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ANOTHER PROOF OF WRIGHT’S INEQUALITIES

VLADY RAVELOMANANA

Abstract. We present a short way of proving the inequalities obtained by Wright in
[Journal of Graph Theory, 4: 393 – 407 (1980)] concerning the number of connected graphs
with ℓ edges more than vertices.

1. Preliminaries

For n ≥ 0 and −1 ≤ ℓ ≤
(

n
2

)

− n, let c(n, n + ℓ) be the number of connected graphs with
n vertices and n + ℓ edges. Quantifying c(n, n + ℓ) represents one of the fundamental tasks
in the theory of random graphs. It has been extensively studied since the Erdős-Rényi’s
paper [3]. The generating functions associated to the numbers c(n, n + ℓ) are due to Sir
E. M. Wright in a series of papers including [11, 12]. He also obtained the asymptotic
formula for c(n, n + ℓ) for every ℓ = o(n1/3). Using different methods, Bender, Canfield
and McKay [1], Pittel and Wormald [8] and van der Hofstad and Spencer [9] were able to
determine the asymptotic value of c(n, n + ℓ) for all ranges of n and ℓ.

For ℓ ≥ −1, let Wℓ be the exponential generating function (EGF, for short) of the family
of connected graphs with n vertices and n + ℓ edges. Thus, Wℓ(z) =

∑∞

n=0 c(n, n + ℓ) zn

n!
.

Let T (z) be the EGF of the Cayley’s rooted labeled trees. It is well known that T (z) =
z eT (z) =

∑

n≥1 nn−1 zn

n!
(see for example [4, 5]). Among other results, Wright proved that

the functions Wℓ(z), ℓ ≥ −1, can be expressed in terms of T (z). Such results allowed
penetrating and precise analysis when studying random graphs processes as it has been
shown for example in the giant paper [5]. Throughout the rest of this note, all formal power
series are univariate. Therefore, for sake of simplicity we will often omit the variable z so
that T ≡ T (z), Wi ≡ Wi(z) and so on.

We need the following notations.

Definition. If A and B are two formal power series such that for all n ≥ 0 we have
[zn] A(z) ≤ [zn] B(z) then we denote this relation A � B or A(z) � B(z).

The aim of this note is to provide an alternative and generating function based proof of
the inequalities obtained by Sir Wright in [12] (in particular, he used numerous intermediate
lemmas). More precisely, Wright obtained the following.
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Theorem (Wright 1980). Let b1 = 5
24

and c1 = 19
24

. Define recursively bℓ and cℓ by

(1) 2(ℓ + 1)bℓ+1 = 3ℓ(ℓ + 1)bℓ + 3
ℓ−1
∑

t=1

t(ℓ − t)btbℓ−t , (ℓ ≥ 1)

and

2(3ℓ + 2)cℓ+1 = 8(ℓ + 1)bℓ+1 + 3ℓbℓ + (3ℓ + 2)(3ℓ − 1)cℓ

+ 6

ℓ−1
∑

t=1

t(3ℓ − 3t − 1)btcℓ−t , (ℓ ≥ 1) .(2)

Then, for all ℓ ≥ 1

(3)
bℓ

(1 − T (z))3ℓ
−

cℓ

(1 − T (z))3ℓ−1
� Wℓ(z) �

bℓ

(1 − T (z))3ℓ
.

(3) is known as Wright’s inequalities and such results has been extremely useful in the
enumerative study of graphs as well as in the theory of random graphs [2, 5, 6, 7, 10].

Our proof of (3) is based upon two ingredients:

Fact 1. We know that the EGFs Wℓ satisfy W−1 = T − T 2

2
, W0 = −1

2
log (1 − T ) − T

2
− T 2

4
and
(4)

(1 − T )ϑzWℓ+1 + (ℓ + 1) Wℓ+1 =

(

ϑ2
z − 3ϑz

2
− ℓ

)

Wℓ +
1

2

ℓ
∑

k=0

(ϑzWk) (ϑzWℓ−k) , (ℓ ≥ 0) ,

where T = T (z), Wk = Wk(z) and ϑz = z ∂
∂z

corresponds to marking a vertex (such combi-
natorial operator consists to choose a vertex among the others). For the combinatorial sense
of (4), we refer the reader to [1, 5] or [11].

