# MacLane's coherence theorem expressed as a word problem 

Paul-André Melliès<br>Preuves, Programmes, Systèmes<br>CNRS UMR-7126, Université Paris 7<br>[mellies@pps.jussieu.fr](mailto:mellies@pps.jussieu.fr)

In this draft manuscript, we reduce the coherence theorem for braided monoidal categories to the resolution of a word problem, and the construction of a category of fractions. The technique explicates the combinatorial nature of that particular coherence theorem.

## 1. Introduction

Let $\mathcal{B}$ denote the category of braids and $\mathcal{M}$ any braided monoidal category. Let $\operatorname{Br}(\mathcal{B}, \mathcal{M})$ denote the category of strong braided monoidal functors from $\mathcal{B}$ to $\mathcal{M}$ and monoidal natural transformations between them. All definitions are recalled in section 5. The coherence theorem for braided monoidal categories is usually stated as follows:

Theorem 1. The categories $\operatorname{Br}(\mathcal{B}, \mathcal{M})$ and $\mathcal{M}$ are equivalent.
We prove the coherence theorem in four independent steps.
To that purpose, we introduce the category $\mathcal{A}$
— whose objects are binary trees of $\otimes$, with leaves 0 and 1 ,
— whose morphisms are sequences of rewriting steps $\alpha(a, b, c), \lambda(a), \rho(a), \gamma(a, b), \alpha^{-1}(a, b, c)$, $\lambda^{-1}(a), \rho^{-1}(a), \gamma^{-1}(a, b)$, quotiented by the laws of braided monoidal categories.

### 1.1. First step

Consider a braided monoidal category $\mathcal{M}$, and the category $\operatorname{SBr}(\mathcal{A}, \mathcal{M})$ of strict braided monoidal functors and monoidal natural transformations from $\mathcal{A}$ to $\mathcal{M}$. We prove that $\mathcal{M}$ and $\operatorname{SBr}(\mathcal{A}, \mathcal{M})$ are isomorphic. More precisely, we prove that the functor

$$
[-]: \operatorname{SBr}(\mathcal{A}, \mathcal{M}) \longrightarrow \mathcal{M}
$$

which associates to a strict natural transformation

$$
\theta:\left(\mathrm{F}, \mathrm{~F}_{2}, \mathrm{~F}_{0}\right) \xrightarrow{\longrightarrow}\left(\mathrm{G}, \mathrm{G}_{2}, \mathrm{G}_{0}\right)
$$

the morphism

$$
\theta_{1}: F(1) \longrightarrow G(1)
$$

in $\mathcal{M}$, is reversible.
To every object X in the category $\mathcal{M}$, we associate a strict braided monoidal functor $\llbracket \mathrm{X} \rrbracket$ defined as follows:

$$
\llbracket X \rrbracket(0)=e \quad \llbracket X \rrbracket(1)=X \quad \llbracket X \rrbracket(a \otimes b)=\llbracket X \rrbracket(a) \otimes \llbracket X \rrbracket(b)
$$

and

$$
\llbracket X \rrbracket(\alpha)=\alpha \quad \llbracket X \rrbracket(\lambda)=\lambda \quad \llbracket X \rrbracket(\rho)=\rho \quad \llbracket X \rrbracket(\gamma)=\gamma
$$

This defines a functor because the image of a commutative diagrams in $\mathcal{A}$ is always commutative in $\mathcal{M}$. The functor is strict braided monoidal by construction.

To every morphism $f: X \longrightarrow Y$ in the category $\mathcal{M}$, we associate a family of morphisms $\llbracket \mathrm{f} \rrbracket$ indexed by objects of $\mathcal{A}$, as follows:

$$
\llbracket \mathrm{f} \rrbracket_{0}=\mathrm{id}_{e} \quad \llbracket \mathrm{f} \rrbracket_{1}=\mathrm{f} \quad \llbracket \mathrm{f} \rrbracket_{\mathfrak{a} \otimes \mathrm{b}}=\llbracket \mathrm{f} \rrbracket_{\mathfrak{a}} \otimes \llbracket \mathrm{f} \rrbracket_{\mathfrak{b}}
$$

The family defines a natural transformation $\llbracket f \rrbracket: \llbracket X \rrbracket \longrightarrow \llbracket Y \rrbracket$ because the maps $\alpha, \lambda, \rho$, and $\gamma$ are supposed natural in $\mathcal{M}$. The natural transformation $\llbracket f \rrbracket$ is monoidal by construction.

