〈4,59〉[4,
1

←֓ ]

〈5,75〉[7,
1

←֓ ]

〈x,11〉[4,
0

←֓ ]















〈1,31〉[a, ←֓ ]







〈3,33〉[3,
2

←֓ ]
{

〈2,45〉[2,
1

←֓ ]

〈5,47〉[2,
1

←֓ ]

〈4,67〉[6,
1

←֓ ]

〈a,32〉[3,
0

←֓ ]
{

〈2,46〉[5,
1

←֓ ]

〈b,8〉[1,
0

←֓ ]



























〈2,36〉[3,
1

←֓ ]
{

〈2,42〉[2,
1

←֓ ]

〈3,14〉[4,
1

←֓ ]







〈1,28〉[1,
1

←֓ ]
{

〈2,50〉[2,
1

←֓ ]

〈4,64〉[4,
1

←֓ ]

〈5,70〉[6,
1

←֓ ]

8.3 A degenerated general instance

When there are neither arguments nor abstracted variables, then η-expansion makes sense
even for arbitrary Böhm trees: ([a, ⋆]{ }) expands to

(λz.[a, ⋆]{(a, [a, 1]) | a ∈ A′})

where A′ is an arbitrary subset of A. Taking [a, ⋆] = [xi, ] and A′ = A, and co-inductively
iterating the process, we obtain the identity morphisms of our category, which completes
the categorical picture of section 6. We check on one example that this works, by playing
([x2, ←֓ ]{ }) against
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

























x1

{

. . .

x2[a,
0
←֓ ]

{

b[y, ←֓ ]

x3

{

. . .

We η-expand ([x2, ←֓ ]{ }) dynamically, using the (strong version of the) machinery as in
section 8.1, replacing in the rules m,n1, and n2 by a (arbitrary move), 0 (empty set of
abstracted variables), and 0 (empty set of arguments), respectively:

〈•,1〉[x2, ←֓ ]
{

〈a,3〉[a,
1
←֓ ]

{

〈b,4〉[b,
1
←֓ ]



























x1

{

. . .

〈x2,2〉[a,
0
←֓ ]

{

b[y, ←֓ ]
{

〈b,5〉[y, ←֓ ]

x3

{

. . .

8.4 Discussion

Böhm’s theorem works only modulo η-expansion (we refer to [13] for a detailed analysis).
But, as we have seen, η-conversion does not make sense in the general setting of abstract
Böhm trees. As a matter of fact, Böhm’s theorem does not hold [16] for the λµ-calculus
in its original version, while only a small increase of flexibility in the syntax makes it hold
again [32]. In other words, Böhm’s theorem is rather fragile and does not extend easily to
other syntaxes.

What about separation in the strict sense (not modulo η)? Maurel has exhibited the
following simple counter-example to separation in ludics with pointers:

M1 = (x · {0}){λ{x0}.z}
M2 = (x · {0}){λ{x0}.(x · {0}){λ{x0}.z}}

Here, say, λ{x0}.z is a notation for

{λ{x0}.z} ∪ {J = λ{xj | j ∈ J}.Ω | J 6= {0}}

(This example is a variant of the terms xy and x(xy) considered in section 8.2.)

The only (closed) opponents N able to interact with M1 in such a way that 〈M1 | [x←
N ]〉 converges have the form

{. . . , ({0} = λ{y0}.z), . . .} or
{. . . , ({0} = λ{y0}.(y0 · {0}){M}), . . .}
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The opponents to M2 must also have the same form. But then it is easily checked
that for any N in this class, the evaluations of both 〈M1 | [x ← N ]〉 and 〈M2 | [x ← N ]〉
converge. For example, with N of the second form, we have

〈M2 | [x← N ]〉 −→ 〈y0 · {0}){M} | [y0 ←M1[x← N ]]〉
−→ 〈M1 | [x← N ]〉
−→ 〈y0 · {0}){M} | [y0 ← (λ{x0}.z)[x← N ]]〉
−→ 〈z | . . .〉

But why have we been able to separate xy and x(xy)? We can reformulate the sepa-
rating context as follows. We have let

M1 = λxy.xy and M2 = λxy.x(xy)

interact with zQ1RS01Ωz, through the substitution of M1 or M2 for z. But in terms of
ludics, this means that we have accepted an interaction between (z · {1, 2, 3, 4, 5, 6, 7, 8}. . .
and λ{1, 2}. . . ., which violates the machinery of ludics (and of abstract Böhm trees in
general). The point of η-expansion is to allow to fill the gap, and to pretend that both
M1 and M2 have arity 8.

Separation is recovered under Girard’s affinity conditions, and the proof is then simple
(see [20, 15]). In this respect, the situation is the same as for Böhm’s theorem, which
becomes tricky only when a head variable occurs in one of its arguments (like in y(yx)).

Maurel has shown how to recover separation without sacrificing nested occurrences of
variables by extending the framework of designs to probabilistic designs [27]. The idea
is to assign probabilities to actions, i.e., to head variables. When assigning probability 1

2
to y0 · {0} in λ{y0}.(y0 · {0}){M}), . . ., we get that 〈M1 | [x ← N ]〉 and 〈M2 | [x ← N ]〉
converge with probabilities 1

2 and 1
4 , respectively, and hence M1 and M2 can be separated.

