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RATE OF CONVERGENCE OF SPACE TIME APPROXIMATIONS
FOR STOCHASTIC EVOLUTION EQUATIONS

ISTVÁN GYÖNGY AND ANNIE MILLET

Abstract. Stochastic evolution equations in Banach spaces with unbounded
nonlinear drift and diffusion operators driven by a finite dimensional Brownian
motion are considered. Under some regularity condition assumed for the solution,
the rates of convergence of various numerical approximations are estimated under
strong monotonicity and Lipschitz conditions. The abstract setting involves gen-
eral consistency conditions and is then applied to a class of quasilinear stochastic
PDEs of parabolic type.

1. Introduction

Let V →֒ H →֒ V ∗ be a normal triple of spaces with dense and continuous
embeddings, where V is a separable and reflexive Banach space, H is a Hilbert
space, identified with its dual by means of the inner product in H , and V ∗ is the
dual of V .

Let W = {W (t) : t ≥ 0} be a d1-dimensional Brownian motion carried by a
stochastic basis (Ω,F , (Ft)t≥0, P ). Consider the stochastic evolution equation

u(t) = u0 +

∫ t

0

A(s, u(s)) ds+

d1
∑

k=1

∫ t

0

Bk(s, u(s)) dW
k(s) , t ∈ [0, T ] (1.1)

in the triple V →֒ H →֒ V ∗, with a given H-valued F0-measurable random variable
u0, and given operators A and B = (Bk), mapping [0,∞) × Ω × V into V ∗ and
Hd1 := H × · · · × H , respectively. Let P denote the σ-algebra of the predictable
subsets of [0,∞) × Ω, and let B(V ), B(H) and B(V ∗) be the Borel σ-algebras of
V , H and V ∗, respectively. Assume that A and Bk are P ⊗ B(V )-measurable with
respect to the σ-algebras B(V ∗) and B(H), respectively.

It is well-known that for any T > 0 equation (1.1) admits a unique solution u if
A is hemicontinuous in v ∈ V , and (A,B) satisfies a monotonicity, coercivity and
a linear growth condition (see [10], [13] and [16]). In [7] it is shown that under
these conditions the solutions of various implicit and explicit schemes converge to u.
In [8] the rate of convergence of implicit Euler approximations is estimated under
more restrictive hypotheses: A and B satisfy a strong monotonicity condition, A is
Lipschitz continuous in v ∈ V , and the solution u satisfies some regularity conditions.
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Then Theorem 3.4 from [8] in the case of time independent operators A and B reads
as follows. For the implicit Euler approximation uτ , corresponding to the mesh size
τ = T/m of the partition of [0, T ], one has

Emax
i≤m

|u(iτ) − uτ (iτ)|2H + τE
∑

i≤m

‖u(iτ) − uτ (iτ)‖2
V ≤ Cτ 2ν ,

where C is a constant, independent of τ , and ν ∈]0, 1
2
] is a constant from the

regularity condition imposed on u.
In this paper, we study space and space-time approximations schemes for equa-

tion (1.1) in a general framework. In order to obtain rate of convergence estimates
we need to require more regularity from the solution u of equation (1.1) than what
we can express in terms of the spaces V and H . Therefore in our setup we intro-
duce additional Hilbert spaces V and H such that V →֒ H →֒ V , where →֒ denotes
continuous embeddings. In examples these are Sobolev spaces such that H and V
satisfy stronger differentiability conditions than V and H, respectively. Our regu-
larity conditions on the solution u are introduced in section 2 and labeled as (R1)
and (R2). In connection with these, we introduce also condition (R3), requiring
more regularity from A and B. Furthermore, condition (R4) on Hölder continuity
in time of A and B is needed for schemes involving time discretization. We collect
these conditions in Assumption 2.3 and call them regularity conditions.

In order to formulate ‘space discretizations’, we consider for any integer n ≥ 1 a
normal triple

Vn →֒ Hn →֒ V ∗
n , (1.2)

the ‘discrete’ counterpart of V →֒ H →֒ V ∗, and a bounded linear operator

Πn : V → Vn,

connecting V to Vn. We have in mind discrete Sobolev spaces, wavelets and finite
elements spaces, as examples for Vn.

The space discretization scheme for equation (1.1) is a stochastic evolutional equa-
tion in the triple (1.2). We define it by replacing the operators A, B and the initial
value u0 in equation (1.1) by some P ⊗ B(Vn)-measurable operators

An : [0,∞[×Ω × Vn → V ∗
n , Bn : [0,∞[×Ω × Vn → Hd1

n

and by an Hn-valued F0-measurable random variable un
0 , respectively, such that

An and Bn satisfy in the triple (1.2) the strong monotonicity condition, the linear
growth condition, An is hemicontinuous and Bn is Lipschitz continuous in v ∈ Vn.
These are the conditions (S1)–(S4) in Assumption 3.1, which imply, in particular,
the existence and uniqueness of a solution un to our scheme. We relate An and Bn

to A and B via a consistency condition, (Cn) below. Then assuming (S1)–(S4),
under the regularity and consistency conditions (R1), (R3) and (Cn) we have

E sup
0≤t≤T

|Πnu(t)−un(t)|2Hn
+E

∫ T

0

‖Πnu(t)−un(t)‖2
Vn
dt ≤ CE|Πnu0 −un

0 |2Hn
+Cε2

n,

where C is a constant, independent of n, and εn > 0 is a constant from (Cn). This
is Theorem 3.1 below, our main result on the accuracy of approximations by space
discretizations.
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For an integer m ≥ 1 we consider the grid {ti = i τ : 0 ≤ i ≤ m} with mesh-size
τ = T/m. We define on this grid the space-time implicit and the space-time explicit
approximations, {un,τ

i }m
i=0 and {un

τ,i}m
i=0, respectively, by

un,τ
i+1 = un,τ

i + τAn,τ
i+1

(

un,τ
i+1

)

+
∑

k

Bn,τ
k,i

(

un,τ
i

) (

W k(ti+1) −W k(ti)
)

,

un
τ,i+1 = un

τ,i + τ An,τ
i (un

τ,i) +
∑

k

Bn,τ
k,i (un

τ,i)
(

W k(ti+1) −Wk(ti)
)

,

for i = 0, . . . , m− 1 with some Vn-valued F0-measurable random variables un,τ
0 and

un
0,τ , and with some Fti ⊗ B(V )-measurable operators

An,τ
i : Ω × Vn → V ∗

n , Bn,τ
k,i : Ω × Vn → Hd1

n ,

such that An,τ
i , Bn,τ

k,i satisfy strong monotonicity and linear growth conditions and

An,τ
i is Lipschitz continuous in v ∈ Vn. These conditions, listed as (ST1)–(ST3) in