The map $\llbracket-\rrbracket$ is functorial from $\mathcal{M}$ to $\operatorname{SBr}(\mathcal{A}, \mathcal{M})$ and it is easy to see that it defines the inverse of the evaluation functor $[-]: \operatorname{SBr}(\mathcal{A}, \mathcal{M}) \rightarrow \mathcal{M}$. We conclude.

### 1.2. Second step

We introduce the notion of contractible category. A category $\Xi$ is contractible when:

- there exists at most one morphism between two objects of $\Xi$,
- every morphism of $\Xi$ is reversible.

In other words, a category $\Xi$ is contractible when it is a preorder category and a groupoid.
Consider a contractible subcategory $\Xi$ of a category $\mathcal{C}$, full on objects. Write $a \simeq_{\Xi}^{o b j} b$ for two objects $a$ and $b$ of $\mathcal{C}$, when there exists a morphism $a \longrightarrow b$ in $\Xi$. Write $f \simeq_{\Xi}^{\text {map }} g$ for two morphisms $f: a \longrightarrow b$ and $g: c \longrightarrow d$ when there exists two morphisms $a \longrightarrow c$ and $b \longrightarrow d$ in $\Xi$ making the following diagram commute:


The relations $\simeq_{\Xi}^{\text {obj }}$ and $\simeq_{\Xi}^{\text {map }}$ are equivalence relations on objects and morphisms of $\mathcal{C}$, respectively. We call orbit of an object a or morphism fits equivalence class wrt. $\simeq_{\Xi}^{\mathrm{obj}}$ or $\simeq_{\Xi}^{\text {map }}$. The quotient category $\mathcal{C} / \Xi$ is defined as follows:

- its objects are the orbits of objects,
— its morphisms $M \longrightarrow N$ are the orbits of maps,
- its identities and composition are induced from $\mathcal{C}$.

The two categories $\mathcal{C}$ and $\mathcal{C} / \Xi$ are equivalent. Indeed, there exists a "projection" functor

$$
\mathrm{F}: \mathcal{C} \longrightarrow \mathcal{C} / \Xi
$$

which maps every morphism $f: M \longrightarrow N$ to its orbit, and an "embedding" functor

$$
\mathrm{G}: \mathcal{C} / \Xi \longrightarrow \mathcal{C}
$$

depending on the choice, for every orbit wrt. $\simeq_{\Xi}^{\text {obj }}$, of an object in that class. Clearly, FG $=$ $\mathrm{id}_{\mathcal{C} / \Xi}$, and there exists a natural transformation $\mathrm{GF} \rightarrow \mathrm{id}_{\mathcal{C}}$.

### 1.3. Third step

Consider a braided monoidal category $\mathcal{M}$, and the hom-category $\operatorname{Br}(\mathcal{A}, \mathcal{M})$ of strong braided monoidal functors and monoidal natural transformations from $\mathcal{A}$ to $\mathcal{M}$. We prove that the categories $\operatorname{Br}(\mathcal{A}, \mathcal{M})$ and $\operatorname{SBr}(\mathcal{A}, \mathcal{M})$ are equivalent.