We summarize the discussion in figure 8.

We believe that Maurel’s probabilistic ludics can be lifted to the general setting of
abstract Böhm trees, and leave this as further work.

A Machine equivalences

We define precise translations between the machines. The translation functions are written
⌈ ⌉XY (from machine X to machine Y ).

A.1 VAM-GAM equivalence

We define two-way translations between the GAM and the VAM. The GAM state asso-
ciated to a VAM state is (essentially) its associated set of multiplexed views, which are
defined as follows:

43



exponential ludics : NO

(affine) ludics: YES exponential probabilistic ludics : YES

λ-calculus: yes (modulo η)

Figure 8: Three separation theorems

dviewΓ(1) = •

Γ•(2n) = a

dviewΓ(2n) = 〈a,2n〉

Γ•n = 〈a,m〉

dviewΓ(n) = dviewΓ(m− 1) (Γ•m) 〈a,n〉

VAM to GAM:

⌈{1← •}⌉VG = {1← 〈•,1〉}

⌈Γ{n← }⌉VG = ⌈Γ⌉VG{n← dviewΓ(n)}

⌈Γ⌉VG
•(n − 1) = q

⌈Γ{n← [a,
κ
←֓ ]}⌉VG = ⌈Γ⌉VG{n← q[a,

κ
←֓ ]}

where stands for either a or 〈a,m〉.

The GAM to VAM direction is essentially forgetful:
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GAM to VAM:

⌈{1← 〈•,1〉}⌉GV = {1← •}

⌈Γ{n← q[a,
κ
←֓ ]}⌉GV = ⌈Γ⌉GV {n← [a,

κ
←֓ ]}

Γ•2n = q[a, ←֓ ]

⌈Γ{2n← 〈a,2n〉}⌉GV = ⌈Γ⌉GV {2n← a}

π′(pop i(Γ•(n− 1))) = m

⌈Γ{n← r〈a,n〉}⌉GV = ⌈Γ⌉GV {n← 〈a,m〉}

We shall show that these transformations are inverse (on reachable states, i.e., on states
that arise at some stage in the execution of the machine), and that the two machines
simulate each other in lock step. We shall use the following invariants:

(1) π′(pop i(dviewΓ(n))) = jumpiΓ(n) (n > 1)
(2) dview ⌈Γ⌉GV (n) = Γ•n (for Γ reachable)

We prove claim (1) by induction on i:

1. i = 0. Then the claim reduces to π′(dviewΓ(n)) = n, which holds by definition of
the multiplexed view function.

2. i > 0. Then Γ•n = 〈a,m〉 for some m. We have, by definition of jump and dvview:

m− 1 = jumpΓ(n) and dviewΓ(n) = dviewΓ(m− 1) (Γ•m) 〈a,n〉

It follows that the claim reduces to its (i−1,m−1) instance, which holds by induction.

The base cases of claim (2) are obvious. For the induction case, we have

dview ⌈Γ⌉GV (n) = dview ⌈Γ⌉GV (m− 1) (⌈Γ⌉GV
•m) 〈a,n〉

= (Γ•(m− 1)) (⌈Γ⌉GV
•m) 〈a,n〉

= (Γ•m) 〈a,n〉
= Γ•n

using successively the induction hypothesis, the definition of the m-rule of the GAM, the
definition of the translation, and the definition of the n-rule of the GAM. Appeals to the
rules of the GAM are legitimate because the claim is restricted to reachables states.
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We now show that the machines simulate each other in lock-step. Let {1← 〈•,1〉} =
Γ1, . . . ,Γν , . . . be the successive states of the GAM. Then the VAM runs successively
through the states {1 ← •} = ⌈Γ1⌉

GV , . . . ⌈Γν⌉
GV , . . ., and terminates only when the

GAM terminates; and the same holds conversely in the VAM to GAM direction. These
properties are an easy consequence of the two claims. We check one case in detail: let
Γ 7→ Γ{2n ← r′〈a,2n〉}, with π′(pop i(Γ•(2n − 1))) = 2m − 1. Using the two claims, we
have:

π′(pop i(Γ•(2n − 1))) = π′(pop i(dview ⌈Γ⌉GV (2n− 1))) = jumpi⌈Γ⌉GV (2n− 1)

from which it follows that

⌈Γ⌉GV 7→ ⌈Γ⌉GV {2n← 〈a, 2m − 1〉} = ⌈Γ{2n← r′〈a,2n〉}⌉GV

The fact that the two translations are inverse on reachable states is an immediate conse-
quence of the mutual lock-step simulation.

A.2 SAM-GAM equivalence

We follow the same scheme as in section A.1. Since the proofs are fairly similar, we shall
limit ourselves to stating the relevant invariants.

