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Abstract 

A set of twelve state-of-the-art coupled ocean-atmosphere General Circulation Models 

(OAGCMs) is explored to assess their ability to simulate the main teleconnections between the 

West African monsoon (WAM) and the tropical sea surface temperatures (SSTs) at the 

interannual to multi-decadal time scales. Such teleconnections are indeed responsible for the 

main modes of precipitation variability observed over West Africa and represent an interesting 

benchmark for the models that have contributed to the 4th Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC4). The evaluation is based on a Maximum 

Covariance Analysis (MCA) applied on tropical SSTs and WAM rainfall. To distinguish 

between interannual and multi-decadal variability, all datasets are partitioned into Low-

Frequency (LF) and High-Frequency (HF) components prior to analysis. 

First applied to HF observations, the MCA reveals two major teleconnections. The first 

mode highlights the strong influence of the El Niño Southern Oscillation (ENSO). The second 

mode reveals a relationship between the SST in the Gulf of Guinea and the northward migration 

of the monsoon rainbelt over the West African continent. When applied to HF outputs of the 

20th century IPCC4 simulations, the MCA provides heterogeneous results. Most simulations 

show a single dominant Pacific teleconnection, which is however of the wrong sign for half of 

the models. Only one model shows a significant second mode, emphasizing the OAGCMs’ 

difficulty in simulating the response of the African rainbelt to Atlantic SST anomalies that are 

not synchronous with Pacific anomalies. 

The LF modulation of these HF teleconnections is then explored through running 

correlations between Expansion Coefficients (ECs) for SSTs and precipitation. The observed 

time series indicate that both Pacific and Atlantic teleconnections get stronger during the 20th 

century. The IPCC4 simulations of the 20th and 21st centuries do not show any significant 

change in the pattern of the teleconnections, but the dominant ENSO teleconnection also 
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exhibits a significant strengthening, thereby suggesting that the observed trend could be partly a 

response to the anthropogenic forcing. 

Finally, the MCA is also applied to the LF data. The first observed mode reveals a well-

known inter-hemispheric SST pattern that is strongly related to the multi-decadal variability of 

the WAM rainfall dominated by the severe drying trend from the 1950s to the 1980s. Whereas 

recent studies suggest that this drying could be partly caused by anthropogenic forcings, only 

five among the twelve IPCC4 models capture some features of this LF coupled mode. This 

result suggests the need for a more detailed validation of the WAM variability, including a 

dynamical interpretation of the SST-rainfall relationships. 
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1. Introduction 

For demographic, socio-economic and climatic reasons, West Africa is probably one of the 

most vulnerable regions in the world as far as water ressources and food production are 

concerned. Unfortunately, it is also one of the regions where the precipitation response to 

anthropogenic climate change is the most uncertain (Douville et al. 2006a). This might be 

attributed to the complex interactions that control the observed West African monsoon climate, 

including both regional processes such as a strong land surface coupling (Koster et al. 2004) and 

remote effects such as a strong sensitivity to tropical SSTs (Giannini et al. 2005). As such, West 

Africa provides an excellent test bed for evaluating the capability of coupled OAGCMs in 

simulating regional climate varability. 

Sahel is the region of the globe that has experienced the strongest decrease in rainfall over 

the second half of the 20th century. As shown in Fig. 1a, a persistent drying was observed from 

the 1950s to the 1980s, followed by a partial recovery of the summer monsoon precipitation in 

the last decade. Anticipating whether this recovery will carry on or whether the rainfall deficit 

will on the contrary intensify over the 21st century is therefore a crucial challenge for the 

modelling community. Besides its multi-decadal modulation, the WAM precipitation also 

shows a strong interannual variability that can lead to extremely dry years with dramatic 

impacts on the regional food production. Predicting such extreme climate events and possible 

changes in their frequency and/or severity is also of paramount importance.  

Following Charney (1975) and Lamb (1978), two main research tracks have been explored 

to explain the WAM variability: land-atmosphere interactions on the one hand, and monsoon 

teleconnections with tropical SSTs on the other hand. Whereas the land surface track has not 

been abandoned, recent studies based on both observations and numerical experiments suggest 

that the oceanic forcing is a dominant one (Giannini et al. 2005, Douville et al. 2006b). This 

forcing has been widely documented over recent decades, using both observations and global 

atmospheric simulations driven by idealized or observed SSTs. Different basins have been 
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studied either separately – the tropical Atlantic (Janicot 1992), the tropical Pacific (Janicot et al. 

1996, Rowell 2001), the Indian Ocean (Bader and Latif 2003), and the Mediterranean (Rowell 

2003) – or through comprehensive studies linking the observed monsoon rainfall to the global 

oceans (Folland et al. 1986, Rowell et al. 1995, Fontaine and Janicot 1996).  

More recently, ensembles of transient atmospheric simulations driven by global monthly 

SSTs observed during the second half of the 20th century have shown that various AGCMs are 

able to capture a significant part of both interannual and multi-decadal variability of the WAM, 

as well as some aspects of the teleconnections with tropical SSTs (Moron et al. 2004, Paeth and 

Friedrichs 2004, Giannini et al. 2005, Lu and Delworth 2005). While such studies demonstrate 

that the persistent Sahel drought was partly triggered by the tropical SST variability, they do not 

address the possible anthropogenic origin of this drying. Moreover, they do not account for the 

day-to-day ocean-atmosphere coupling that can affect the SST influence on tropical variability, 

as revealed by the comparison between forced and coupled atmospheric simulations (Peña et al. 

2003, Fu et al. 2002, Krishna Kumar et al. 2005, Douville 2005). 