Assumption 4.1 below, are similar to conditions (S1)–(S3), except that instead of
the hemicontinuity, the much stronger assumption of Lipschitz continuity is assumed
on An,τ

i . The operators An,τ
i and Bn,τ

k,i are related to A and B by a consistency

condition (Cnτ) stated below. Then if supn,mE|un,τ
0 |2Hn

< ∞ and equation (1.1)
satisfies the regularity conditions (R1)–(R4) from Assumption 2.3, we have the
estimate

E sup
0≤i≤m

|Πnu(ti) − un,τ
i |2Hn

+ E
∑

0≤i≤m

‖Πnu(ti) − un,τ
i ‖2

Vn
τ

≤ CE|Πnu0 − un,τ
0 |2Hn

+ C(τ 2ν + ε2
n),

with a constant C, independent of n and τ , where ν ∈]0, 1
2
] is the Hölder exponent

from condition (R4) on the regularity of the operators A and B in time, and εn is
from (Cnτ). This is Theorem 4.4, our main result on implicit space-time approxi-
mations. In our main result, Theorem 5.2, on the explicit space-time approximations
we have the same estimate for un

τ,i in place of un,τ
i if, in addition to the conditions

of Theorem 4.4, as in [7], a stability relation between the time mesh τ and a space
approximation parameter is satisfied.

Finally, we present as examples a class of quasi-linear stochastic partial differ-
ential equations (SPDEs) and linear SPDEs of parabolic type. We show that they
satisfy the conditions of the abstract results, Theorems 3.1, 4.4 and 5.2, when we use
wavelets, or finite differences. In particular, we obtain rate of convergence results
for space and space-time approximations of linear parabolic SPDEs, among them
for the Zakai equation of nonlinear filtering. We would like to mention that as far
as we know, discrete Sobolev spaces are applied first in [18] to space discretizations
and explicit space-time discretizations of linear SPDEs, and it inspired our approach
to finite difference schemes. Our abstract results can also be applied to finite ele-
ments approximations. To keep down the size of the paper we will consider such
applications elsewhere.

We denote byK, L, M and r some fixed constant, and by C some constants which,
as usual, can change from line to line. For given constants a ∈ Rk the notation C(a)
means that the constant depends on a. Finally, when (X, | · |X) and (Y, | · |Y ) denote
two Banach spaces such that X is continuously embedded in Y , given y ∈ Y the
inequality |y|X < +∞ means that y ∈ X.
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2. Conditions on equation (1.1) and on the approximation spaces

2.1. Conditions on equation (1.1). Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis,
satisfying the usual conditions, i.e., (Ft)t≥0 is an increasing right-continuous family of
sub-σ-algebras of F such that F0 contains every P -null set. Let W = {W (t) : t ≥ 0}
be a d1-dimensional Wiener martingale with respect to (Ft)t≥0, i.e., W is an Ft-
adapted Wiener process with values in R

d1 such that W (t) −W (s) is independent
of Fs for all 0 ≤ s ≤ t. We use the notation P for the sigma-algebra of predictable
subsets of [0,∞) × Ω. If V is a Banach space then B(V ) denotes the sigma-algebra
generated by the (closed) balls in V .

Let V be a separable reflexive Banach space embedded densely and continuously
into a Hilbert space H , which is identified with its dual H∗ by means of the inner
product (·, ·) in H . Thus we have a normal triple

V →֒ H →֒ V ∗,

where H →֒ V ∗ is the adjoint of the embedding V →֒ H . Thus 〈v, h〉 = (v, h) for
all v ∈ V and h ∈ H∗ = H , where 〈v, v∗〉 = 〈v∗, v〉 denotes the duality product of
v ∈ V , v∗ ∈ V ∗, and (h1, h2) denotes the inner product of h1, h2 ∈ H . We assume,
without loss of generality, that |v|H ≤ ‖v‖H for all v ∈ V , where | · |H and ‖ · ‖V

denote the norms in H and V , respectively. For elements u from a normed space U

the notation |u|U means the norm of u in U.

Let A and B = (Bk)
d1

k=1 be P ⊗B(V )-measurable mappings from [0,∞)×Ω × V
into V ∗ and Hd1 , respectively. Given an H-valued F0-measurable random variable
u0 consider the initial value problem

du(t) = A(t, u(t)) dt+
∑

k

Bk(t, u(t)) dW
k(t), u(0) = u0 (2.1)

on a fixed time interval [0, T ].

Assumption 2.1. The operators A and B satisfy the following conditions.
(i) (Monotonicity of (A,B)) Almost surely for all t ∈ [0, T ] and u, v ∈ V ,

2〈u− v, A(t, u) − A(t, v)〉 +
∑

k

|Bk(t, u) − Bk(t, v)|2H ≤ K|u− v|2H,

(ii) (Coercivity of (A,B)) Almost surely for all t ∈ [0, T ] and u, v ∈ V ,

2〈u,A(t, u)〉+
∑

k

|Bk(t, u)|2H + µ‖u‖2
V ≤ K|u|2H + f(t), (2.2)

(iii) (Growth conditions on A and B) Almost surely for all t ∈ [0, T ] and u ∈ V ,

|A(t, u)|2V ∗ ≤ K1‖u‖2
V + f(t),

∑

k

|Bk(t, u)|2H ≤ K2‖u‖2
V + f(t),

(iv) (Hemicontinuity of A) Almost surely for all t ∈ [0, T ] and u, v, w ∈ V ,

lim
ε→0

〈w,A(t, u+ εv)〉 = 〈w,A(t, u)〉, (2.3)
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where µ > 0, K ≥ 0, K1 ≥ 0 and K2 ≥ 0 are some constants, and f is a nonnegative
(Ft)-adapted stochastic process such that

E

∫ T

0

f(t) dt <∞. (2.4)

The following definition of solution is classical.

Definition 2.1. An H-valued adapted continuous process u = {u(t) : t ∈ [0, T ]}
is a solution to equation (1.1) on [0, T ] if almost surely u(t) ∈ V for almost every
t ∈ [0, T ],

∫ T

0

‖u(t)‖2
V dt <∞ ,

and

(u(t), v) = (u0, v) +

∫ t

0

〈A(s, u(s)), v〉 ds+
∑

k

∫ t

0

(Bk(s, u(s)), v) dW
k(s)

holds for all t ∈ [0, T ] and v ∈ V . We say that the solution to (2.1) on [0, T ] is
unique if for any solutions u and v to (2.1) on [0, T ] we have

P
(

sup
t∈[0,T ]

|u(t) − v(t)|H > 0
)

= 0.