Fact 2. Let A and B be two formal power series and ℓ ∈ N. If (1 − T ) ϑzA + (ℓ + 1) A �

(1 − T ) ϑzB + (ℓ + 1) B then A � B.

To prove Fact 2, fix ℓ ≥ 0. We write

(5) B(z) − A(z) =

∞
∑

n=0

(bn − an)
zn

n!
and ∀n, cn = bn − an .

Suppose that (1 − T ) ϑzA + (ℓ + 1) A � (1 − T ) ϑzB + (ℓ + 1) B. We then have

n! [zn] ((1 − T (z)) ϑz (B(z) − A(z)) + (ℓ + 1) (B(z) − A(z))) =

(n + ℓ + 1)cn −

n
∑

k=1

(

n

k

)

kk−1(n − k)cn−k ≥ 0 .(6)

It is now easily seen that ∀n, cn ≥ 0. Therefore, A � B.

Our proof of (3) is divided into two parts each of each are given in the next Sections.
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2. Proof of Wℓ �
bℓ

(1−T )3ℓ

Define the family (W ℓ)ℓ≥0 as W 0 = −1
2
log (1 − T ) and for ℓ ∈ N

⋆, W ℓ = bℓ

(1−T )3ℓ . Observe

that we have W0 � W 0 and W1 � W 1 has been proved in [12]. Now, we can proceed
by induction. Suppose that for 2 ≤ i ≤ ℓ, Wi � W i = bi

(1−T )3i and let us prove that

Wℓ+1 � W ℓ+1 = bℓ+1

(1−T )3ℓ+3 . Simple calculations show that

(7)

(

ϑ2
z − ϑz

2

)

W ℓ �
ϑ2

z

2
W ℓ �

3ℓ(3ℓ + 2)

2

bℓ

(1 − T )3ℓ+4
−

3ℓ(3ℓ + 2)

2

bℓ

(1 − T )3ℓ+3
,

(8)
(

ϑzW 0

) (

ϑzW ℓ

)

�
3ℓbℓ

2

bℓ

(1 − T )3ℓ+4
−

3ℓbℓ

2

bℓ

(1 − T )3ℓ+3
and

(9)
1

2

ℓ−1
∑

p=1

(

ϑzW p

) (

ϑzW ℓ−p

)

�
1

2

(

ℓ−1
∑

p=1

9p(ℓ − p)bpbℓ−p

)

(

1

(1 − T )3ℓ+4
−

1

(1 − T )3ℓ+3

)

.

Summing (7), (8), (9), using the recurrence (1) and the induction hypothesis, we find that

(10) (1 − T )ϑzWℓ+1 + (ℓ + 1)Wℓ+1 �
3(ℓ + 1)bℓ+1

(1 − T )3ℓ+4
−

3(ℓ + 1)bℓ+1

(1 − T )3ℓ+3
.

Since

(11) (1 − T )ϑzW ℓ+1 + (ℓ + 1)W ℓ+1 =
3(ℓ + 1)bℓ+1

(1 − T )3ℓ+4
−

2(ℓ + 1)bℓ+1

(1 − T )3ℓ+3

by Fact 2, we have W ℓ+1 � Wℓ+1.

3. Proof of bℓ

(1−T )3ℓ −
cℓ

(1−T )3ℓ−1 � Wℓ

Define W 0 = W0 and for ℓ ∈ N
⋆, W ℓ = bℓ

(1−T )3ℓ −
cℓ

(1−T )3ℓ−1 . As before, we shall proceed

by induction. We have W 0 � W0 and

(12) W1 − W 1 =
13

12 (1 − T )
−

1

2
−

T

8
+

T 2

24
�

13

12

(

1

(1 − T )
− T − 1

)

=
13 T 2

12(1 − T )
� 0 .