The recent simulations achieved in the framework of the 4th Assessment Report of the IPCC 

represent a unique opportunity to explore the range of climate change projected by state-of-the-

art coupled OAGCMs. Several recent studies have been based on these simulations and have 

focused on the recent and/or future evolution of the WAM. In keeping with Fig. 2 in the present 

study, Douville et al. (2006a) showed that the annual mean precipitation response over West 

Africa in the transient SRES-A2 scenarios of the 21st century is highly model-dependent. They 

also suggested that model deficiencies in simulating the ENSO teleconnections with tropical 

rainfall could be partly responsible for the model spread in their projection of global 

precipitation over land. Comparing preindustrial and 20th century simulations, Biasutti and 

Giannini (2006) found that at least 30% of the recent Sahel drying was externally forced. They 

emphasized the role of reflective aerosols that contribute to an inter-hemispheric SST gradient, 

which could be responsible for the persistent precipitation deficit. Lau et al. (2006) also 

conducted a multi-model study of the 20th century simulations. While they surprisingly 
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considered a priori that the Sahel drought could not be explained by internal climate variability, 

their selection of coupled models that do simulate the 20th century drying revealed the key 

teleconnections that control the multi-decadal variability of the WAM rainfall in the IPCC4 

simulations, with a particular emphasis on the Indian and Atlantic tropical oceans. Looking 

specifically at ensembles of 20th century simulations with two versions of the GFDL model, 

Held et al. (2006) showed that the Sahel drying trend is a robust feature of these models whic h 

is attributable partly to an increase in the aerosol loading and partly to an increase in greenhouse 

gases (GHG). 

Such studies represent an important step in the evaluation of the WAM sensitivity to 

anthropogenic forcings. Nevertheless, while they do emphasize the relevance of the monsoon-

SST relationships in the detection of anthropogenic climate change over West Africa, none of 

them evaluates these relationships in the IPCC4 models. In the present study, we focus on the 

influence of tropical SSTs on the interannual and multi-decadal variability of the WAM 

precipitation. The simulated teleconnections are validated in twelve IPCC4 models using a 

Maximum Covariance Analysis (MCA, also called Singular Value Decomposition in early 

papers). To avoid spurious interactions between the interannual and multi-decadal time scales 

highlighted by the spectrum of the monsoon rainfall in Fig. 1b, the High-Frequency (HF) and 

Low-Frequency (LF) components of the WAM variability are analysed separately, as in the 

study of Ward (1998). This separation does not mean that there is no interaction between both 

time scales, but is justified by the fact that the LF fluctuations of the WAM cannot be simply 

interpreted as a modulation of the frequency or amplitude of its HF variability (Janicot et al. 

2001). 

The structure of the paper is as follows. Section 2 describes the data and the statistical 

techniques. Section 3 compares the HF teleconnections in observed and simulated data, as well 

as their LF modulation. Section 4 evaluates the models’ ability to capture a LF relationship 

between the WAM rainfall and an inter-hemispheric mode of SST variability. 
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2. Data and methods 

2.1. Observed data 

Two datasets are used in this study: 

• The monthly mean precipitation dataset (1901-2002) provided for global land areas 

by the Climate Research Unit (New et al. 2000) at the 0.5° resolution (CRU-P 

hereafter). 

• The monthly mean SST climatology, HadISST1 (1870-2002), provided by the 

Hadley Centre (Rayner et al. 2003), interpolated onto a 128 by 64 horizontal grid to 

reduce the size of the SST matrix in the MCA computation (Had-SST hereafter). 

The quality of the data has greatly increased during the second half of the century. However, 

the MCA yields quite similar results for both periods 1901-2002 and 1951-2002. Therefore the 

longest period, 1901-2002, was preferred for this study. 

2.2. Coupled models 

A subset of twelve models among the 22 currently available in the IPCC database has been 

used (http://www-pcmdi.llnl.gov/ipcc). An effort has been made to select models that have been 

widely used by the climate change community and that are really independent (the selection of 

two versions of the same model has been avoided). This subset is hopefully representative of the 

whole IPCC4 database. It is at least sufficient to illustrate the models’ difficulty in simulating 

the WAM-SST teleconnections over the 20th century and in predicting a consistent response to 

anthropogenic forcings. Table  1 describes the main features of the twelve coupled OAGCMs. 

Three kinds of IPCC4 simulations have been used: 20C3M for the 20th century, the SRES-

A2 scenario for the 21st century, and one control (i.e. pre-industrial) run (CT) for each model. 

The IPCC SRES scenarios provide future anthropogenic emissions that have been converted in 

GHG concentrations and aerosol loadings as inputs for driving GCMs to produce climate 
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change scenarios. The SRES-A2 scenario for the 21st century is based on severe assumptions 

about demography, socio-economic development and technological change. 

In the validation part, only one integration of each model has been considered (Tab. 1) given 

the robustness of the MCA results when applied to different sub-periods of the 20th century 

integration or even to the pre-industrial or 21st century climates. To assess possible changes in 

the HF teleconnections, available ensembles of parallel simulations with identical anthropogenic 

forcings have been used to assess the robustness of the results. 

2.3. Statistical tools 

2.3.1. Data filtering 

First of all, JJAS (June to September) seasonal means have been computed for both 

precipitation and SST fields. It has been decided to focus on the summer monsoon season which 

indeed concentrates more than 80% of annual precipitation over Sahel. Since the main purpose 

of the paper is the validation of the WAM-SST teleconnections against the 20th century 

instrumental record, it has also been decided to filter any long-term change in both observed and 

simulated time series. 

• Precipitation: All seasonal time series have been linearly detrended linearly at each 

grid point. 

• SST: The 20th century time series have also been detrended linearly (validation of 

the HF modes), while for the concatenated 20th and 21st century IPCC4 time series 

(analysis of the LF modulation of HF modes and of the LF modes) a third order 

polynomial fit has been used in order to fit more closely the simulated SST warming. 

The spectral analysis shown in Fig. 1b (performed with the Multi-Taper Method, see §2.3.5) 

indicates that observed rainfall over Sahel contains two distinct components, so that interannual 

variability can be easily isolated from the remainder of the spectrum prior to analysis. The use 

of a digital high-pass filter (Wallace et al. 1988) with a cut-off of ten years has been adopted, in 
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order to separate the multi-decadal (referred to as the Low Frequency, LF) from the interannual 

(the High Frequency, HF). The choice of a ten-year cut-off has been made considering also the 

simulated rainfall indices: some models show a peak in their spectrum for periods between 10 

and 20 years, which has to be distinguished from the interannual time scale. 

The digital filter has been used at each grid-point as follows: 

• The HF part of the time series is obtained by filtering the seasonal means. 

• The LF part corresponds to the residual of the filtered anomalies. 

Note that since the filtering reduces the length of the series (first and last fifteen years), the 

observed HF and LF series are limited to the 72-year period 1916-1987. 

