MacLane's coherence theorem expressed as a word problem

Paul-André Melliès Preuves, Programmes, Systèmes CNRS UMR-7126, Université Paris 7 <mellies@pps.jussieu.fr>

In this draft manuscript, we reduce the coherence theorem for braided monoidal categories to the resolution of a word problem, and the construction of a category of fractions. The technique explicates the combinatorial nature of that particular coherence theorem.

1. Introduction

Let $\mathcal B$ denote the category of braids and $\mathcal M$ any braided monoidal category. Let $\mathrm{Br}(\mathcal B,\mathcal M)$ denote the category of strong braided monoidal functors from $\mathcal B$ to $\mathcal M$ and monoidal natural transformations between them. All definitions are recalled in section 5. The coherence theorem for braided monoidal categories is usually stated as follows:

Theorem 1. The categories $Br(\mathcal{B}, \mathcal{M})$ and \mathcal{M} are equivalent.

We prove the coherence theorem in four independent steps.

To that purpose, we introduce the category A

- whose objects are binary trees of \otimes , with leaves 0 and 1,
- whose morphisms are sequences of rewriting steps $\alpha(a, b, c)$, $\lambda(a)$, $\rho(a)$, $\gamma(a, b)$, $\alpha^{-1}(a, b, c)$, $\lambda^{-1}(a)$, $\rho^{-1}(a)$, $\gamma^{-1}(a, b)$, quotiented by the laws of braided monoidal categories.

1.1. First step

Consider a braided monoidal category \mathcal{M} , and the category $\mathsf{SBr}(\mathcal{A}, \mathcal{M})$ of *strict* braided monoidal functors and monoidal natural transformations from \mathcal{A} to \mathcal{M} . We prove that \mathcal{M} and $\mathsf{SBr}(\mathcal{A}, \mathcal{M})$ are isomorphic. More precisely, we prove that the functor

$$[-]: SBr(A, M) \longrightarrow M$$

which associates to a strict natural transformation

$$\theta: (F, F_2, F_0) \xrightarrow{\cdot} (G, G_2, G_0)$$

the morphism

$$\theta_1: F(1) \longrightarrow G(1)$$

in \mathcal{M} , is reversible.

To every object X in the category \mathcal{M} , we associate a strict braided monoidal functor [X] defined as follows:

$$[X](0) = e$$
 $[X](1) = X$ $[X](a \otimes b) = [X](a) \otimes [X](b)$

and

$$[X](\alpha) = \alpha$$
 $[X](\lambda) = \lambda$ $[X](\rho) = \rho$ $[X](\gamma) = \gamma$

This defines a functor because the image of a commutative diagrams in \mathcal{A} is always commutative in \mathcal{M} . The functor is strict braided monoidal by construction.

To every morphism $f: X \longrightarrow Y$ in the category \mathcal{M} , we associate a family of morphisms $[\![f]\!]$ indexed by objects of \mathcal{A} , as follows:

$$[\![f]\!]_0=id_e \qquad [\![f]\!]_1=f \qquad [\![f]\!]_{a\otimes b}=[\![f]\!]_a\otimes [\![f]\!]_b$$

The family defines a natural transformation $[\![f]\!]: [\![X]\!] \longrightarrow [\![Y]\!]$ because the maps α , λ , ρ , and γ are supposed natural in \mathcal{M} . The natural transformation $[\![f]\!]$ is monoidal by construction.

The map $\llbracket - \rrbracket$ is functorial from \mathcal{M} to $SBr(\mathcal{A}, \mathcal{M})$ and it is easy to see that it defines the inverse of the evaluation functor $[-]:SBr(\mathcal{A},\mathcal{M})\longrightarrow \mathcal{M}$. We conclude.

1.2. Second step

We introduce the notion of *contractible* category. A category Ξ is contractible when:

- there exists at most one morphism between two objects of Ξ ,
- every morphism of Ξ is reversible.