If Γ is a state of the GAM, we use Γν to denote the prefix of Γ whose last item is
the ν-th item of Γ. The inverse translations are defined as follows (the second translation
necessitates to define at the same time a step number associated to a SAM state):

GAM to SAM:

⌈{1← 〈•,1〉}⌉GS = •

hd(Γ) = {n← q[a,
i
←֓ ]} π′(pop i(q)) = m

⌈Γ{n← r′〈a,n〉}⌉GS = ⌈Γm⌉
GS 〈a, ⌈Γ⌉GS 〉

hd(Γ) = {2n← q[a, ←֓ ]}

⌈Γ{2n← 〈a,2n〉}⌉GS = 〈a, ⌈Γ⌉GS 〉

⌈Γ{n + 1← q[a,
κ
←֓ ]}⌉GS = ⌈Γ⌉GS [a,

κ
←֓ ]
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SAM to GAM:

⌈•⌉SG = {1← 〈•,1〉} •# = 1

q# = n

⌈q[a,
κ
←֓ ]⌉SG = ⌈q⌉SG{n+ 1← (⌈q⌉SG

•n)[a,
κ
←֓ ]}

q# = n

(q[a,
κ
←֓ ])# = n+ 1

r# = n r′
# = m

⌈r′〈a, r〉⌉SG = ⌈r⌉SG{n← (⌈r′⌉SG
•m)〈a,n〉}

r# = n

(r′〈a, r〉)# = n

r# = 2n

⌈〈a, r〉⌉SG = ⌈r⌉SG{2n← 〈a,2n〉}

r# = 2n

〈a, r〉# = 2n

In order to express one of the invariants of these translations, we introduce the following
substate relation among SAM states. It is the transitive closure of the relation defined by
the following rules:

q ≺ q[a,
κ
←֓ ] r′ ≺ r′〈a, r〉 r ≺ r′〈a, r〉

We also need the following auxiliary definition. Let σ be the function assigning to ν the

state reached by the SAM at stage (ν), i.e.,
1
−→ • = σ(1)

2
−→ σ(2) . . .

ν
−→ σ(ν) . . . We are

now ready to express the invariants needed to prove the equivalence between the GAM
and the SAM:

(σ(ν))# = ν

σ(p#) = p

p1 ≺ p2, then (p1)
# < (p2)

#

the head item of ⌈p⌉SG is numbered q#

(⌈Γν⌉
GS )# = ν

(⌈p1⌉
SG)(p2)# = ⌈p2⌉

SG (p2 ≺ p1)

(π′(pop i(⌈q⌉SG
•q#)))′ = (π′(pop i(q)))#

⌈Γ(π′(popi(Γ•n)))′⌉
GS = π′(popi(⌈Γn⌉

GS ))

erase(⌈Γn⌉
GS ) = erase(Γ•n)

A.3 SAM-EAM equivalence

We relate the SAM to the EAM. Let

〈P | [a1, ]←M1[ ], . . . [an, ]←Mn[ ]〉
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be an initial state of the EAM. We shall show that the EAM execution from there is
lock-step simulated by the SAM execution of

〈(⌈P ⌉ca[ ] ) | a1 ← ⌈M1⌉
ca
[ ] , . . . , a1 ← ⌈Mn⌉

ca
[ ] 〉

We translate a SAM state back to an EAM state as follows:

⌈r′⌉SE = 〈[a1,
⋆
←֓ ]{. . . , (a, (λy.P )), . . .} | ρ′〉

⌈r⌉SE = 〈[b1,
⋆
←֓ ]{(b,Mb) | b ∈ B} | ρ〉

⌈r′〈a, r〉⌉SE = 〈P | ρ′[[b, y]←Mb | b ∈ B]〉

⌈r′⌉SE = 〈[a1,
⋆
←֓ ]{. . . , (a, (P )), . . .} | ρ′〉

⌈r⌉SE = 〈[b1,
⋆
←֓ ]{ } | ρ〉

⌈r′〈a, r〉⌉SE = 〈P | ρ′〉

In order to formulate the invariants of the simulation, we need to define the following
translation function:

⌈•⌉ac = ((P ), [ ]) ⌈ai⌉
ac = (Mi, [ ])

⌈r⌉ac = ([a, ⋆]{. . . , (b,Mb), . . .}, L)

⌈rb⌉ac = (Mb, L)

⌈q⌉ac = ((λx.P ), L)

⌈q[a,
κ
←֓ ]⌉ac = (P, x•L)

The function ⌈ ⌉ac reconstructs the matching subterm of (P ) or of the Mi, together with
the concrete binding information above it. The translation ⌈ ⌉SE satisfies the following
invariants:

(1)
⌈r⌉SE = 〈P | ρ〉

P = ⌈erase(r)⌉ac

(2)
⌈q⌉SE = 〈P | ρ〉 ⌈π′(pop i(q))⌉SE = [a1, ⋆]{. . . , (a,M), . . .}

ρ([a, popi(⌈erase(q)⌉ac ]) = M
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GAM

EAM SAM VAM

Figure 9: A unique computing device in four disguises

which in turn entail (easy check) that the SAM can proceed from r (to q) if and only if
the EAM can proceed from ⌈r⌉SE (to ⌈q⌉SE ).

Our picture is now complete. We have four equivalent presentations of the same
computing device, as summarized in figure 9.
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