The following result is well known, see [10], [13], [16].

Theorem 2.2. Let Assumption 2.1 hold. Then (2.1) has a unique solution u. More-
over, if E|u0|2H <∞, then

E sup
t∈[0,T ]

|u(t)|2H + E

∫ T

0

‖u(s)‖2
V ds

≤ CE|u0|2H + CE

∫ T

0

(

f(t) + g(t)
)

dt <∞, (2.5)

where C is a constant depending only on the constants λ, K and K2.

If Assumption 2.1 is satisfied then one can also show the convergence of approxi-
mations, obtained by various discretization schemes, to the solution u (see [7]). To
estimate the rate of convergence of implicit time discretization schemes the following
stronger assumption on A and B are used in [8]

Assumption 2.2. The operators A, B satisfy the following conditions almost surely.
(1) (Strong monotonicity) For all t ∈ [0, T ], u, v ∈ V ,

2〈u− v, A(t, u) −A(t, v)〉 +
∑

k

|Bk(t, u) − Bk(t, v)|2H

≤ −λ‖u− v‖2
V + L|u− v|2H ,

(2) (Growth conditions on A and B) For all t ∈ [0, T ], u ∈ V ,

|A(t, u)|2V ∗ ≤ K1‖u‖2
V + f(t),

∑

k

|Bk(t, u)|2H ≤ K2‖u‖2
V + g(t). (2.6)

(3) (Lipschitz condition on A) For all t ∈ [0, T ], u, v ∈ V ,

|A(t, u) − A(t, v)|2V ∗ ≤ L1‖u− v‖2
V , (2.7)
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where λ > 0, K ≥ 0, K1 ≥ 0, K2 ≥ 0 are constants, and f and g are non-negative
adapted processes satisfying (2.4)

Remark 2.3. It is easy to see that due to (1)–(2), the coercivity condition (2.2)
holds with µ = λ/2 and a constant K = K(λ, L,K2).

Remark 2.4. It is easy to show that (1) and (3) imply that B = (Bk) is Lipschitz
continuous in u ∈ V , i.e., almost surely

∑

k

|Bk(t, u) − Bk(t, v)|2H ≤ L2‖u− v‖2
V for all u, v ∈ V , t ∈ [0, T ] (2.8)

where L2 is a constant depending on λ, L and L1.

In order to prove rate of convergence estimates for the approximation schemes pre-
sented in this paper, we need to impose additional regularity conditions on equation
(2.1) and on the solution u. Therefore we assume that there exist some separable
Hilbert spaces V and H such that

V →֒ H →֒ V,

where →֒ means continuous embedding, and introduce the following conditions.
Let K, M denote some constants, fixed throughout the paper.

Assumption 2.3. (Regularity conditions)
(R1) There is a unique solution u of (2.1), it takes values in V for dt×P -almost

every (t, ω) ∈ [0, T ] × Ω, u0 ∈ V and

E‖u0‖2
V <∞, E

∫ T

0

|u(t)|2V dt =: r1 <∞. (2.9)

(R2) There is a unique solution u of (2.1), it has an H-valued stochastic modi-
fication, denoted also by u, such that

sup
t∈[0,T ]

E|u(t)|2H =: r2 <∞.

(R3) Almost surely A(t, v) ∈ V , Bk(t, u) ∈ V and

‖A(t, v)‖2
V ≤ K|v|2V + ξ(t),

∑

k

‖Bk(t, u)‖2
V ≤ K|u|2H + η(t) (2.10)

for all t ∈ [0, T ] v ∈ V and u ∈ H, where ξ and η are non-negative processes such
that for some constant M

E

∫ T

0

ξ(t) dt ≤M, sup
t∈[0,T ]

Eη(t) ≤M.

(R4) (Time regularity of A, B) There exists a constant ν ∈]0, 1
2
] and a non-

negative random variable η such that Eη ≤M , and almost surely
(i)

‖A(s, v) − A(t, v)‖2
V ≤ (K |v|2V + η) |t− s|2ν for v ∈ V, (2.11)

(ii)
∑

k

|Bk(s, u) −Bk(t, u)|2V ≤ (K |u|2V + η) |t− s|2ν for u ∈ V ,

for all 0 ≤ s < t ≤ T .
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Remark 2.5. Assume conditions (R1) and (R3) from Assumption 2.3. Then the
following statements hold.

(i) u has a V -valued continuous stochastic modification, denoted also by u, such
that

E sup
t∈[0,T ]

‖u(t)‖2 ≤ 3E‖u0‖2
V + C(r1 +M);

(ii) If condition (R2) from Assumption 2.3 also holds, then for s, t ∈ [0, T ],

E‖u(t) − u(s)‖2
V ≤ C|t− s|(r1 + r2 +M), (2.12)

where C is a constant depending only on T and on the constant K from (2.10).

Proof. Define

F (t) =

∫ t

0

A(s, u(s)) ds and G(t) =
∑

k

∫ t

0

Bk(s, u(s)) dW
k(s).

Notice that

E

∫ T

0

‖A(s, u(s))‖2 ds ≤ KE

∫ T

0

|u(s)|2V ds+ E

∫ T

0

ξ(s) ds =: M1 <∞,

∑

k

∫ T

0

E‖Bk(s, u(s))‖2
V ds ≤ KE

∫ T

0

|u(s)|2H ds+ E

∫ T

0

η(s) ds =: M2 <∞.

Hence F and G are V -valued continuous processes, and by Jensen’s and Doob’s
inequalities

E sup
t≤T

‖F (t)‖2
V ≤ TM1, E sup

t≤T
‖G(t)‖2

V ≤ 4
∑

k

E

∫ T

0

‖Bk(s, u(s))‖2
V ds ≤ 4M2.

Consequently, the process u0 +F (t)+G(t) is a V -valued continuous modification of
u, and statement (i) holds. Moreover, if (R2) also holds, then

sup
t∈[0,T ]

∑

k

E‖Bk(s, u(s))‖2
V ≤ K sup

t∈[0,T ]

E|u(t)|2H + sup
t∈[0,T ]

Eη(t) := M3 < +∞,

and

E‖F (t) − F (s)‖2
V ≤ |t− s|M1,

E‖G(t) −G(s)‖2
V =

∑

k

∫ t

s

E‖Bk(r, u((r))‖2
V dr ≤ |t− s|M3

for any 0 ≤ s ≤ t ≤ T , which proves (ii). �

2.2. Approximation spaces and operators Πn. Let Vn →֒ Hn →֒ V ∗
n be a nor-

mal triple and Πn : V → Vn be a bounded linear operator for each integer n ≥ 0
such that for all v ∈ H and n ≥ 0

‖Πnv‖Vn
≤ p|v|V (2.13)

with some constant p independent of v ∈ V and n. Note that we do not require that
the maps Πn be orthogonal projections on the Hilbert space H .