In other words, a category Ξ is contractible when it is a preorder category and a groupoid. Consider a contractible subcategory Ξ of a category \mathcal{C} , full on objects. Write a $\simeq_{\Xi}^{\mathfrak{obj}}$ b for two objects \mathfrak{a} and \mathfrak{b} of \mathcal{C} , when there exists a morphism $\mathfrak{a} \longrightarrow \mathfrak{b}$ in Ξ . Write $\mathfrak{f} \simeq_{\Xi}^{\mathfrak{map}} \mathfrak{g}$ for two morphisms $\mathfrak{f} : \mathfrak{a} \longrightarrow \mathfrak{b}$ and $\mathfrak{g} : \mathfrak{c} \longrightarrow \mathfrak{d}$ when there exists two morphisms $\mathfrak{a} \longrightarrow \mathfrak{c}$ and $\mathfrak{b} \longrightarrow \mathfrak{d}$ in Ξ making the following diagram commute:

The relations $\simeq_\Xi^{\mathfrak{obj}}$ and $\simeq_\Xi^{\mathfrak{map}}$ are equivalence relations on objects and morphisms of $\mathcal C$, respectively. We call *orbit* of an object $\mathfrak a$ or morphism $\mathfrak f$ its equivalence class wrt. $\simeq_\Xi^{\mathfrak{obj}}$ or $\simeq_\Xi^{\mathfrak{map}}$. The quotient category $\mathcal C/\Xi$ is defined as follows:

- its objects are the orbits of objects,
- its morphisms $M \longrightarrow N$ are the orbits of maps,
- its identities and composition are induced from C.

The two categories \mathcal{C} and \mathcal{C}/Ξ are equivalent. Indeed, there exists a "projection" functor

$$F: \mathcal{C} \longrightarrow \mathcal{C}/\Xi$$

which maps every morphism $f: M \longrightarrow N$ to its orbit, and an "embedding" functor

$$G: \mathcal{C}/\Xi \longrightarrow \mathcal{C}$$

depending on the choice, for every orbit wrt. $\simeq_\Xi^{o\,bj}$, of an object in that class. Clearly, $FG = id_{\mathcal{C}/\Xi}$, and there exists a natural transformation $GF \xrightarrow{\cdot} id_{\mathcal{C}}$.

1.3. Third step

Consider a braided monoidal category \mathcal{M} , and the hom-category $Br(\mathcal{A}, \mathcal{M})$ of strong braided monoidal functors and monoidal natural transformations from \mathcal{A} to \mathcal{M} . We prove that the categories $Br(\mathcal{A}, \mathcal{M})$ and $SBr(\mathcal{A}, \mathcal{M})$ are equivalent.

Define Ξ as the subcategory of $Br(\mathcal{A},\mathcal{M})$ containing all reversible maps $\theta:(F,F_2,F_0) \xrightarrow{\cdot} (G,G_2,G_0)$ such that $\theta_1=id_{F(1)}$. Every identity of $Br(\mathcal{A},\mathcal{M})$ is element of Ξ . The main observation is that the category Ξ is contractible. Indeed, once the equality $\theta_1=id_{F(1)}$ is fixed, the component morphisms θ_0 and $\theta_{\alpha\otimes b}$ of the natural transformation θ are uniquely determined by the commutative diagrams

$$\begin{array}{c|c} F(\alpha)\otimes F(b) \xrightarrow{F_{2}(\alpha,b)} & F(\alpha\otimes b) & e \xrightarrow{F_{0}} & F(0) \\ \theta_{\alpha}\otimes\theta_{b} & & & & & & & & & & & & \\ G(\alpha)\otimes G(b) \xrightarrow{G_{2}(\alpha,b)} & G(\alpha\otimes b) & & e \xrightarrow{G_{0}} & G(0) \end{array}$$

Moreover, every identity of Br(A, M) is element of Ξ . We may therefore consider the category $Br(A, M)/\Xi$, which we know is equivalent to Br(A, M).