2.3.2. Maximum Covariance Analysis 

Also called Singular Value Decomposition (SVD), the MCA is well discussed in Bretherton 

et al. (1992) and Wallace et al. (1992). The MCA can be considered as a generalization of the 

Principal Component Analysis (PCA), and indeed reduces to it when the two fields are 

identical. The MCA is usually applied to two data fields, in order to identify pairs of coupled 

spatial patterns that explain the largest covariance between the two variables. 

The MCA yields two sets of singular vectors and a set of singular values associated with 

each pair of vectors. Each pair of singular vectors describes a fraction of the square covariance 

between the two variables, and the Square Covariance Fraction (SCF) accounted for by the 

kth pair of singular vectors is proportional to the square of the kth singular value. The 

kth Expansion Coefficient (EC) for each variable is computed by projecting the respective data 

field onto the kth singular vector. The Correlation value (Corr) between the kth ECs of the two 

variables indicates how strongly related the coupled patterns are. 

Using the ECs from the MCA, two types of regression maps can be generated: 



 10

• The kth homogeneous Vector (hV) is the regression map between the grid point 

anomalies of a given field and its kth EC. The hV indicates the geographical 

localization of the co-varying part between the field and its kth EC. 

• The kth heterogeneous Vector (HV) is the regression map between the grid point 

anomalies of a given field and the kth EC of the other field. The HV indicates how 

well the grid point anomalies of one field can be predicted from the knowledge of 

the kth EC of the other field. 

Both hVs and HVs have been extensively used in this study. However, as the HVs contain 

precious information about the possible interactions between the two fields, only HVs are 

shown in this paper. 

Several geographical windows have been tested for the MCA calculations. Whereas the 

meridional boundaries of the SST domain has no influence on the first coupled modes, the 

choice of the precipitation window is more sensitive. With respect to Africa’s geography, we 

have finally decided to consider a region limited by the Sahara to the north, the equator to the 

south, and the Darfur mountains to the east (cf. dashed box in Fig. 3). This region will be called 

“West Africa” hereafter. 

2.3.3. Significance testing 

Statistical tests in MCA are generally based on a Monte Carlo method, by comparing the 

estimated square covariance to that of a randomly scrambled ensemble (Wallace et al. 1992). 

Here we use a moving block bootstrap approach as described in Wilks (1997). Each MCA is 

repeated 99 times, linking the original SST anomalies with randomly scrambled precipitation 

ones, so that the chronological order between the two fields is destroyed. To reduce the 

influence of serial correlation, blocks of two successive years are considered in the shuffling of 

the time sequence. Choices for the block length are usually qualitative in the literature. Von 

Storch and Zwiers (1999) advice that the block length should be related to the persistence of the 

process that has been sampled. In our case, blocks of two consecutive years are used for the HF 
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data, and blocks of ten years for the LF. Significance levels are estimated for the SCF 

(respectively correlation) by the percentage of randomized SCF (respectively correlation) for 

the corresponding mode that exceeds the value being tested. Concerning heterogeneous maps, 

significance levels are estimated in each grid point using an ordinary permutation test with 99 

shuffles (Von Storch and Zwiers 1999). 

2.3.4. VARIMAX rotation 

To guarantee the robustness of our results, the MCA outputs have been systematically 

compared to the following statistics: 

• mean and standard-deviation maps of each field, 

• a separate PCA of each field, 

• a MCA with VARIMAX rotation of the first six pairs of singular vectors. 

The spatial orthogonality of the singular vectors can be a strong and undesirable constraint 

on PCA and MCA, yielding patterns that may not correspond to physical modes. Thus, in order 

to assess the robustness of MCA results, the leading modes were subjected to a VARIMAX 

rotation following Cheng and Dunkerton (1995). The rotation creates indeed spatial patterns that 

are no longer orthogonal within each field but tend to have a larger amplitude in the regions 

where the covariance between the two fields is large. The number of pairs of singular vectors 

submitted to rotation has been tested in the observations: beyond five pairs of rotated vectors the 

results are quite insensitive to an increase in the number of pairs, and six pairs has been 

considered as a reasonable choice. 

2.3.5. Spectral analyses 

Spectral analyses performed in this study are based on the Multi-Taper Method (Ghil et al. 

2002), hereafter MTM, and the confidence levels are obtained relative to an estimated red noise 

background (Mann and Lees 1996). The MTM aims at reducing the variance of spectral 

estimates by the use of three tapers, rather than the unique spectral window used by classical 
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methods. Data are indeed premultiplied by orthogonal tapers constructed to minimize the 

spectral leakage due to the finite length of the time series, and a set of independent estimates of 

the power spectrum is then computed. The MTM describes structures that are modulated in 

frequency and amplitude, with an optimal trade-off between spectral resolution and variance. 

3. High frequency WAM-SST teleconnections 

3.1. Observations  

3.1.1. Two distinct modes of covariability 

The leading two modes of HF covariability obtained with the observed datasets explain 71% 

of the squared covariance between the JJAS precipitation and SST fields (MCA regions are 

shown in Fig. 3). The total amount of variance explained by the two modes reaches 28% for the 

precipitation and 46% for the SSTs. The correlation between pairs of ECs, which is a good 

estimate of the strength of the coupling, is higher for the second mode and both correlations are 

significant at the 99% level. Fig. 3a shows the leading two HVs obtained with the filtered 

observations, and Fig. 4 shows the corresponding ECs. 

• The first HF mode statistically links Sahelian rainfall variability with eastern Pacific 

SSTs. The sign of the loadings shows that El Niño events are significantly correlated 

to Sahelian droughts. The first SST EC displayed in Fig. 4 is strongly correlated to 

the HF JJAS Niño-3 index (correlation 0.95 significant at the 99% level); this mode 

will thus be called “ENSO mode” hereafter. 

• The second HF mode pictures the influence of the Gulf of Guinea on the monsoon. 

The precipitation pattern reveals that warmer than average SSTs in the Gulf of 

Guinea are strongly correlated with higher than average precipitation along the 

coast. This mode will be called “Gulf of Guinea mode” hereafter. 
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The SCF significance obtained with the bootstrap is 68% for the first mode, 99% for the 

second mode, and less than 6% for the further modes in the MCA decomposition. While the 

first mode might correspond to a modulation of the monsoon activity by the tropical east-Pacific 

SSTs, the second mode can be interpreted as a local modulation of the latitudinal position of the 

African rainbelt through Gulf of Guinea SSTs. These two observed HF teleconnections are fully 

consistent with the results of previous studies (Fontaine and Janicot 1996, Rowell et al. 1995, 

Ward 1998). Nevertheless, it seems important to assess carefully the robustness of the method 

before applying the MCA to the IPCC4 simulations. 