We denote by 〈v, w〉n the duality between v ∈ Vn and w ∈ V ∗
n and similarly by

(h, k)n the inner product of h, k ∈ Hn. To lighten the notation, let ‖v‖ := ‖v‖V

denote the norm of v in V , ‖v‖n := ‖v‖Vn
the norm of v in Vn, |u| := |u|H the
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norm of u in H , |u|n = |u|Hn
the norm of u in Hn, and finally |w|∗ := |w|V ∗ and

|y|n∗ := |y|V ∗

n
the norm of w ∈ V ∗ in V ∗ and the norm of y in V ∗

n , respectively.
For r ≥ 0 let Hr = W r

2 (Rd) denote the closure of C∞
0 (Rd) in the norm defined by

|ϕ|2Hr =
∑

|γ|≤r

∫

Rd

|Dγϕ(x)|2 dx.

In particular, H0 = L2(R
d).

The following basic examples will be used in the sequel. It describes spaces Vn, Hn

and V ∗
n and operators Πn such that condition (2.13) is satisfied.

Example 2.6. Wavelet approximation. Let ϕ : R → R be an orthonormal
scaling function, i.e., a real-valued, compactly supported function, such that:

(i) there exists a sequence (hk)k∈Z ∈ l2(Z) for which ϕ(x) =
∑

k hkϕ(2x − k) in
L2(R) ,

(ii)
∫

ϕ(x− k)ϕ(x− l)dx = δk,l for any k, l ∈ Z.
We assume that the scaling function ϕ belongs to the Sobolev spaceHs(R) := W s

2 (R)
for sufficiently large integer s > 0.

For d > 1, x = (x1, · · · , xd) ∈ Rd, set φ(x) = ϕ(x1) · · ·ϕ(xd) and for j ≥ 0 and

k ∈ Zd, set φj,k(x) = 2
jd

2 φ(2jx − k) ∈ Hs := W s
2 (Rd). For any integer j ≥ 0, let

Hj denote the closure in L2(Rd) of the vector space generated by (φj,k, k ∈ Z
d) and

define the operator Πj by

Πjf =
∑

k∈Zd

(

f , φj,k

)

φj,k , f ∈ L2(Rd),

(

,
)

denotes the scalar product in L2(Rd).

Thus we have a sequence Hj ⊂ Hj+1 of closed subspaces of L2(Rd) and orthogonal
projections Πj : L2(Rd) → Hj for j ≥ 0. Assume, moreover that ∪∞

j=0Hj is dense in

L2(Rd) and that ϕ is sufficiently regular, such that the inequalities

(Direct) ‖f − Πjf‖Hr ≤ C 2−j(s−r) ‖f‖Hs , ∀f ∈ Hs, (2.14)

(Converse) ‖Πjf‖Hs ≤ C 2j(s−r) ‖f‖Hr , ∀f ∈ Hr (2.15)

holds for fixed integers 0 ≤ r ≤ s. The proof of these inequalities and more infor-
mation on wavelets can be found, e.g., in [2].

Fix r > 0, set H := L2(Rd), V := Hr = W r
2 (Rd), and identify H with its dual

H∗ by the help of the inner product in H . Then V →֒ H∗ →֒ V ∗ is a normal triple,
where H ≡ H∗ →֒ V ∗ is the adjoint of the embedding V →֒ H . We define Vn as the
normed space we get by taking the Hr norm on Hn. Since the Hr and H0 norms are
equivalent on Hn, the space Vn is complete, and obviously Vn →֒ Hn ≡ H∗

n →֒ V ∗
n is

a normal triple, where Hn is identified with H∗
n via the inner product ( , )n = ( , ) in

Hn. Note that due to (2.15) we have (2.13) assuming that ϕ is sufficiently smooth.

Example 2.7. Finite differences – Discrete Sobolev spaces. Consider for
fixed h ∈ (0, 1) the grid

G = hZ
d = {(k1h, k2h, . . . , kdh) : k = (k1, k2, . . . , kd) ∈ Z

d},



ACCURACY OF SPACE-TIME APPROXIMATIONS 9

where Z denotes the set of integers. Use the notation {e1, e2, ..., ed} for the standard
basis in Rd. For any integer m ≥ 0, let Wm

h,2 be the set of real valued functions v on
G with

|v|2h,m :=
∑

|α|≤m

∑

z∈G

|δα
+v(z)|2hd <∞,

where δ0
±i is the identity and δα

± = δα1

±1δ
α2

±2 . . . δ
αd

±d for multi-indices α = (α1, α2 . . . , αd) ∈
{0, 1, 2, . . .}d of length |α| := α1 + · · ·+ αd ≥ 1 is defined for by

δ±iv(z) := ± 1
h
(v(z ± hei) − v(z)).

We write also δα and δi in place of δα
+ and δ+i, respectively. Then Wm

h,2 with the
norm | · |h,m is a separable Hilbert space. It is the discrete counterpart of the Sobolev
space Wm

2 (Rd). Set W−1
h,2 = (W 1

h,2)
∗, the adjoint of W 1

h,2, with its norm denoted by

| · |h,−1. It is easy to see that Wm
h,2 →֒ Wm−1

h,2 is a dense and continuous embedding,

|v|h,m−1 ≤ |v|h,m,

|v|h,m ≤ κ

h
|v|h,m−1, (2.16)

for all v ∈ Wm
h,2, m ≥ 0 and h ∈ (0, 1), where κ is a constant depending only on d.

Notice that for m ≥ 1

〈v, u〉 :=
∑

|α|≤m

∑

z∈G

δαvδαu ≤ C|v|h,m−1|u|h,m+1 for all v, u ∈Wm+1
h,2

extends to a duality product between Wm−1
h,2 and Wm+1

h,2 , which makes it possible to

identify Wm−1
h,2 with (Wm+1

h,2 )∗.