We prove that the categories $Br(\mathcal{A},\mathcal{M})/\Xi$ and $SBr(\mathcal{A},\mathcal{M})$ are isomorphic. We need to prove that for every strong monoidal functor (G,G_2,G_0) from \mathcal{B} to \mathcal{M} , there exists a strict monoidal functor F, and a map $\theta:F\stackrel{\cdot}{\longrightarrow} (G,G_2,G_0)$ in Σ . Consider a family of isomorphisms $\theta_\alpha:F_\alpha\longrightarrow G_\alpha$

$$\theta_0 = G_0$$
 $\theta_1 = id_e$ $\theta_{a \otimes b} = G_2(a, b) \circ (\theta_a \otimes \theta_b)$

indexed by objects of \mathcal{A} . Then, associate to every morphism $f:\mathfrak{a}\longrightarrow\mathfrak{b}$ in \mathcal{A} , the morphism

$$F(f) = \theta_b^{-1} \circ G(f) \circ \theta_a$$

in \mathcal{M} . A close look at the diagram shows that this defines a strict braided monoidal functor $F: \mathcal{A} \longrightarrow \mathcal{M}$ and a monoidal natural transformation $\theta: F \longrightarrow G$ in Σ . We conclude.

1.4. Fourth step

After steps 1. 2. and 3. the proof of coherence reduces to the comparison of two "free categories":

- the "formal" braided monoidal category \mathcal{A} of \otimes -trees and rewriting paths, quotiented by the commutativities of braided monoidal categories,
- the "geometric" braided monoidal category \mathcal{B} of braids.

This is the most interesting and difficult part of the proof, in fact the first and only time combinatorics plays a role. We prove

- 1. that the subcategory of \mathcal{A} consisting only of α , ρ and λ maps, and their inverses, is contractible,
- 2. that the quotient category is isomorphic to the braid category \mathcal{B} , and equivalent to \mathcal{A} through strong braided monoidal functors.

The first and second assertions are established in sections 3 and 4 respectively.

1.5. Conclusion

The categories $Br(\mathcal{A}, \mathcal{M})$ and \mathcal{M} are equivalent by steps 1. 2. and 3. and the categories $Br(\mathcal{A}, \mathcal{M})$ and $Br(\mathcal{B}, \mathcal{M})$ are equivalent by step 4. This proves theorem 1.

2. A word problem

Let Σ be the category

- whose objects are ⊗-trees with leaves 0 and 1,
- whose morphisms are sequences of $\alpha(a, b, c)$, $\lambda(a)$ and $\rho(a)$, quotiented by the monoidal law (1) the commutativity laws (5) (6) and the additional commutativity triangles (2).

Theorem 2. The category Σ verifies the three following properties:

- the category has pushouts,
- every morphism is epi,
- from every object a, there exists a morphism $a \longrightarrow b$ to a normal object b.

Proof. The proof appears in (Melliès, 2002). It is motivated by works of rewriters like Lévy (Lévy, 1978; Huet and Lévy, 1979) and algebraists like Dehornoy (Dehornoy, 1998).

Definition 1. An object $\mathfrak a$ in a category $\mathcal C$ is called normal when $id_{\mathfrak a}$ is the only morphism outgoing from $\mathfrak a$.

3. Calculus of fractions

3.1. Definition

For every category $\mathcal C$ and class Σ of morphisms in $\mathcal C$, there exists a universal solution to the problem of "reversing" the morphisms in Σ . More explicitly, there exists a category $\mathcal C[\Sigma^{-1}]$ and a functor

$$P_{\Sigma}: \mathcal{C} \longrightarrow \mathcal{C}[\Sigma^{-1}]$$

such that:

- the functor P_{Σ} maps every morphism of Σ to reversible morphism,
- if a functor $F: \mathcal{C} \longrightarrow \mathcal{M}$ makes every morphism of Σ reversible, then F factors as $F = G \circ P_{\mathcal{C}}\Sigma$ for a unique functor $G: \mathcal{C}[\Sigma^{-1}] \longrightarrow \mathcal{M}$.