Define $\Xi$ as the subcategory of $\operatorname{Br}(\mathcal{A}, \mathcal{M})$ containing all reversible maps $\theta:\left(\mathrm{F}, \mathrm{F}_{2}, \mathrm{~F}_{0}\right) \xrightarrow{\longrightarrow}$ $\left(\mathrm{G}, \mathrm{G}_{2}, \mathrm{G}_{0}\right)$ such that $\theta_{1}=\operatorname{id}_{\mathrm{F}(1)}$. Every identity of $\operatorname{Br}(\mathcal{A}, \mathcal{M})$ is element of $\Xi$. The main observation is that the category $\Xi$ is contractible. Indeed, once the equality $\theta_{1}=\operatorname{id}_{F(1)}$ is fixed, the component morphisms $\theta_{0}$ and $\theta_{a \otimes b}$ of the natural transformation $\theta$ are uniquely determined by the commutative diagrams


Moreover, every identity of $\operatorname{Br}(\mathcal{A}, \mathcal{M})$ is element of $\Xi$. We may therefore consider the category $\operatorname{Br}(\mathcal{A}, \mathcal{M}) / \Xi$, which we know is equivalent to $\operatorname{Br}(\mathcal{A}, \mathcal{M})$.

We prove that the categories $\operatorname{Br}(\mathcal{A}, \mathcal{M}) / \Xi$ and $\operatorname{SBr}(\mathcal{A}, \mathcal{M})$ are isomorphic. We need to prove that for every strong monoidal functor $\left(G, G_{2}, G_{0}\right)$ from $\mathcal{B}$ to $\mathcal{M}$, there exists a strict monoidal functor $F$, and a map $\theta: F \xrightarrow{\bullet}\left(G, G_{2}, G_{0}\right)$ in $\Sigma$. Consider a family of isomorphisms $\theta_{a}: F_{a} \longrightarrow G_{a}$

$$
\theta_{0}=\mathrm{G}_{0} \quad \theta_{1}=\mathrm{id}_{e} \quad \theta_{\mathrm{a} \otimes \mathrm{~b}}=\mathrm{G}_{2}(\mathrm{a}, \mathrm{~b}) \circ\left(\theta_{\mathrm{a}} \otimes \theta_{\mathrm{b}}\right)
$$

indexed by objects of $\mathcal{A}$. Then, associate to every morphism $f: a \longrightarrow b$ in $\mathcal{A}$, the morphism

$$
F(f)=\theta_{b}^{-1} \circ G(f) \circ \theta_{a}
$$

in $\mathcal{M}$. A close look at the diagram shows that this defines a strict braided monoidal functor $\mathrm{F}: \mathcal{A} \longrightarrow \mathcal{M}$ and a monoidal natural transformation $\theta: \mathrm{F} \longrightarrow \mathrm{G}$ in $\Sigma$. We conclude.

### 1.4. Fourth step

After steps 1. 2. and 3. the proof of coherence reduces to the comparison of two "free categories":
— the "formal" braided monoidal category $\mathcal{A}$ of $\otimes$-trees and rewriting paths, quotiented by the commutativities of braided monoidal categories,

- the "geometric" braided monoidal category $\mathcal{B}$ of braids.

This is the most interesting and difficult part of the proof, in fact the first and only time combinatorics plays a role. We prove

1. that the subcategory of $\mathcal{A}$ consisting only of $\alpha, \rho$ and $\lambda$ maps, and their inverses, is contractible,
2. that the quotient category is isomorphic to the braid category $\mathcal{B}$, and equivalent to $\mathcal{A}$ through strong braided monoidal functors.
The first and second assertions are established in sections 3 and 4 respectively.

### 1.5. Conclusion

The categories $\operatorname{Br}(\mathcal{A}, \mathcal{M})$ and $\mathcal{M}$ are equivalent by steps 1.2. and 3. and the categories $\operatorname{Br}(\mathcal{A}, \mathcal{M})$ and $\operatorname{Br}(\mathcal{B}, \mathcal{M})$ are equivalent by step 4 . This proves theorem 1 .

## 2. A word problem

Let $\Sigma$ be the category

- whose objects are $\otimes$-trees with leaves 0 and 1 ,
- whose morphisms are sequences of $\alpha(a, b, c), \lambda(a)$ and $\rho(a)$, quotiented by the monoidal law (1) the commutativity laws (5) (6) and the additional commutativity triangles (2).



Theorem 2. The category $\Sigma$ verifies the three following properties:

- the category has pushouts,
- every morphism is epi,
- from every object $a$, there exists a morphism $a \longrightarrow b$ to a normal object $b$.