Assume that m > d
2
. Then by Sobolev’s theorem on embedding Wm

2 := Wm
2 (Rd)

into C(Rd), there is a bounded linear operator I : Wm
2 (Rd) → C(Rd), such that

Iu = u almost everywhere on Rd. Thus, identifying u with Iu, we can define the
operator Rh : Wm

2 (Rd) → Wm
h,2 by restricting the functions u ∈ Wm

2 onto G ⊂ Rd.
Moreover, due to Sobolev’s theorem,

∑

z∈G

sup
x∈I(z)

|u(x)|2 hd ≤ p2|u|2W m
2
,

where I(z) := {x ∈ Rd : zk ≤ xk ≤ zk + h, k = 1, 2 . . . d} and p is a constant
depending only on m and d. Hence obviously

|Rhu|2h,0 ≤ p|u|2W m
2

for all u ∈Wm
2 . (2.17)

Moreover, for every integer l ≥ 0

|Rhu|h,l ≤ p|u|W m+l
2

for all u ∈Wm+l
2 , (2.18)

with a constant p depending only on m, l and d. Thus setting

Vn := Wm+l
hn,2 , Hn := Wm+l−1

hn,2 , V ∗
n ≡Wm+l−2

hn,2 ,

Πn := Rhn

for any sequence {hn}∞n=0 ⊂ (0, 1) and any integers m > d
2
, l ≥ 0 we get examples

of approximation spaces.
When approximating differential operators by finite differences we need to esti-

mate Diu − δ±iu in discrete Sobolev norms. For d = 1 we can estimate this as
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follows. Let l ≥ 0 be an integer and set zk := kh for k ∈ Z. By the mean value
theorem there exist z′k and z′′k in [zk, zk + lh] such that δlDu(zk) = Dl+1u(z′k) and
δlδu(zk) = Dl+1u(z′′k), where D := d

dx
. Hence

|δl(Du(zk) − δu(zk))|2 = |Dl+1u(z′k) −Dl+1u(z′′k)|2 =
∣

∣

∣

∫ z′′
k

z′
k

Dl+2u(y) dy
∣

∣

∣

2

≤ lh

∫ zk+lh

zk

|Dl+2u(y)|2 dy

for u ∈ C∞
0 (R). Consequently,

|Du− δl
±u|h,l ≤ l h |u|W l+2

2
(R) (2.19)

for u ∈ C∞
0 (R), and hence for all u ∈ W l+2

2 (R). For d > 1 by similar calculation
combined with Sobolev’s embedding, we get that for m > l + 2 + d−1

2

|Diu− δ±iu|h,l ≤ Ch|u|W m
2

(2.20)

for all u ∈Wm
2 , h ∈ (0, 1), where C is a constant depending on l, m and d.

3. Space discretization

3.1. Description of the scheme. Consider for each integer n ≥ 1 the problem

dun(t) = An(t, un(t)) dt+
∑

k

Bn(t, un(t)) dW k(t), un(0) = un
0 , (3.1)

in a normal triple Vn →֒ Hn →֒ V ∗
n , satisfying the conditions of section 2.2, where

un
0 is an Hn-valued F0-measurable random variable, and An and Bn = (Bn

k ) are
P⊗B(Vn)-measurable mappings from [0,∞)×Ω×Vn into V ∗

n and Hd1

n , respectively.

Assumption 3.1. The operators An and Bn satisfy the following conditions.
(S1) (Strong monotonicity) There exist constants λ > 0 and L such that for all
n ≥ 1 almost surely

2〈u− v, An(t, u) −An(t, v)〉n +
∑

k

|Bn
k (t, u) − Bn

k (t, v)|2Hn
+ λ‖u− v‖2

Vn

≤ L|u− v|2Hn
for all t ∈ [0, T ], u, v ∈ Vn.

(S2) (Growth condition) Almost surely

|An(t, v)|2V ∗

n
≤ K1 ‖v‖2

Vn
+ fn(t), |Bn(t, v)|2Hn

≤ K2 ‖v‖2
Vn

+ gn(t)

for all t ∈ [0, T ], v ∈ Vn and n ≥ 1, where K1, K2 are constants, independent of n,
and fn and gn are non-negative stochastic processes such that

sup
n
E

∫ T

0

fn(t) dt =: M1 <∞ , sup
n
E

∫ T

0

gn(t) dt =: M2 <∞.

(S3) (Hemicontinuity of An) For every n ≥ 1, the operators An are hemicontinuous
in v ∈ Vn, i.e., almost surely

lim
ε→0

〈An(t, v + εu) , w〉n = 〈An(t, v) , w〉n

for all t ∈ [0, T ], v, u, w ∈ Vn.
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(S4) (Lipschitz condition on Bn) Almost surely
∑

k

|Bn
k (t, u) −Bn

k (t, v)|2Hn
≤ LB ‖u− v‖2

Vn

for all t ∈ [0, T ] and u, v ∈ Vn.

The solution to (3.1) is understood in the sense of Definition 2.1. Notice that
(S1) - (S2) imply the coercivity condition

2〈v, An(t, v)〉n +
∑

k

|Bn
k (t, v)|2Hn

+ λ
2
‖v‖2

Vn
≤ C

(

|v|2Hn
+ fn(t) + gn(t)

)

with a constant C depending on λ, L and K2.
Thus by Theorem 2.2 the conditions (S1)–(S3) ensure the existence of a unique

solution un to (3.1), and if

sup
n
E|un

0 |2Hn
<∞, (3.2)

then

E sup
0≤t≤T

|un(t)|2Hn
+ E

∫ T

0

‖un(t)‖2
Vn
dt

≤ C sup
n

(

E|un
0 |2Hn

+ E

∫ T

0

(

fn(t) + gn(t)
)

dt

)

<∞, (3.3)

where C is a constant depending only on λ, L and K2.

3.2. Rate of convergence of the scheme. We want to approximate Πnu by un. In
order to estimate the accuracy of this approximation we need to relate the operators
A and B to An and Bn, respectively. Therefore we assume the regularity condition
(R3) from Assumption 2.3 and make the following consistency assumption.

Condition (Cn) (Consistency) There exist a sequence (εn)n≥1 of positive numbers
and a sequence (ξn)n≥1 of non-negative adapted processes such that

sup
n
E

∫ T

0

ξn(t) dt ≤M < +∞,

and almost surely (t, ω) ∈ [0, T ] × Ω

|ΠnA(t, v) − An
(

t,Πnv
)

|2V ∗

n
+
∑

k

|ΠnBk(t, v) − Bn
k

(

t,Πnv
)

|2Hn

≤ ε2
n

(

|v|2V + ξn(t)
)

for all t ∈ [0, T ] and v ∈ V.