3.1.2. Robustness of the results 

The precipitation patterns in Fig. 3a are consistent with a simple PCA over the same domain 

(not shown). Even percentages of explained variance are roughly equal. Some sensitivity tests 

have also been conducted by varying the geographical and temporal windows in the MCA, 

without notable consequences on the results. For instance, a broader SST domain has been used 

in order to include the Mediterranean in the computation, but results were little affected by this 

change. The Mediterranean is indeed a region of likely influence on the WAM system (Rowell 

2001), but its limited geographical extension might have lessened its impact in our large-scale 

MCA. Indeed, a pure Mediterranean teleconnection appears if the MCA is applied to a small 

SST domain that surrounds Africa, including the nearest parts of the Atlantic and Indian oceans: 

such a Mediterranean mode is actually linked to the north-eastern part of Sahelian precipitation 

(not shown). 

Giannini et al. (2005) produced a PCA with historical precipitation records of 57 African 

stations during northern summer 1930-2000. The similar PCA applied to our gridded dataset 

yields very similar patterns and fractions of explained variance. Therefore, it can be asserted 

that the spatial distribution of the dataset has only a marginal effect on the results. Additionally, 

the MCA computed with the CRU-P dataset interpolated onto a 128 by 64 horizontal grid yields 

exactly the same results as with the finer resolution, which means that the method is not 

sensitive to the data resolution. This conclusion is particularly important since the IPCC4 
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models have different atmospheric resolutions (from 1.4°/1.4° to 5°/4° in longitude/latitude), 

and the MCA will be performed directly on the original atmospheric model grid rather than on 

interpolated data. 

Finally, a VARIMAX rotation has also been imposed to the first six singular vectors 

(Fig. 3b). Thereafter, the ENSO pattern gets a stronger core, and looses some of the low values 

in the Gulf of Guinea. The second SST mode does not change at all. As regards the precipitation 

HVs, the second mode gets its bipolarity strengthened, but in return the explained variance of 

precipitation decreases from 10% to 6% for the first mode. Correlations of the ECs are higher 

after the VARIMAX rotation, and Tab. 2 indicates that the SST EC1 is less correlated to EC2 

with this method, and that the EC2 is more correlated to the Gulf of Guinea index displayed in 

Fig. 4. In conclusion, the VARIMAX rotation has a substantial influence on the EC time series, 

but the physical meaning of the leading two modes of covariability remains unchanged. 

3.2. IPCC4 simulations  

3.2.1. Common features of the models 

In order to concentrate on the most significant teleconnections, we only take into account the 

coupled modes that explain more than 10% of precipitation and SST variance (P-Var and SST-

Var), and with a SCF bootstrap significance greater than 50%. These quantities are displayed in 

Fig. 5 for the first HF mode of the twelve IPCC4 20th century simulations. With our criterion, 

two models (CCCMA and GISS) do not have any significant mode, and only one model 

(GFDL) shows a second mode. Concerning the CCCMA and GISS simulations, the SST-Var 

cumulated by the leading two modes is lower than 15%, while this sum ranges from 29% to 

63% with the other models (46% in the observations). This lack of SST variability is confirmed 

by a PCA applied to the tropical SSTs, especially with the GISS model, that does not appear to 

simulate any ENSO variability, as was already noted by Guilyardi (2006). Consequently, the 

MCA was not able to detect any significant teleconnection with these two models. 
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A common feature of the ten remaining models is that, whereas in the observed datasets the 

ratio SCF1 / SCF2 = 1.5, this value ranges from about 2.8 to 23.4 in the models, which means 

that the first mode is often highly predominant over the second one, and in four models, the SCF 

explained by the first mode exceeds 85%. Similarly , the amount of precipitation variance 

accounted for by the first coupled mode is higher in the simulations, and exceeds 20% in six 

models out of ten, versus 10% in the observations. In summary, ten models (out of twelve) do 

simulate a significant WAM-SST teleconnection, that often explains most of the co-variability 

between the two fields, and which is – in nine cases – the only significant relationship detected 

by the MCA. 

3.2.2. Description of the leading two HF modes 

In the 20th century IPCC4 simulations, the first mode of HF covariability always shows a 

strong teleconnection with the tropical Pacific (Fig. 6). The obtained SST patterns are generally 

in good agreement with the observations, but extend too far in the western Pacific and show 

spurious links with other oceanic basins. Looking at precipitation, teleconnections appear 

strongly model dependent and can be very different from the observed ones. 

• Five models (CSIRO, INM, MIROC, MRI and UKMO) have a rather realistic 

ENSO-monsoon relationship: positive SST anomalies in the tropical Pacific are 

significantly correlated to negative precipitation anomalies over West Africa. 

• In five cases (CNRM, GFDL, IPSL, MPI and NCAR) Pacific SST anomalies are 

significantly correlated to precipitation anomalies of the same (i.e. wrong) sign over 

West Africa. 

Some of the teleconnections discarded above deserve further examination. In particular, the 

first mode of the CNRM and MPI simulations show similar problems in their SST and 

precipitation patterns. In both models, warm events in the tropical Pacific are associated with a 

drought in East Africa and a wet anomaly over West Africa, unlike the observations. 

Understanding the reasons for such a shift of the drought region would require a careful 



 16

investigation of the simulated large-scale dynamics, which is beyond the scope of the present 

study. One hypothesis is that the unrealistic pattern of SST variability in the western Pacific is 

responsible for the wrong teleconnection. Note however that a realistic Pacific SST variability 

(isolines in Fig. 6) does not necessarily leads to a realistic teleconnection with the WAM 

rainfall, as indicated by the results of the IPSL and NCAR simulations. 

Moving to the second mode, the MCA results indicate that state-of-the-art coupled 

AOGCMs have great difficulties in simulating the observed relationship between the northward 

migration of the WAM rainfall belt and the SST over the Gulf of Guinea, as a self-controlled 

mode of variability that is not associated with the ENSO. With our criterion, only the GFDL 

CM2.0 model shows a significant second coupled mode. This mode is displayed in Fig. 7 and 

looks quite realistic compared to the observed one (Fig. 3b). Note that in Fig. 7 HVs are 

displayed after a VARIMAX rotation, in order to get more spatially localized patterns (§2.3.4). 