The class Σ is a *calculus of left fraction* in the category C, see (Gabriel and Zisman, 1967), when

- Σ contains the identities of \mathcal{C} ,
- $-\Sigma$ is closed under composition,
- each diagram $Y \xleftarrow{s} X \xrightarrow{f} Z$ where $s \in \Sigma$ may be completed into a commutative diagram

$$X \xrightarrow{f} Y$$

$$\downarrow t$$

$$Z \xrightarrow{g} X'$$
where $t \in \Sigma$

- each commutative diagram

$$X' \xrightarrow{s} X \xrightarrow{f} Y$$
 where $s \in \Sigma$

may be completed into a commutative diagram

$$X \xrightarrow{f} Y \xrightarrow{t} Y'$$
 where $t \in \Sigma$

The property of left fraction calculus enables an elegant definition of the category $\mathcal{C}[\Sigma^{-1}]$ and functor $P_{\Sigma}:\mathcal{C}\longrightarrow\mathcal{C}[\Sigma^{-1}]$. The category $\mathcal{C}[\Sigma^{-1}]$ is defined as follows.

Its objects are the objects of \mathcal{C} , and its morphisms $X \longrightarrow Y$ are the equivalence classes of pairs (f, s) of morphisms of \mathcal{C}

$$X \xrightarrow{f} \cdot \xleftarrow{s} Y$$
 where $s \in \Sigma$

under the equivalence relation which identifies two pairs $X \xrightarrow{f} Z \xleftarrow{s} Y$ and $X \xrightarrow{g} Z' \xleftarrow{t} Y$ when there exists a pair $X \xrightarrow{h} Z'' \xleftarrow{u} Y$ and two morphisms $Z \xrightarrow{f'} Z'' \xleftarrow{g'} Z'$ forming a commutative diagram

3.2. Application

By theorem 2, the class Σ is a calculus of fraction in the category Σ . But we can prove a bit more. A consequence of the pushout property, and definition of a normal object, is that any two morphisms $a \longrightarrow e$ and $b \longrightarrow e$ to a normal object e are equal in Σ . So, consider two morphisms in $\Sigma[\Sigma^{-1}]$, represented as pairs in Σ

$$a \xrightarrow{f} c \xleftarrow{s} b \qquad \qquad a \xrightarrow{g} d \xleftarrow{t} b$$

Any two morphisms $b \longrightarrow e$ and $c \longrightarrow e$ to a normal object e in Σ , make the following diagram commute in Σ :

We obtain

Theorem 3. The category $\Sigma[\Sigma^{-1}]$ is contractible.

4. From word problem to coherence theorem

In section 3 we have proved that the category $\Sigma[\Sigma^{-1}]$ consisting of $\alpha(a,b,c)$, $\lambda(a)$ $\rho(a)$ steps and their inverse, is contractible.

- In step 1. we prove that $\Sigma[\Sigma^{-1}]$ is a subcategory of \mathcal{A} , full on objects.
- In step 2. we prove that the category $\mathcal{A}/\Sigma[\Sigma^{-1}]$ is braided monoidal, and embeds in \mathcal{A} through strong braided monoidal functors,
- in step 3. we prove that the category $\mathcal{A}/\Sigma[\Sigma^{-1}]$ is isomorphic to the usual braid category \mathcal{B} .

4.1. First step

The two triangles (2) are commutative in \mathcal{A} , as in every monoidal category, see exercise VII.§1.1. in (Mac Lane, 1991). This ensures the existence of a functor $\Sigma \longrightarrow \mathcal{A}$. By definition, this functor induces a functor $\Sigma[\Sigma^{-1}] \longrightarrow \mathcal{A}$. This functor is injective on objects. It is also faithful for the obvious reason that $\Sigma[\Sigma^{-1}]$ is contractible. Thus, $\Sigma[\Sigma^{-1}] \longrightarrow \mathcal{A}$ defines an embedding of the contractible category $\Sigma[\Sigma^{-1}]$ into \mathcal{A} . The embedding is full on objects. This enables to consider the quotient category $\mathcal{A}/\Sigma[\Sigma^{-1}]$.