Theorem 3.1. Let Assumption 3.1, the regularity conditions (R1) and (R3) from
Assumption 2.3, and the consistency condition (Cn) hold. Assume furthermore
supnE|un

0 |2Hn
< +∞. Then for en(t) := Πnu(t) − un(t),

E sup
0≤t≤T

|en(t)|2Hn
+ E

∫ T

0

‖en(t)‖2
Vn
dt ≤ C1E|en(0)|2Hn

+ C2(r1 +M)ε2
n (3.4)

holds for all n ≥ 1, where C1 = C1(λ, L, T ) and C2 = C2(λ, L, LB, T ) are constants.
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Proof. From equation (1.1) we deduce that for every n ≥ 1,

Πnu(t) = Πnu0 +

∫ t

0

ΠnA
(

s, u(s)
)

ds+
∑

k

∫ t

0

ΠnBk

(

s, u(s)
)

dW k(s).

Using Itô’s formula

|en(t)|2n = |en(0)|2n +
∑

i≤3

Ii(t), (3.5)

where

I1(t) = 2

∫ t

0

〈en(s) ,ΠnA(s, u(s)
)

−An
(

s, un(s))〉nds ,

I2(t) = 2
∑

k

∫ t

0

(

en(s) ,ΠnBk

(

s, u(s)
)

− Bn
k

(

s, un(s)
))

n
dW k(s),

I3(t) =
∑

k

∫ t

0

∣

∣ΠnBk

(

s, u(s)
)

− Bn
k

(

s, un(s)
)
∣

∣

2

n
ds .

We first prove

sup
0≤t≤T

E|en(t)|2n + E

∫ T

0

‖en(t)‖2
ndt ≤ C1E|en(0)|2n + C2(r1 +M)ε2

n, (3.6)

where C1 = C1(λ, L, T ) and C2 = C2(λ, L, LB, T ) are constants. The strong mono-
tonicity condition (S1) from Assumption 3.1 implies

I1(t) + I3(t) ≤ −λ
∫ t

0

‖en(s)‖2
n ds+ L

∫ t

0

|en(s)|2n ds+
∑

i=1,2

Ri(t), (3.7)

where

R1(t) =

∫ t

0

2〈en(s) , ΠnA(s, u(s)) − An(s,Πnu(s))〉n ds,

R2(t) =
∑

k

∫ t

0

[

|ΠnBk(s, u(s)) − Bn
k (s, un(s))|2n

−|Bn
k (s,Πnu(s)) −Bn

k (s, un(s))|2n
]

ds.

Schwarz’s inequality and the consistency condition (Cn) imply that for every n ≥ 1
and t ∈ [0, T ],

|R1(t)| ≤ λ
3

∫ t

0

‖en(s)‖2
n ds+ 3

λ

∫ t

0

|ΠnA
(

s, u(s)
)

− An
(

s,Πnu(s)
)

|2n∗ ds

≤ λ
3

∫ t

0

‖en(s)‖2
n ds+ 3

λ
ε2

n

∫ t

0

(

|u(s)|2V + ξn(s)
)

ds. (3.8)

Schwarz’s inequality, the consistency condition (Cn), and the Lipschitz condition
(S4) from Assumption 3.1 yield that for every α > 0,

|R2(t)| =
∑

k

∫ t

0

[

|ΠnBk

(

s, u(s)
)

−Bn
k

(

s,Πnu(s)
)

|2n
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+ 2
(

ΠnBk

(

s, u(s)
)

−Bn
k

(

s,Πnu(s)
)

, Bn
k

(

s,Πnu(s)
)

− Bn
k

(

s, un(s)
)

)

n

]

ds

≤ (1 + 1
α
)

∫ t

0

∑

k

∣

∣ΠnBk

(

s, u(s)
)

−Bn
k

(

s,Πnu(s)
)
∣

∣

2

n
ds

+ α

∫ t

0

∑

k

∣

∣Bn
k

(

s,Πnu(s)
)

− Bn
k

(

s, un(s)
)
∣

∣

2

n
ds

≤ (1 + 1
α
) ε2

n

∫ t

0

(

|u(s)|2V + ξn(s)
)

ds+ αLB

∫ t

0

‖en(s)‖2
n ds. (3.9)

Thus, for αLB ≤ λ
3
, taking expectations in (3.5) and (3.7)-(3.9) and using (S1)

again, we deduce that

E|en(t)|2n + λ
3
E

∫ t

0

‖en(s)‖2
n ds ≤ LE

∫ t

0

|en(s)|2nds+ E|en(0)|2n + C(r1 +M)ε2
n,

where C = C(λ, LB) is a constant. Since by (2.5) and (3.3)

sup
0≤t≤T

E|en(t)|2n < +∞,

Gronwall’s lemma gives

sup
0≤t≤T

E|en(t)|2n ≤ eLT
(

C(r1 +M)ε2
n + E|en(0)|2n

)

,

which in turn yields (3.6). We now prove (3.4). From (3.6)–(3.9) we deduce

E sup
0≤t≤T

(

I1(t) + I3(t)
)

≤ LE

∫ T

0

|en(s)|2n ds+ 2λ
3
E

∫ T

0

‖en(s)‖2
nds+ C2(r1 +M) ε2

n

≤ C1E|en(0)|2n + C2(r1 +M)ε2
n. (3.10)

(Notice that by taking the supremum in both sides of (3.7) we cannot make use
of the term with coefficient −λ in the right-hand side of (3.7). This is why 2λ/3
appears here as the sum of λ/3 from (3.8) and αLB ≤ λ/3 from (3.9).) By Davies’
inequality, (2.5), the Lipschitz condition (S4) on Bn, the consistency condition (Cn)
and by the strong monotonicity condition (S1),

E sup
0≤t≤T

|I2(t)| ≤ 6E
(

∫ T

0

∑

k

∣

∣

∣

(

en ,ΠnBk(u) −Bn
k (un)

)

n

∣

∣

∣

2

ds
)

1

2

≤ 6E
{

sup
0≤t≤T

|en(t)|n
(

∫ T

0

∑

k

|ΠnBk(u) − Bn
k

(

un
)

|2n ds
)

1

2
}

≤ 1

2
E sup

0≤t≤T
|en(t)|2n

+ 36E
∑

k

∫ T

0

[

|ΠnBk

(

u
)

−Bn
k

(

Πnu
)

|2n + |Bn
k

(

Πnu
)

− Bn
k (un)|2n

]

ds

≤ 1
2
E sup

0≤t≤T
|en(t)|2n + 36LBE

∫ T

0

‖en(s)‖2
nds+ 36(r1 +M)ε2

n, (3.11)
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where the argument s is omitted from most integrands. Thus, relations (3.5), (3.10),
(3.11) and (3.6) yield