Thereafter, the first SST mode is slightly different than in Fig.6 with this model: the rotated 

Pacific SST pattern actually looses its dipolar counterpart in the Atlantic. 

3.2.3. Analysis of the EC time-series (first mode only) 

As it would be meaningless to compare directly the ECs of the different simulations since 

they have different time histories and phase relationships, we have used the MTM to analyse the 

amplitude spectrum of the time series (see §2.3.5). Here the analysis is restricted to the five 

models that have been shown to simulate reasonably well the first teleconnection. Tab. 3 gives 

the significant periods of the spectrum for both ECs of the first mode. As a consequence of the 

MCA and because of the prior filtering, most of the significant periods of the precipitation EC 

can be found in the spectrum of the SST EC. In the observations, periods 3.6y and 5.2y 

correspond to the ENSO: Fedorov and Philander (2001) have shown that the 5.2y peak is for the 

recent period (since the 1980s), and the 3.5y peak for the preceding period. In the models, the 

spectra of the precipitation and SST ECs show at least two common peaks, but periods do not 

correspond in the details to those observed. In particular, the INM and MIROC models have a 

significant peak around 7y (obvious when considering directly the spectra), and in the MRI 
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model all common periods are lower than 3.6y. In conclusion, the spectra of the first ECs 

exhibit some realistic periods, but with noticeable differences among the five selected models, 

and only limited agreement with the observations. 

3.3. LF modulation of the HF teleconnections  

3.3.1. Observations 

Several studies have suggested that the strength of the WAM-SST teleconnections have 

changed over the second half of the 20th century. Janicot et al. (1996 and 2001) pointed out that 

the relationship between the ENSO and Sahel rainfall was dominant during the drought period, 

whereas during the wetter 1950-70 period, the association with the tropical Atlantic prevailed. 

The modulation of the ENSO teleconnections and the possible reasons for such variations were 

further discussed by Ward (1998), Diaz et al. (2001), Rowell (2001). Two main hypotheses 

were proposed: a change in the background state (mean climate) and a change in the ENSO 

variability (pattern, magnitude, frequency and persistence of tropical Pacific SST anomalies). 

Whatever the mechanism is, such a modulation is not sufficient to explain the persistence 

and magnitude of the drying trend observed over West Africa from the 1950s to the 1980s 

(Janicot 2001). Nevertheless, it is interesting to investigate whether it might be considered as a 

possible evidence of anthropogenic climate change. Note that the aim is not to address the 

difficult question of detecting climate change at the regional scale, but simply to compare the 

LF evolution of the HF modes of covariability between models and observations. 

As the correlation between ECs tells about the strength of the coupling between the two 

patterns, Fig. 8 shows the 29-year running correlations between SSTs and precipitation ECs. 

Note that VARIMAX-rotated ECs have been used, as it proved to better separate Atlantic and 

Pacific HF signals (end of §3.1.2). Fig. 8 indicates that the influence of SSTs on the WAM has 

increased over the second half of the 20th century, for both HF modes: 
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• For the ENSO teleconnection, such an evolution is consistent with previous studies 

and confirms that the ENSO teleconnection has been strenghtening over recent 

decades. 

• For the Atlantic teleconnection, an increase is also found that is in good agreement 

with Rowell (2001), but in our study the prior filtering reduces the length of the 

series. Fig. 8 also shows the running correlations calculated with unfiltered data (but 

with prior linear detrending). It confirms the slight decrease in the 1980s found in 

Rowell (2001) and Janicot et al. (2001), i.e. a weakening of the Atlantic 

teleconnection at the end of the 20th century. 

Given the rela tively short and heterogeneous instrumental record, the statistical significance 

of the observed change in the ENSO-monsoon teleconnection remains uncertain (Rowell 2001, 

Janicot et al. 2001, Van Oldenborgh and Burgers 2005). Numerical studies are therefore 

necessary for a better understanding of this variability. Moron et al. (2003) have compared 

Sahel rainfall variability in four AGCMs forced by prescribed observed SSTs and have shown 

that the models fail to reproduce the observed modulation of the SST-rainfall teleconnection. To 

our knowledge, coupled OAGCMs have never been evaluated in this respect (at least on a 

multi-model basis), as it is proposed in the following paragraph for the five models that have 

been selected in our study and have been shown to achieve a realistic simulation of the ENSO-

monsoon teleconnection patterns. 

3.3.2. IPCC4 simulations 

The IPCC4 database gives us the opportunity to analyse preindustrial, 20th century and 21st 

century climate simulations so as to better assess the significance of a possible influence of 

anthropogenic forcings on the ENSO-monsoon teleconnection. First, the MCA has been 

calculated over the 21st century simulations for the five selected models. The modes obtained 

over the 21st century are very similar to those obtained over the 20st century simulations. This 

result confirms the study of Camberlin et al. (2004), based on a single model, according to 
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which the general patterns of ENSO-rainfall teleconnections would undergo little change under 

increased concentrations of GHG. As a result, the MCA was recalculated over the whole 1900-

2100 period, so as to take advantage of the length of the simulations. As with the observations, 

the strength of the detected teleconnections has been calculated using 29-year running 

correlations between ECs (Fig. 9). To test the robustness of the results, the analysis has been 

applied to the whole ensemble of available simulations for the MIROC and MRI models, i.e. the 

three parallel simulations of the 20th and 21st centuries with identical radiative forcings. 

Two distinct features of the evolution of the simulated ENSO-monsoon teleconnection can 

be distinguished in Fig. 9. First, there is a strong natural LF modulation of the teleconnection, 

whose magnitude is relatively consistent with the limited instrumental record. In one integration 

of the MIROC model, the ENSO teleconnection even vanishes during some periods of more 

than fifty years. Similar fluctuations are also found in the control pre-industrial runs (not shown) 

and cannot be attributed to any anthropogenic forcing. It is beyond the scope of the study to 

investigate the physical mechanisms that control this LF modulation of the teleconnection. 

However, in some models (especially MRI and CSIRO), the modulation of the ENSO 

variability seems to have a greater influence than the evolution of the background state (not 

shown). 