4.2. Second step

The category $\mathcal{A}/\Sigma[\Sigma^{-1}]$ becomes strict monoidal with the following definition. Let $f: a \longrightarrow b$ and $g: c \longrightarrow d$ be two morphisms of $\mathcal{A}/\Sigma[\Sigma^{-1}]$ represented by two morphisms $f_0: a_0 \longrightarrow b_0$ and $g_0: c_0 \longrightarrow d_0$ in the category \mathcal{A} . Define the tensor product $f \otimes g: a \otimes b \longrightarrow c \otimes d$ as the projection of the tensor product $f_0 \otimes g_0: a_0 \otimes c_0 \longrightarrow b_0 \otimes d_0$ and the unit object e as the orbit of the unit in e. Correctness follows from monoidality of e in e. Monoidality of e is not difficult to prove, and diagrams (5) (6) are obvious.

The category $\mathcal{A}/\Sigma[\Sigma^{-1}]$ is braided monoidal. Let \mathfrak{a} and \mathfrak{b} be two objects of the quotient category $\mathcal{A}/\Sigma[\Sigma^{-1}]$ represented by two objects \mathfrak{a}_0 and \mathfrak{b}_0 in the category \mathcal{A} . Define the braiding $\gamma(\mathfrak{a},\mathfrak{b}): \mathfrak{a} \otimes \mathfrak{b} \longrightarrow \mathfrak{b} \otimes \mathfrak{a}$ in the quotient category as the orbit of the braiding

 $\gamma(\mathfrak{a}_0,\mathfrak{b}_0):\mathfrak{a}_0\otimes\mathfrak{b}_0.$ Correctness of the definition and naturality of γ follow from naturality of γ in \mathcal{A} . Diagrams (7) (8) (9) follow from the definition of γ in $\mathcal{A}/\Sigma[\Sigma^{-1}]$. Moreover,

- the "projection" functor $F: \mathcal{A} \longrightarrow \mathcal{A}/\Sigma[\Sigma^{-1}]$ is strict braided monoidal. Diagrams (10) (11) are trivial, and diagram (12) follows from the definition of the braiding γ in $\mathcal{A}/\Sigma[\Sigma^{-1}]$.
- the "embedding" functor $(G,G_2,G_0):\mathcal{B}/\Xi\longrightarrow\mathcal{A}$ is strong braided monoidal, with the morphisms $G_0:e\longrightarrow G(e')$ and $G_2(\mathfrak{a},\mathfrak{b}):G(\mathfrak{a})\otimes G(\mathfrak{b})\longrightarrow G(\mathfrak{a}\otimes \mathfrak{b})$ determined as morphisms of Σ . Diagrams (10) (11) hold because every maps are in $\Sigma[\Sigma^{-1}]$, and diagram (12) holds because of the definition of the braiding in $\mathcal{A}/\Sigma[\Sigma^{-1}]$.

4.3. Third step

We prove that $\mathcal{A}/\Sigma[\Sigma^{-1}]$ and \mathcal{B} are isomorphic categories. The objects of $\mathcal{A}/\Sigma[\Sigma^{-1}]$ are the natural numbers. The morphisms of $\mathcal{A}/\Sigma[\Sigma^{-1}]$ are sequences of $\rho(\mathfrak{m},\mathfrak{n})$ and $\rho^{-1}(\mathfrak{m},\mathfrak{n})$ steps, modulo monoidality, and commutativity of the triangles induced by (8) (9):

We construct a strict monoidal functor from $\Sigma[\Sigma^{-1}]$ to \mathcal{B} by interpreting each $\gamma(\mathfrak{m},\mathfrak{n})$ by the braiding $\gamma_{\mathcal{B}}(\mathfrak{m},\mathfrak{n}):\mathfrak{m}+\mathfrak{n}\longrightarrow\mathfrak{n}+\mathfrak{m}$ in \mathcal{B} consisting in permuting \mathfrak{n} braids over \mathfrak{m} braids. The functor is full. The only difficult point to prove is that it is faithfull.