Proof. The proof appears in (Melliès, 2002). It is motivated by works of rewriters like Lévy (Lévy, 1978; Huet and Lévy, 1979) and algebraists like Dehornoy (Dehornoy, 1998). $\square$

Definition 1. An object $a$ in a category $\mathcal{C}$ is called normal when $\mathrm{id}_{\mathrm{a}}$ is the only morphism outgoing from $a$.

## 3. Calculus of fractions

### 3.1. Definition

For every category $\mathcal{C}$ and class $\Sigma$ of morphisms in $\mathcal{C}$, there exists a universal solution to the problem of "reversing" the morphisms in $\Sigma$. More explicitly, there exists a category $\mathcal{C}\left[\Sigma^{-1}\right]$ and a functor

$$
\mathrm{P}_{\Sigma}: \mathcal{C} \longrightarrow \mathcal{C}\left[\Sigma^{-1}\right]
$$

such that:

- the functor $\mathrm{P}_{\Sigma}$ maps every morphism of $\Sigma$ to reversible morphism,
- if a functor $F: \mathcal{C} \longrightarrow \mathcal{M}$ makes every morphism of $\Sigma$ reversible, then $F$ factors as $\mathrm{F}=\mathrm{G} \circ \mathrm{P}_{\mathcal{C}} \Sigma$ for a unique functor $\mathrm{G}: \mathcal{C}\left[\Sigma^{-1}\right] \longrightarrow \mathcal{M}$.

The class $\Sigma$ is a calculus of left fraction in the category $\mathcal{C}$, see (Gabriel and Zisman, 1967), when

- $\Sigma$ contains the identities of $\mathcal{C}$,
- $\Sigma$ is closed under composition,
- each diagram $Y \stackrel{s}{\longleftarrow} X \xrightarrow{f} Z$ where $s \in \Sigma$ may be completed into a commutative diagram

where $t \in \Sigma$
- each commutative diagram

$$
X^{\prime} \xrightarrow{s} X \xrightarrow[\mathrm{~g}]{\mathrm{f}} Y \quad \text { where } s \in \Sigma
$$

may be completed into a commutative diagram

$$
X \xrightarrow[g]{f} Y \xrightarrow{t} Y^{\prime} \quad \text { where } t \in \Sigma
$$

The property of left fraction calculus enables an elegant definition of the category $\mathcal{C}\left[\Sigma^{-1}\right]$ and functor $P_{\Sigma}: \mathcal{C} \longrightarrow \mathcal{C}\left[\Sigma^{-1}\right]$. The category $\mathcal{C}\left[\Sigma^{-1}\right]$ is defined as follows.

Its objects are the objects of $\mathcal{C}$, and its morphisms $\mathrm{X} \longrightarrow \mathrm{Y}$ are the equivalence classes of pairs ( $f, s$ ) of morphisms of $\mathcal{C}$

$$
X \xrightarrow{f} \cdot \stackrel{s}{\leftarrow} Y \quad \text { where } s \in \Sigma
$$

under the equivalence relation which identifies two pairs $X \xrightarrow{f} Z \stackrel{\text { s }}{\leftarrow} Y$ and $X \xrightarrow{g} Z^{\prime}{ }^{\text {t }}$ $Y$ when there exists a pair $X \xrightarrow{h} Z^{\prime \prime} \stackrel{u}{\longleftrightarrow} Y$ and two morphisms $Z \xrightarrow{f^{\prime}} Z^{\prime \prime} \stackrel{g^{\prime}}{\leftrightarrows} Z^{\prime}$ forming a commutative diagram

where $u \in \Sigma$

### 3.2. Application

By theorem 2, the class $\Sigma$ is a calculus of fraction in the category $\Sigma$. But we can prove a bit more. A consequence of the pushout property, and definition of a normal object, is that any two morphisms $a \longrightarrow e$ and $b \longrightarrow e$ to a normal object $e$ are equal in $\Sigma$. So, consider two morphisms in $\Sigma\left[\Sigma^{-1}\right]$, represented as pairs in $\Sigma$

$$
a \xrightarrow{f} c \stackrel{s}{\leftarrow} b \quad a \xrightarrow{g} d \stackrel{t}{\leftarrow} b
$$

Any two morphisms $b \longrightarrow e$ and $c \longrightarrow e$ to a normal object $e$ in $\Sigma$, make the following diagram commute in $\Sigma$ :


We obtain
Theorem 3. The category $\Sigma\left[\Sigma^{-1}\right]$ is contractible.