In addition to this strong natural variability, a long-term trend in the strength of the ENSO-

monsoon teleconnection is also noticeable. Linear trends have been estimated and summarized 

in Table 4. Except in the UKMO simulation, they are always significantly positive, which 

indicates a strengthening of the ENSO-monsoon teleconnection.  

Table 4 also shows the lowest and highest trends found in the control (preindustrial) run for 

each model. These trends have been estimated over a sliding window of the same length as the 

concatenated 20th and 21st century in the SRES-A2 scenario. In seven scenarios out of nine, the 

trend is greater than the highest trend found in the control run. Once more, such results do not 

clearly demonstrate that the strengthening found in the instrumental record was caused by 

anthropogenic forcings, but it suggests that teleconnections are not only a test bed for validating 



 20

model variability at the interannual time scale, but also for testing model sensitivity at the 

climate change time scale. Note also that the prescribed anthropogenic forcings are particularly 

strong in the SRES-A2 simulations and that the model response could be weaker in alternative 

climate scenarios. 

Finally, it must be emphasized that the response of ENSO itself is still a matter of debate. On 

the one hand, Van Oldenborgh et al. (2005) assessed various ENSO characteristics in the IPCC4 

SRES-A2 simulations and concluded that the possible changes are of the same magnitude as the 

observed decadal variability over the 20th century, and are thus not statistically significant. On 

the other hand, Guilyardi (2006) found a positive trend in the ENSO amplitude in IPCC4 double 

and quadruple CO2 stabilized scenarios, with a mode change that is consistent with the 

observed 1976 shift. It could be therefore interesting to assess the ENSO-monsoon 

teleconnections in such stabilized experiments in order to weaken the signal-to-noise problem 

inherent to transient simulations. 

4. Low frequency WAM-SST teleconnections 

As detailed in §2.3.1, the high and low-frequency components of the SST and precipitation 

time series have been distinguished from the beginning of the study (with a cut-off period of 10 

years). Here we look for a possible covariability between the LF variations of global SSTs and 

West African precipitation, using the same MCA technique as in section 3. Note that the SST 

domain has been widened to latitudes 50°S and 50°N in order to take into account most of the 

world ocean. For the sake of simplicity, and because of the reduced degrees of freedom, only 

the first mode of covariability will be considered. 

4.1. Observations  

In the observations, the first LF coupled mode accounts for 74% of SCF, and for high 

amounts of explained variance (Fig. 10). EC correlation is of 0.94 (significant at the 99% level), 

which implies a very strong relationship. The precipitation EC in Fig. 11 corresponds – when 
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multiplied by the negative sign of the corresponding singular vector – to the well known 

Sahelian precipitation trend during the second half of the century, while the SST EC combined 

with the SST pattern in Fig. 10 suggests a concomitant warming of the southern hemisphere and 

a cooling of the northern SSTs. This SST pattern corresponds to a well-known inter-

hemispheric pattern (Folland et al. 1986, Rowell et al. 1995) with two maxima: one located in 

the southern Indian Ocean, and the other situated in the North Pacific basin. Deser et al. (2004) 

provided observational evidence of such multi-decadal SST fluctuations in the Indian Ocean 

using a 194-yr coral record. Besides, the potential impact of the Indian Ocean at multi-decadal 

time scales has been recently detailed by Bader and Latif (2003), Giannini et al. (2005), Lu and 

Delworth (2005), but a possible influence of the North Pacific summer SSTs on the African 

monsoon multi-decadal variations is less documented. 

This MCA of the observed LF component confirms the association between the 20th century 

Sahelian drought and an inter-hemispheric temperature contrast that inhibits the convection in 

the rainbelt. However, at this decadal time scale, there are too few degrees of freedom to make 

firm conclusions about teleconnection mechanisms based on statistics alone. Therefore, it is 

interesting to search for multi-decadal coupled modes in our set of coupled OAGCM 

simulations from about 1860 to 2100. 

4.2. IPCC4 simulations  

As in the HF analysis, we only take into account the dominant teleconnections that explain 

more than 10% of precipitation and SST variance, and with a SCF bootstrap significance greater 

than 50%. As pictured by Fig. 12, this is generally the case, except for the five following 

models: CCCMA, CNRM, GFDL, GISS and NCAR. 

The first pairs of HVs are displayed in Fig. 13 for the seven remaining models. Besides their 

geographical distribution, the zonal mean behaviour of the SST HVs is also shown given the 

relative zonal symmetry of the simulated patterns. Only five models exhibit some similarities 

with the observations (INM, MIROC, MPI, MRI, UKMO). Most of them confirm that – at the 
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multi-decadal time scale  – a dry spell in West Africa is associated with a warm equatorial 

Pacific, a warm East Indian ocean, a cold phase in the northern Pacific, and a dipolar north-

south pattern in the Atlantic (only for MPI, MRI and UKMO). Corresponding ECs are presented 

in Fig. 14 and can be compared to the observed ECs in Fig. 11. The five selected models tend to 

exhibit shorter than observed oscillations over the 20th century. 

Looking at the zonal mean signature of the SST HVs, most models highlight a tropical-

extratropical rather than an inter-hemispheric SST contrast. Three models (MPI, MRI and 

UKMO) however clearly show a meridional asymmetry with a stronger signal in the Northern 

rather than the Southern Hemisphere. This is obviously a consequence of the lack of a southern 

Indian ocean maximum in the models (which is the most significant pattern in the observations). 

Note also that for the models, results are similar in the control simulations (not shown), which 

demonstrates that this multi-decadal SST variability is mainly internal to the climate system. 

The SST-rainfall coupling is generally weaker than in the observations, as indicated by the EC 

correlations provided in Fig. 13. The magnitude of the LF rainfall patterns revealed by the MCA 

is also weaker, but is generally not negligible compared to the rainfall anomalies that are 

produced at the end of the 21st century in the SRES A2 scenarios. This remark emphasizes the 

need for the climate community to better understand and validate the internal modes of LF 

variability to get more confident in the model projections. 