1

2
E sup

0≤t≤T
|en(t)|2n ≤ C1E|en(0)|2n + C2(r1 +M)ε2

n,

with some constants C1 = C1(L, T ) and C2 = C2(λ, L, LB, T ), which completes the
proof of (3.4). �

3.3. Example. Consider the normal triples

V →֒ H∗ →֒ V ∗, Vn →֒ H∗
n →֒ V ∗

n

with the orthogonal projection Πn : H = L2(Rd) → Hn from Example 2.6, where
V = W r

2 (Rd) with r > 0. Set H = W r+ρ
2 (Rd) and V = W r+l

2 (Rd) for some l > ρ ≥ 0.
Let A and B = (Bk) be P ⊗B(V )-measurable mappings from [0,∞[×Ω× V into

V ∗ and Hd1, respectively, satisfying Assumptions 2.2 and 2.3. For (t, ω) ∈ [0, T ]×Ω
let An(t, ω, ·) : V n → V ∗

n and Bn(t, ω, ·) : V n → Hd1

n be defined by

〈An(t, u, ω) , v〉n = 〈A(t, u, ω) , v〉 and Bn
k (t, ω, u) = ΠnBk(t, ω, u) (3.12)

for all u, v ∈ Vn, where 〈 , 〉n denotes the duality between Vn and V ∗
n . Then it is easy

to see that due to conditions (1), (2) and (3) in Assumption 2.2, the operators An

and Bn satisfy (S1), (S2) and (S3) in Assumption 3.1, respectively. Furthermore,
taking into account Remark 2.4 it is obvious that (S4) holds. Assume the regularity
condition (R3) from Assumption 2.3. Then by virtue of the definition of Πn, An

and Bn, due to Lipschitz conditions (3) in Assumption 2.2 and (2.8) in Remark 2.4,
we have, recalling the direct inequality (2.14),

|ΠnA(t, u) − An(t,Πnu)|2V ∗

n
+
∑

k

|ΠnBk(t, u) −Bn
k (t,Πnu)|2Hn

≤ |A(t, u) − An(t,Πnu)|2V ∗ +
∑

k

|Bk(t, u) −Bn
k (t,Πnu)|2H

≤ C(L1 + L2) 2−2nl |u|2V
almost surely for all t ∈ [0, T ] and u ∈ V, which yields (Cn) with ξn := 0 and
εn := C(L1 + L2)2

−nl. In the last section we will give examples of operators such
that Assumption 2.3 holds.

4. Implicit space-time discretizations

4.1. Description of the scheme. For a fixed integer m ≥ 1 set τ := T/m and
ti = iτ for i = 0, · · · , m. Let Vn →֒ Hn →֒ V ∗

n satisfy the conditions in section 2.2.
Given a Vn-valued F0-measurable random variable un,τ

0 and Fti ⊗B(Vn)-measurable
mappings

An,τ
j : Ω × Vn → V ∗

n and Bn,τ
k,i : Ω × Vn → Hn, for k = 1, · · · , d1,

j = 1, . . . , m and i = 0, . . .m− 1, consider for each n the system of equations

un,τ
i+1 = un,τ

i + τ An,τ
i+1

(

un,τ
i+1

)

+
∑

k

Bn,τ
k,i

(

un,τ
i

) (

W k(ti+1) −W k(ti)
)

, (4.1)

i = 0, . . . , m− 1, for Vn-valued Fti-measurable random variables un,τ
i , i = 1, . . . , m.
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Assumption 4.1. For almost all ω ∈ Ω the operators An,τ
j and Bn,τ

k,i satisfy the
following conditions for all j = 1, . . . , m, i = 0, . . . , m− 1,
(ST1) (Strong monotonicity) There exist constants λ > 0 and L ≥ 0 such that

2
〈

u− v , An,τ
j (u) − An,τ

j (v)
〉

n
+
∑

k

∣

∣Bn,τ
k,j (u) − Bn,τ

k,j (v)
∣

∣

2

Hn

≤ −λ‖u− v‖2
Vn

+ L |u− v|2Hn
(4.2)

for all u, v ∈ Vn, m ≥ 1, n ≥ 0.
(ST2) (Growth condition on An,τ

i and Bn,τ
i ) There is a constant K such that

∣

∣An,τ
j (u)

∣

∣

2

V ∗

n

≤ K‖u‖2
Vn

+ fn,τ
j ,

∑

k

∣

∣Bn,τ
k,i (u)

∣

∣

2

Hn
≤ K‖u‖2

Vn
+ gn,τ

i

for all u ∈ Vn, m ≥ 1, n ≥ 0, where fn,τ
j and gn,τ

i are non-negative random variables,
such that

sup
n,m

∑

j

τEfn,τ
i ≤M < +∞, sup

n,m
max

i
Egn,τ

i ≤ M < +∞.

(ST3) (Lipschitz condition on An,τ
j ) There exists a constants L1 such that

∣

∣An,τ
j (u) − An,τ

j (v)
∣

∣

2

V ∗

n

≤ L1‖u− v‖2
Vn

(4.3)

for all u, v ∈ Vn, m ≥ 1, n ≥ 0.

Remark 4.1. Clearly, conditions (ST1) and (ST3) imply the Lipschitz continuity
of Bn,τ

k,i in v ∈ Vn, i.e., there is a constant L2 = L2(L, λ, L1) such that almost surely
∑

k

∣

∣Bn,τ
k,j (u) − Bn,τ

k,j (v)
∣

∣

2

Hn
≤ L2 ‖u− v‖2

Vn
(4.4)

for all u, v ∈ Vn, n ≥ 1, m ≥ 0 and j = 1, · · · , m.

Remark 4.2. Conditions (ST1)–(ST2) imply that almost surely

2〈u,An,τ
j (u)〉n +

∑

k

|Bn,τ
k,j (u)|2Hn

≤ −λ
2
‖u‖2

Vn
+ L|u|2Hn

+ C(fn,τ
j + gn,τ

j )

for all u ∈ Vn, n ≥ 0, m ≥ 1 and j = 1, . . . , m, where C = C(λ,K) is a constant.
The Lipschitz condition (ST3) obviously implies that An,τ

i is hemicontinuous.

Proposition 4.3. Let Assumption 4.1 hold. Assume E‖un,τ
0 ‖2

Vn
<∞ for all n ≥ 0

and m ≥ 1. Then for τ < 1/L equation (4.1) has a unique Vn-valued solution
(un,τ

i )m
j=1, such that un,τ

j is Ftj -measurable and E‖un,τ
j ‖2

Vn
is finite for each j, n.