## 4. From word problem to coherence theorem

In section 3 we have proved that the category $\Sigma\left[\Sigma^{-1}\right]$ consisting of $\alpha(a, b, c), \lambda(a) \rho(a)$ steps and their inverse, is contractible.

- In step 1 . we prove that $\Sigma\left[\Sigma^{-1}\right]$ is a subcategory of $\mathcal{A}$, full on objects.
— In step 2 . we prove that the category $\mathcal{A} / \Sigma\left[\Sigma^{-1}\right]$ is braided monoidal, and embeds in $\mathcal{A}$ through strong braided monoidal functors,
— in step 3 . we prove that the category $\mathcal{A} / \Sigma^{\left[\Sigma^{-1}\right]}$ is isomorphic to the usual braid category $\mathcal{B}$.


### 4.1. First step

The two triangles (2) are commutative in $\mathcal{A}$, as in every monoidal category, see exercise VII.§1.1. in (Mac Lane, 1991). This ensures the existence of a functor $\Sigma \longrightarrow \mathcal{A}$. By definition, this functor induces a functor $\Sigma\left[\Sigma^{-1}\right] \longrightarrow \mathcal{A}$. This functor is injective on objects. It is also faithful for the obvious reason that $\Sigma^{\left[\Sigma^{-1}\right]}$ is contractible. Thus, $\Sigma\left[\Sigma^{-1}\right] \longrightarrow \mathcal{A}$ defines an embedding of the contractible category $\Sigma\left[\Sigma^{-1}\right]$ into $\mathcal{A}$. The embedding is full on objects. This enables to consider the quotient category $\left.\mathcal{A} / \Sigma^{\mathcal{A}} \Sigma^{-1}\right]$.

### 4.2. Second step

The category $\left.\mathcal{A} / \Sigma^{[ } \Sigma^{-1}\right]$ becomes strict monoidal with the following definition. Let f : $\mathrm{a} \longrightarrow \mathrm{b}$ and $\mathrm{g}: \mathrm{c} \longrightarrow \mathrm{d}$ be two morphisms of $\mathcal{A} / \Sigma\left[\Sigma^{-1}\right]$ represented by two morphisms $f_{0}: a_{0} \longrightarrow b_{0}$ and $g_{0}: c_{0} \longrightarrow d_{0}$ in the category $\mathcal{A}$. Define the tensor product $f \otimes g:$ $a \otimes b \longrightarrow c \otimes d$ as the projection of the tensor product $f_{0} \otimes g_{0}: a_{0} \otimes c_{0} \longrightarrow b_{0} \otimes d_{0}$ and the unit object $e$ as the orbit of the unit in $\mathcal{A}$. Correctness follows from monoidality of $\otimes$ in $\mathcal{A}$. Monoidality of $\otimes$ is not difficult to prove, and diagrams (5) (6) are obvious.

The category $\mathcal{A} / \Sigma\left[\Sigma^{-1}\right]$ is braided monoidal. Let $a$ and $b$ be two objects of the quotient category $\mathcal{A} / \Sigma\left[\Sigma^{-1}\right]$ represented by two objects $a_{0}$ and $b_{0}$ in the category $\mathcal{A}$. Define the braiding $\gamma(\mathrm{a}, \mathrm{b}): \mathrm{a} \otimes \mathrm{b} \longrightarrow \mathrm{b} \otimes \mathrm{a}$ in the quotient category as the orbit of the braiding
$\gamma\left(a_{0}, b_{0}\right): a_{0} \otimes b_{0}$. Correctness of the definition and naturality of $\gamma$ follow from naturality of $\gamma$ in $\mathcal{A}$. Diagrams (7) (8) (9) follow from the definition of $\gamma$ in $\mathcal{A} / \Sigma\left[\Sigma^{-1}\right]$.