5. Conclusion 

West Africa is a region of high demography in a fragile environment, where climate 

forecasting is a research priority at both seasonal and multi-decadal time scales. In the IPCC4 

climate scenarios of the 21st century, the response of the WAM precipitation is still highly 

model-dependent. While a majority of models indicates that the late 20th century anthropogenic 

forcings may have contributed to the Sahel drying (Biasutti and Giannini 2006), it is not so clear 

that this drying will carry on during the 21st century (Douville et al. 2006a). Given the 

contrasted evolution of aerosol and GHG emissions in the SRES A2 scenarios (as well as in 
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most IPCC scenarios), this result suggests that sulphate aerosols are mainly responsible for the 

20th century response and/or that the WAM response to increasing amounts of GHG is highly 

non-linear.  

This remark highlights the difficulty to reduce uncertainties in the 21st century climate 

scenarios. In particular, simulating the 20th century Sahel drought is probably not sufficient to 

constrain the models’ response (Lau et al. 2006). Comparing paleoclimate simulations to proxy 

is also not sufficient since the models’ sensitivity at the regional scale might be highly 

dependent on the nature and magnitude of the external forcing applied to the global climate 

system. There is therefore no unique and magic solution to constrain the models’ response, but 

the need for testing the models on a wide range of processes and time scales. In this respect, 

validating SST-rainfall teleconnections is particularly attractive for at least two reasons. On the 

one hand, such teleconnections clearly contribute to the observed climate variability at 

interannual and multi-decadal time scales and their evolution might therefore influence the 21st 

century climate projections. On the second hand, such teleconnections are mainly controlled by 

the large-scale atmospheric dynamics and therefore represent much more than a validation of 

SST and rainfall variability. 

The present study was aimed at evaluating how state-of-the-art coupled AOGCMs simulate 

teleconnections between tropical SSTs and the African monsoon, treating separately the HF (i.e. 

interannual) and LF (i.e. multi-decadal) variability. Given this partition, the results confirm that 

the WAM precipitation is significantly connected to regional and global SST anomalies on both 

time scales. First applied on the observed HF time series, the Maximum Covariance Analysis 

(MCA) actually provides a synthetic description of two well-established teleconnections that 

explain together 28% of the WAM interannual rainfall variability over the 20th century. The 

leading HF modes are generally too strong in the simulations, except for two models that do not 

exhibit any discernable HF coupling. Above all, the HV patterns look quite different from a 

model to another and only five simulations reproduce a WAM-SST relationship of the correct 

sign. Finally, only one model exhibits a significant second mode. At the LF time scale, the 
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MCA identifies a well-known inter-hemispheric SST contrast, that is poorly reproduced by the 

models. While several studies (Rotstayn and Lohmann 2002, Held et al. 2005, Biasutti and 

Giannini 2006) have suggested that the 20th century aerosol forcing could be partly responsible 

for the observed zonal mean SST gradient, our results emphasize the need for a better 

understanding of the natural multi-decadal variability of the WAM for confirming such an 

hypothesis.  

In addition, it has been shown that the strength of the Pacific-WAM HF teleconnection is not 

stationnary. In the IPCC4 simulations, a large fraction of this multi-decadal modulation is 

obviously not due to the anthropogenic forcings. Nevertheless, most models that show a 

reasonable simulation of the ENSO-monsoon teleconnection also simulate a significant 

strengthening of this relationship that is not found in the preindustrial runs and is consistent with 

the trend estimated from the instrumental record. 

In spite of this, the main conclusion of the study is that many models are still unable to 

capture the main modes of SST-WAM rainfall covariability. In some cases, this problem could 

be related to some deficiencies in the model’s climatology. For instance, HF patterns in the 

CNRM and NCAR simulations have obviously their origin in the simulated rainfall climatology 

(isolines in Fig. 6). Conversely, a realistic teleconnection is not always associated with a good 

climatology. For instance, the MIROC model shows a reasonable HF teleconnection pattern, but 

strongly overestimates the monsoon rainfall and its variability. Moreover, it must be 

emphasized that the four models (GFDL, MPI, MRI and UKMO) that best simulate the tropical 

Pacific climatology according to Guilyardi (2006) do not correspond exactly to the five models 

(CSIRO, INM, MIROC, MRI and UKMO) that have a realistic ENSO coupled mode in our 

analysis. It is therefore now necessary to go a step further in the model validation and to analyse 

more thoroughly the large-scale dynamics that control the teleconnections even if the available 

atmospheric analyses are too short to tell anything about the LF variability.  
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Table captions 

Tab. 1: Some features of the coupled models used in this study. 

• Horizontal and vertical configurations, 

• Equilibrium sensitivity to CO2 doubling, 

• Types of anthropogenic aerosols (SU: sulfates, B&OC: black and organic carbons), 

• Parameterizations of aerosols effects (D: direct, SD: semi-direct, I1: first indirect, I2: 
second indirect), 

• Other forcings used in the 20th century simulations (V: volcanoes, S: solar, LU: land-
use). 

Tab. 2: Some correlations after the MCA of observed HF datasets (correlations are crossed 

when not significant at the 95% level with the permutation test). The Niño-3 and Gulf of Guinea 

(GG) indices are based on HF JJAS anomalies. 

Tab. 3: Significant periods (in years) extracted from the MTM spectrum of the first pair of ECs. 

Significance level is 90% (light grey), 95% (medium grey) or 99% (dark grey). 

Tab. 4: Linear trends of the curves in Fig. 9. The estimated trends are expressed in % per 

century, and the underlined values in the last column correspond to the trend of the ensemble 

mean (red curve in Fig. 9). Note that all the linear trends are significant at the 95% level 

(permutation test). Square brackets indicate the lowest and the highest trend found in the control 

run of the model, for a time window of the same length as the concatenated 20th and 21st 

centuries. 

Figure captions 

Fig. 1: a) Sahel JJAS rainfall index (latitudes 10°N-20°N and longitudes 20°E-40°W) with 

respect to the 1971-2000 mean, and b) its Multi-Taper Method (MTM) spectrum, calculated 

with the 1901-2002 CRU-P dataset, with prior linear detrending. 

Fig. 2: Low-frequency signals extracted by digital filtering (ten year cut-off) of the Sahel JJAS 

rainfall index, for the SRES-A2 scenario of the twelve selected IPCC4 coupled models. The 

anomalies are displayed relatively to the 1971-2000 climatology of the model. 