This reduces to proving that the hexagonal diagram generating equality of "braids" in \mathcal{B} commutes (already) in the category $\mathcal{A}/\Sigma[\Sigma^{-1}]$:

The diagram is a nice "geometric" consequence of the commutative triangles 3, and monoidality of $\mathcal{A}/\Sigma[\Sigma^{-1}]$.

We conclude that $\mathcal{A}/\Sigma[\Sigma^{-1}]$ and the category \mathcal{B} of braids are isomorphic.

References

P. Dehornoy. On completeness of word reversing. Discrete mathematics, to appear.

- **P. Gabriel and M. Zisman.** *Calculus of Fractions and Homotopy Theory.* Ergebnisse des Mathematik. Springer-Verlag, 1967.
- **G. Huet, J.-J. Lévy.** *Call by Need Computations in Non-Ambiguous Linear Term Rewriting Systems.* Rapport de recherche INRIA 359, 1979. Reprinted as: Computations in orthogonal rewriting systems. In J.-L. Lassez and G. D. Plotkin, editors, *Computational Logic; Essays in Honor of Alan Robinson*, pages 394–443. MIT Press, 1991.
- A. Joyal and R. Street. Braided tensor categories. Adv. Math. 102, 20-78, 1993.
- C. Kassel. Quantum groups. Graduate Texts in Mathematics, Springer-Verlag, 1991.
- **J.-J. Lévy.** *Réductions correctes et optimales dans le* λ*-calcul.* Thèse de Doctorat d'Etat, Université Paris VII, 1978.
- **S. Mac Lane.** *Categories for the working mathematician.* Second edition. Graduate Texts in Mathematics, Springer-Verlag, 1991.
- P-A. Melliès. Axiomatic Rewriting Theory 6: Residual Theory Revisited. Proceedings of RTA 2002.

5. Appendix: definitions of braided monoidal categories, functors and natural transformations

5.1. Monoidal category

A monoidal category \mathcal{M} is a category with a bifunctor

$$\otimes: \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{M}$$

which is associative up to a natural isomorphism

$$\alpha: \alpha \otimes (b \otimes c) \longrightarrow (\alpha \otimes b) \otimes c$$

equipped with an element e, which is a unit up to natural isomorphisms

$$\lambda: e \otimes a \longrightarrow a$$
 $\rho: a \otimes e \longrightarrow a$

These maps must make Mac Lane's famous "pentagon" commute

as well as the triangle:

$$\begin{array}{ccc}
a \otimes (e \otimes b) & \xrightarrow{\alpha} & (a \otimes e) \otimes b \\
\downarrow & & & \downarrow \\
a \otimes b & & & \downarrow \\
a \otimes b & & & \\
\end{array} \tag{6}$$

A monoidal category is *strict* when all α , λ and ρ are identities.

5.2. Braided monoidal category

A braiding for a monoidal category \mathcal{M} consists of a family of isomorphisms

$$\gamma_{a,b}: a \otimes b \longrightarrow b \otimes a$$

natural in a and b, which satisfy the commutativity

$$\begin{array}{ccc}
a \otimes e & \xrightarrow{\gamma} & e \otimes a \\
\downarrow \rho & & \downarrow \lambda \\
a & & & a
\end{array} \tag{7}$$

and makes both following hexagons commute:

$$a \otimes (b \otimes c) \xrightarrow{\alpha} (a \otimes b) \otimes c \xrightarrow{\gamma} c \otimes (a \otimes b)$$

$$\downarrow^{\alpha \otimes \gamma} \qquad \qquad \downarrow^{\alpha}$$

$$a \otimes (c \otimes b) \xrightarrow{\alpha} (a \otimes c) \otimes b \xrightarrow{\gamma \otimes b} (c \otimes a) \otimes b$$

$$(a \otimes b) \otimes c \xrightarrow{\alpha^{-1}} a \otimes (b \otimes c) \xrightarrow{\gamma} (b \otimes c) \otimes a$$

$$(8)$$

$$(a \otimes b) \otimes c \xrightarrow{\alpha^{-1}} a \otimes (b \otimes c) \xrightarrow{\gamma} (b \otimes c) \otimes a$$

$$\downarrow^{\gamma \otimes c} \qquad \qquad \downarrow^{\alpha^{-1}}$$

$$(b \otimes a) \otimes c \xrightarrow{\alpha^{-1}} b \otimes (a \otimes c) \xrightarrow{b \otimes \gamma} b \otimes (c \otimes a)$$

$$(9)$$

5.3. Monoidal functor

A monoidal functor $(F, F_2, F_0) : \mathcal{M} \longrightarrow \mathcal{M}'$ between monoidal categories \mathcal{M} and \mathcal{M}' :