Moreover,
— the "projection" functor $F: \mathcal{A} \longrightarrow \mathcal{A} / \Sigma^{\left[\Sigma^{-1}\right]}$ is strict braided monoidal. Diagrams (10) (11) are trivial, and diagram (12) follows from the definition of the braiding $\gamma$ in $\mathcal{A} / \Sigma\left[\Sigma^{-1}\right]$.
— the "embedding" functor $\left(\mathrm{G}, \mathrm{G}_{2}, \mathrm{G}_{0}\right): \mathcal{B} / \Xi \longrightarrow \mathcal{A}$ is strong braided monoidal, with the morphisms $G_{0}: e \longrightarrow G\left(e^{\prime}\right)$ and $G_{2}(a, b): G(a) \otimes G(b) \longrightarrow G(a \otimes b)$ determined as morphisms of $\Sigma$. Diagrams (10) (11) hold because every maps are in $\Sigma\left[\Sigma^{-1}\right]$, and diagram (12) holds because of the definition of the braiding in $\mathcal{A} / \Sigma\left[\Sigma^{-1}\right]$.

### 4.3. Third step

We prove that $\mathcal{A} / \Sigma^{\left[\Sigma^{-1}\right]}$ and $\mathcal{B}$ are isomorphic categories. The objects of $\mathcal{A} / \Sigma^{\left[\Sigma^{-1}\right]}$ are the natural numbers. The morphisms of $\left.\mathcal{A} / \Sigma^{-1}\right]$ are sequences of $\rho(m, n)$ and $\rho^{-1}(m, n)$ steps, modulo monoidality, and commutativity of the triangles induced by (8) (9):


We construct a strict monoidal functor from $\Sigma\left[\Sigma^{-1}\right]$ to $\mathcal{B}$ by interpreting each $\gamma(m, n)$ by the braiding $\gamma_{\mathcal{B}}(m, n): m+n \longrightarrow n+m$ in $\mathcal{B}$ consisting in permuting $n$ braids over $m$ braids. The functor is full. The only difficult point to prove is that it is faithfull.

This reduces to proving that the hexagonal diagram generating equality of "braids" in $\mathcal{B}$ commutes (already) in the category $\mathcal{A} / \Sigma\left[\Sigma^{-1}\right]$ :


The diagram is a nice "geometric" consequence of the commutative triangles 3, and monoidality of $\mathcal{A} / \Sigma\left[\Sigma^{-1}\right]$.

We conclude that $\left.\mathcal{A} / \Sigma^{[ } \Sigma^{-1}\right]$ and the category $\mathcal{B}$ of braids are isomorphic.

## References

P. Dehornoy. On completeness of word reversing. Discrete mathematics, to appear.
P. Gabriel and M. Zisman. Calculus of Fractions and Homotopy Theory. Ergebnisse des Mathematik. Springer-Verlag, 1967.
G. Huet, J.-J. Lévy. Call by Need Computations in Non-Ambiguous Linear Term Rewriting Systems. Rapport de recherche INRIA 359, 1979. Reprinted as: Computations in orthogonal rewriting systems. In J.-L. Lassez and G. D. Plotkin, editors, Computational Logic; Essays in Honor of Alan Robinson, pages 394-443. MIT Press, 1991.
A. Joyal and R. Street. Braided tensor categories. Adv. Math. 102, 20-78, 1993.
C. Kassel. Quantum groups. Graduate Texts in Mathematics, Springer-Verlag, 1991.
J.-J. Lévy. Réductions correctes et optimales dans le $\lambda$-calcul. Thèse de Doctorat d'Etat, Université Paris VII, 1978.
S. Mac Lane. Categories for the working mathematician. Second edition. Graduate Texts in Mathematics, Springer-Verlag, 1991.
P-A. Melliès. Axiomatic Rewriting Theory 6: Residual Theory Revisited. Proceedings of RTA 2002.