Fig. 3: MCA of the precipitation (left) and SST (right) observed CRU-P and Had-SST HF 

datasets without a) and with b) VARIMAX rotation. Colour shades indicate the value of the 

Heterogeneous Vector in each grid point where the correlation is significant at the 95% level 

(permutation test). For the precipitation, the three isolines indicate the mean 1951-2000 

climatology with contours for the isohyets 0.5 (dotted), 3.0 (dashed) and 8.0 mm.d-1. For the 

SSTs, the three isolines indicate the SST standard deviations with contours for the isotherms 
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0.6°C, 0.8°C and 1.0°C. A dashed box outlines the geographical areas taken into account for the 

calculation (latitudes 1.4°S-23.5°N and longitudes 19.5°W-22.5°E for the precipitation, and 

latitudes 32°S-32°N for the SSTs). 

Fig. 4: ECs (normalized units) yielded by the MCA of the precipitation (left) and SST (right) 

observed HF datasets. The solid circles indicate a Niño-3 JJAS HF index superimposed on the 

SST-EC1, and a Gulf of Guinea index (latitudes 25°S-10°N and longitudes 20°W-15°E) JJAS 

HF index superimposed on the SST-EC2. 

Fig. 5: A colour-chart based description of the first HF mode in the models. Colours correspond 

to the SCF significance level, and to different thresholds of variance, as shown in the legend. 

Fig. 6: Same as Fig. 3a, but for the first HF mode in the models. 

Fig. 7: Same as Fig. 3b, but for the leading two HF modes of the GFDL model. 

Fig. 8: Evolution of the coupling strength: 29-year running correlations between SST and 

precipitation ECs for the first (solid) and second (dashed) HF modes in the observations 

(maroon lines). Results of the same calculation, but with the raw data (no filtering), are 

displayed in turquoise. 

Fig. 9: Same as Fig. 8, but for the first HF mode in the models. The symbols are solid when 

correlations are significant at the 95% level (permutation test). For each graph, the red curve is 

the mean of the ensemble over the shared period. The dashed lines correspond to the time 

window displayed in Fig. 8. 

Fig. 10: MCA of the precipitation (left) and SST (right) observed CRU-P and Had-SST 

LF datasets. Colour shades indicate the value of the Heterogeneous Vector in each grid point 

where the correlation is significant at the 95% level (permutation test). A dashed box outlines 

the geographical areas taken into account for the calculation (latitudes 1.4°S-23.5°N and 

longitudes 19.5°W-22.5°E for the precipitation, and latitudes 50°S-50°N for the SSTs). 

Fig. 11: ECs (normalized units) associated with the first LF mode in the observations. 

Fig. 12: Same as Fig. 5, but for the first LF mode in the models. 

Fig. 13: Same as Fig. 10, but for the first LF mode in the models. 

Fig. 14: Same as Fig. 11, but for the models. 
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 Tables 

Tab. 1 

BRIEF 
NAME 

FULL NAME ATMOSPHERIC 
CONFIGURATION 

∆T 
K/(W/M2) 

ANTHROP. 
AEROSOLS  

AEROSOLS 
EFFECTS 

OTHER 
FORCINGS  

CCCMA cccma_cgcm3 T47 L31 ? ? ? ? 
CNRM  cnrm_cm3 T42 L45 ? SU D - 
CSIRO csiro_mk3_0 T63 L18 0.88 SU D - 
GFDL gfdl_cm2_0 2.5°*2° L24 0.80 SU, B&OC D V, S, LU 
GISS giss_model_e_r 5°*4° L15 ? SU, B&OC D, I1, I2 V 
INM  inmcm3_0 5°*4° L21 0.52 SU D V 
IPSL ipsl_cm4 3.75°*2.5° L19 1.26 SU D, I1 - 

MIROC miroc3_2_medres T42 L20 1.3 SU, B&OC D, I1, I2 V, S, LU 
MPI mpi_echam5 T63 L31 0.84 SU D, I1 - 
MRI mri_cgcm2 T42 L30 0.86 SU D S 

NCAR ncar_ccsm3_0 T85 L26 0.77 SU, B&OC D, SV V, ? 
UKMO ukmo_hadcm3 3.75°*2.5° L19 ? ? ? ? 

 

Tab. 2 

 

 

 

Tab. 3 

 

 

Before VARIMAX 
 SST-EC2 GG index Niño-3 index 

SST-EC1 -0.48 0.10 0.95 
SST-EC2  0.74 -0.51 
GG index   -0.07 

After VARIMAX 
 SST-EC2 GG index Niño-3 index 

SST-EC1 -0.28 -0.02 0.93 
SST-EC2  0.90 -0.25 
GG index   -0.07 

 P-EC1 SST-EC1 
5.8 y 5.2 y 
3.6 y 3.6 y 

Observations 

2.2 y 2.3 y 
6.4 y  
4.7 y 5.5 y 

CSIRO 

3.2 y 3.2 y 
7.9 y 6.8 y 
4.0 y 4.0 y 
3.1 y 3.1 y 

 2.7 y 

INM 

 2.4 y 
7.4 y 7.3 y 
4.7 y  
3.5 y 2.9 y 

MIROC 

 2.2 y 
3.6 y 3.5 y 
2.7 y 2.7 y 
2.4 y 2.4 y 

MRI 

2.0 y 2.1 y 
5.2 y 5.7 y 
3.8 y 3.8 y 

UKMO 

 2.6 y 
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Tab.  4 

inm 8.3 ∉ [ -13.8 ; -3.4 ]  
csiro 11.1 ∉ [ -11.7 ; 6.3 ]  

miroc-1 2.5 ∈ [ -22.3 ; 3.5 ] 

mri-1 9.8 ∉ [ -6.8 ; - 2.9 ]  F
ig

. 9
 a

) 

ukmo -4.1 ∈ [- 19.2 ; 9.9 ]  

5.1 

miroc-1 2.5 ∈ [ -22.3 ; 3.5 ]  

miroc-2 24.1 ∉ [ -22.3 ; 3.5 ]  
F

ig
. 9

 b
) 

miroc-3 10.7 ∉ [ -22.3 ; 3.5 ]  

12.4 

mri-1 9.8 ∉ [ -6.8 ; - 2.9 ]  

mri-2 7.6 ∉ [ -6.8 ; - 2.9 ]  

F
ig

. 9
 c

) 

mri-3 6.4 ∉ [ -6.8 ; - 2.9 ]  

8.0 

 




