Suppose that for 2 ≤ k ≤ ℓ, W k = bk

(1−T )3k −
ck

(1−T )3k−1 � Wk. We have to prove that

W ℓ+1 = bℓ+1

(1−T )3ℓ+3 −
cℓ+1

(1−T )3ℓ+2 � Wℓ+1. For this purpose, define Ψℓ+1 as

Ψℓ+1 =

(

ϑ2
z − 3ϑz

2
− ℓ

)

W ℓ + (ϑz W 0) (ϑz W ℓ) +
1

2

ℓ−1
∑

k=1

(

ϑz W k −
(3ℓ − 1)cℓ

(1 − T )3ℓ

)

(

ϑz W ℓ−k

)

−

(

αℓ

(1 − T )3ℓ+2
+

βℓ

(1 − T )3ℓ+1
+

γℓ

(1 − T )3ℓ
+

δℓ

(1 − T )3ℓ−1

)

,

(13)
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where αℓ, βℓ, γℓ and δℓ are given by

αℓ =
(7ℓ + 4)cℓ+1

2
− 3(ℓ + 1)bℓ+1 −

3

4
ℓbℓ +

(3ℓ − 1)(3ℓ + 4)

4
cℓ

+
1

2

ℓ−1
∑

t=1

(3t − 1)ct(3ℓ − 3t − 1)cℓ−t ,(14)

βℓ = −
(3ℓ + 2)cℓ+1

2
+ 2(ℓ + 1)bℓ+1 −

3

4
ℓbℓ −

(3ℓ − 1)(3ℓ + 4)

4
cℓ

−
1

2

ℓ−1
∑

t=1

(3t − 1)ct(3ℓ − 3t − 1)cℓ−t ,(15)

γℓ =
ℓbℓ

2
+

(3ℓ − 1)cℓ

2
and δℓ = −

ℓ − 1

2
cℓ .(16)

Rewritting the formal power series αℓ

(1−T )3ℓ+2 + βℓ

(1−T )3ℓ+1 + γℓ

(1−T )3ℓ + δℓ

(1−T )3ℓ−1 as follows

(7ℓ + 4)/2 cℓ+1 − 3(ℓ + 1)bℓ+1 − 3/4ℓbℓ

(1 − T )3ℓ+2
−

(3ℓ + 2)/2 cℓ+1 − 2(ℓ + 1)bℓ+1 + 3/4ℓbℓ

(1 − T )3ℓ+1

+ (3ℓ − 1)(3ℓ + 4)cℓ

(

1

(1 − T )3ℓ+2
−

1

(1 − T )3ℓ+1

)

+
2ℓbℓ

2(1 − T )3ℓ
+

(

(3ℓ − 1)cℓ

2(1 − T )3ℓ
−

(ℓ − 1)cℓ

2(1 − T )3ℓ−1

)

,(17)

it is easily seen that if the quantity (coming from the denominators of the 2 first terms of
the above equation)

(2ℓ + 1)cℓ+1 − (ℓ + 1)bℓ+1 −
3

2
ℓbℓ ≥ 0(18)

then αℓ

(1−T )3ℓ+2 + βℓ

(1−T )3ℓ+1 + γℓ

(1−T )3ℓ + δℓ

(1−T )3ℓ−1 � 0. (We used 1/(1 − T )a � 1/(1 − T )b if

a ≥ b).

Using (1) and (2), after simple algebra we have (18). Therefore by construction, RHS of(4) �
Ψℓ+1. After nice cancellations, it yields

(19) Ψℓ+1 =
3(ℓ + 1)bℓ+1

(1 − T )3ℓ+4
−

2(ℓ + 1)bℓ+1 + (3ℓ + 2)cℓ+1

(1 − T )3ℓ+3
+

(2ℓ + 1)cℓ+1

(1 − T )3ℓ+2
.

Remarking that (1 − T )ϑz W ℓ+1 + (ℓ + 1) W ℓ+1 = Ψℓ+1, we have completed the proof of
W ℓ+1 � Wℓ+1.
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99, Avenue J. B. Clément. F 93430 Villetaneuse, France.