## 5. Appendix: definitions of braided monoidal categories, functors and natural transformations

### 5.1. Monoidal category

A monoidal category $\mathcal{M}$ is a category with a bifunctor

$$
\otimes: \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{M}
$$

which is associative up to a natural isomorphism

$$
\alpha: a \otimes(b \otimes c) \longrightarrow(a \otimes b) \otimes c
$$

equipped with an element $e$, which is a unit up to natural isomorphisms

$$
\lambda: e \otimes a \longrightarrow a \quad \rho: a \otimes e \longrightarrow a
$$

These maps must make Mac Lane's famous "pentagon" commute

as well as the triangle:


A monoidal category is strict when all $\alpha, \lambda$ and $\rho$ are identities.

### 5.2. Braided monoidal category

A braiding for a monoidal category $\mathcal{M}$ consists of a family of isomorphisms

$$
\gamma_{a, b}: \quad a \otimes b \longrightarrow b \otimes a
$$

natural in $a$ and $b$, which satisfy the commutativity

and makes both following hexagons commute:


### 5.3. Monoidal functor

A monoidal functor $\left(\mathrm{F}, \mathrm{F}_{2}, \mathrm{~F}_{0}\right): \mathcal{M} \longrightarrow \mathcal{M}^{\prime}$ between monoidal categories $\mathcal{M}$ and $\mathcal{M}^{\prime}$ :
— an ordinary functor $\mathrm{F}: \mathcal{M} \longrightarrow \mathcal{M}^{\prime}$,

- for objects $\mathrm{a}, \mathrm{b}$ in $\mathcal{M}$ morphisms in $\mathcal{M}^{\prime}:$

$$
F_{2}(a, b): F(a) \otimes F(b) \longrightarrow F(a \otimes b)
$$

which are natural in $a$ and $b$,

- for the units e and $e^{\prime}$, a morphism in $\mathcal{M}^{\prime}$ :

$$
F_{0}: e \longrightarrow e^{\prime}
$$

making the diagrams commute:


A monoidal functor $f$ is said to be strong when $F_{0}$ and all $F_{2}(a, b)$ are isomorphisms, strict when $F_{0}$ and all $F_{2}(a, b)$ are identities.

### 5.4. Braided monoidal functors

If $\mathcal{M}$ and $\mathcal{M}^{\prime}$ are braided monoidal categories, a braided monoidal functor is a monoidal functor $\left(\mathrm{F}, \mathrm{F}_{2}, \mathrm{~F}_{0}\right): \mathcal{M} \longrightarrow \mathcal{M}^{\prime}$ which commutes with the braidings $\gamma$ and $\gamma^{\prime}$ in the following sense:

$$
\begin{gather*}
\mathrm{F}(\mathrm{a}) \otimes \mathrm{F}(\mathrm{~b}) \xrightarrow{\gamma^{\prime}} \mathrm{F}(\mathrm{~b}) \otimes \mathrm{F}(\mathrm{a})  \tag{12}\\
\mathrm{F}_{2}(\mathrm{a}, \mathrm{~b}) \\
\mathrm{F}(\mathrm{a} \otimes \mathrm{~b}) \longrightarrow \underset{\mathrm{F}(\gamma)}{ } \underset{F_{2}(\mathrm{~b}, \mathrm{a})}{ } \mathrm{F}(\mathrm{~b} \otimes \mathrm{a})
\end{gather*}
$$

### 5.5. Monoidal natural transformations

A monoidal natural transformation $\theta:\left(\mathrm{F}, \mathrm{F}_{2}, \mathrm{~F}_{0}\right) \longrightarrow\left(\mathrm{G}, \mathrm{G}_{2}, \mathrm{G}_{0}\right): \mathcal{M} \longrightarrow \mathcal{M}^{\prime}$ between two monoidal functors is a natural transformation between the underlying ordinary functors $\theta: F \longrightarrow G$ making the diagrams

commute in $\mathcal{M}^{\prime}$.