- an ordinary functor $F: \mathcal{M} \longrightarrow \mathcal{M}'$,
- for objects a, b in \mathcal{M} morphisms in \mathcal{M}' :

$$F_2(a,b): F(a) \otimes F(b) \longrightarrow F(a \otimes b)$$

which are natural in a and b,

— for the units e and e', a morphism in \mathcal{M}' :

$$F_0: e \longrightarrow e'$$

making the diagrams commute:

$$F(\alpha) \otimes (F(b) \otimes F(c)) \xrightarrow{\alpha'} (F(\alpha) \otimes F(b)) \otimes F(c)$$

$$F(\alpha) \otimes F_{2}(b,c) \downarrow \qquad \qquad \downarrow^{F_{2}(\alpha,b) \otimes F(c)}$$

$$F(\alpha) \otimes F(b \otimes c) \qquad \qquad F(\alpha \otimes b) \otimes F(c) \qquad \downarrow^{F_{2}(\alpha,b \otimes c)}$$

$$F_{2}(\alpha,b \otimes c) \downarrow \qquad \qquad \downarrow^{F_{2}(\alpha \otimes b,c)}$$

$$F(\alpha \otimes (b \otimes c)) \xrightarrow{F(\alpha)} F((\alpha \otimes b) \otimes c)$$

$$(10)$$

$$F(b) \otimes e' \xrightarrow{\rho} F(b) \qquad e' \otimes F(b) \xrightarrow{\lambda} F(b)$$

$$F(b) \otimes F(e) \xrightarrow{F_2(b,e)} F(b \otimes e) \qquad F(e) \otimes F(b) \xrightarrow{F_2(e,b)} F(e \otimes b)$$

$$(11)$$

A monoidal functor f is said to be *strong* when F_0 and all $F_2(a, b)$ are isomorphisms, *strict* when F_0 and all $F_2(a, b)$ are identities.

5.4. Braided monoidal functors

If \mathcal{M} and \mathcal{M}' are braided monoidal categories, a braided monoidal functor is a monoidal functor $(F, F_2, F_0) : \mathcal{M} \longrightarrow \mathcal{M}'$ which commutes with the braidings γ and γ' in the following sense:

$$F(a) \otimes F(b) \xrightarrow{\gamma'} F(b) \otimes F(a)$$

$$\downarrow F_{2}(a,b) \downarrow \qquad \qquad \downarrow F_{2}(b,a)$$

$$F(a \otimes b) \xrightarrow{F(\gamma)} F(b \otimes a)$$

$$(12)$$

5.5. Monoidal natural transformations

A monoidal natural transformation $\theta:(F,F_2,F_0)\longrightarrow (G,G_2,G_0):\mathcal{M}\longrightarrow \mathcal{M}'$ between two monoidal functors is a natural transformation between the underlying ordinary functors $\theta:F\longrightarrow G$ making the diagrams

$$F(\alpha) \otimes F(b) \xrightarrow{F_{2}(\alpha,b)} F(\alpha \otimes b) \qquad e' \xrightarrow{F_{0}} Fe$$

$$\theta_{\alpha} \otimes \theta_{b} \downarrow \qquad \qquad \downarrow \theta_{\alpha \otimes b} \qquad \parallel \qquad \downarrow \theta_{e} \qquad (13)$$

$$G(\alpha) \otimes G(b) \xrightarrow{G_{2}(\alpha,b)} G(\alpha \otimes b) \qquad e' \xrightarrow{G_{0}} Ge$$

commute in \mathcal{M}' .