(Here 1/L := ∞ if L = 0.)

Proof. Equation (4.1) can be rewritten as

Di+1(u
n,τ
i+1) = un,τ

i +
∑

k

Bn,τ
k,i

(

un,τ
i

) (

W k(ti+1) −W k(ti)
)

, (4.5)

where Di : Vn → V ∗
n is defined by Di(v) = v − τAn,τ

i (v) for each i = 1, 2, · · ·m.
Due to Assumption 4.1 and Remark 4.2 the operator Di satisfies the assumptions
(monotonicity, coercivity, linear growth and hemicontinuity) of Proposition 3.4 in [7]
with p = 2. By virtue of this proposition, for τ < 1/L, equation (4.5) has a unique
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Vn-valued Fti+1
-measurable solution un,τ

i+1 for every given V -valued Fti-measurable
random variable un,τ

i , and

E‖un,τ
i+1‖2

Vn
≤ C E

(

1 + fn,τ
i + gn,τ

i +
∣

∣

∣

∑

k

Bn,τ
k,i (un,τ

i ) (W k(ti+1) −W k(ti))
∣

∣

∣

2)

≤ C
(

1 + Efn,τ
i + Egn,τ

i +
∑

k

τE|Bn,τ
k,i (un,τ

i )|2n
)

≤ C
(

1 + Efn,τ
i + Egn,τ

i +KτE‖un,τ
i ‖2

Vn
+ τ Egn,τ

i

)

,

where C = C(λ, τ) is a constant. Hence induction on i concludes the proof. �

4.2. Rate of convergence of the implicit scheme. Let Assumption 2.3 on the
regularity of equation 2.1 and its solution u hold. We relate the operators A(ti, .)
and An,τ

i as well as the operators Bk(ti, .) and Bn,τ
k,i by the following consistency

assumption.

Condition (Cnτ) (Consistency) There exist constants ν ∈]0, 1
2
], c ≥ 0, a sequence

of numbers εn → 0, such that almost surely

|ΠnA(tj , u) −An,τ
j (Πnu)|2V ∗

n
≤ c
(

|u|2V + ξn,τ
j

)(

τ 2ν + ε2
n

)

,
∑

k

∣

∣ΠnBk(ti, u) −Bn,τ
k,i (Πnu)

∣

∣

2

Hn
≤ c(|u|2V + ηn,τ

i )
(

τ 2ν + ε2
n

)

for all j = 1, . . .m, i = 0, · · · , m−1 and u ∈ V, where ξn,τ
j and ηn,τ

i are non-negative
random variables such that

sup
n,m

∑

j

τEξn,τ
j ≤M, sup

n,m

∑

i

τEηn,τ
i ≤ M.

Theorem 4.4. Let Assumptions 2.3 and 4.1 as well as condition (Cnτ) hold. As-
sume

sup
n,m

E‖un,τ
0 ‖2

Vn
≤M. (4.6)

Set en,τ
i = Πnu(ti) − un,τ

i . Then for τ < 1/L and n ≥ 0

E max
0≤i≤m

|en,τ
i |2Hn

+
∑

1≤i≤m

τ E‖en,τ
i ‖2

Vn

≤ C1E|en,τ
0 |2Hn

+ C2(τ
2ν + ε2

n)(r1 + r2 +M), (4.7)

where C1 = C1(λ, L, T ) and C2 = C2(λ, L,K, T, p, c, L1, L2) are constants.

Proof. We fix n, τ , and to ease notation we write ei, Ai and Bk,i in place of en,τ
i , An,τ

i

and Bn,τ
k,i , respectively. Similarly, we often use ui in place of un,τ

i for i = 1, 2, · · · , m.
Then for any i = 0, · · · , m− 1,

|ei+1|2n − |ei|2n = 2

∫ ti+1

ti

〈

ei+1 ,ΠnA(s, u(s)) −Ai+1(ui+1)
〉

n
ds

+ 2
∑

k

∫ ti+1

ti

(

ei+1 , Fk(s)
)

n
dW k(s)

−
∣

∣

∣

∫ ti+1

ti

[

ΠnA(s, u(s)) −Ai+1(ui+1)
]

ds+
∑

k

∫ ti+1

ti

Fk(s) dW
k(s)

∣

∣

∣

2

n
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=2

∫ ti+1

ti

〈

ei+1 ,ΠnA(s, u(s)) − Ai+1(ui+1)
〉

n
ds

+
∣

∣

∣

∑

k

∫ ti+1

ti

Fk(s) dW
k(s)

∣

∣

∣

2

n
+ 2

∑

k

∫ ti+1

ti

(

ei , Fk(s)
)

n
dW k(s)

−
∣

∣

∣

∫ ti+1

ti

[

ΠnA(s, u(s)) −Ai+1(ui+1)
]

ds
∣

∣

∣

2

n
,

where for k = 1, · · · , d1 one sets

Fk(s) = ΠnBk

(

s, u(s)
)

− Bk,i(u
n,τ
i ), s ∈]ti, ti+1], i = 0, 1, · · · , m− 1.

Summing up for i = 0, · · · , l − 1, we obtain

|el|2n ≤ |e0|2n +2
∑

0≤i<l

∫ ti+1

ti

〈ei+1 ,ΠnA(s, u(s))−Ai+1(ui+1)〉n ds+Q(tl)+ I(tl), (4.8)

where

Q(tl) =
∑

0≤i<l

∣

∣

∣

∑

k

∫ ti+1

ti

Fk(s) dW
k(s)

∣

∣

∣

2

n
,

I(tl) =2
∑

k

∫ tl

0

(

e(s) , Fk(s)
)

n
dW k(s), e(s) := ei for s ∈]ti, ti+1], i = 0, · · · , m.

First we show

sup
0≤l≤m

E|el|2n + E
∑

1≤i≤m

τ‖ei‖2
n ≤ C1E|e0|2n + C2(τ

2ν + ε2
n)(r1 + r2 +M), (4.9)

where C1 = C1(λ, L, T ) and C2 = C2(λ, L,K, T, p, c, L1, L2) are constants. To this
end we take expectation in both sides of (4.8) and use the strong monotonicity
condition (ST1) from Assumption 4.1 to get

E|el|2n ≤ E|e0|2n + 2E
∑

0≤i<l

τ
〈

ei+1 , Ai+1(Πnu(ti+1)) − Ai+1(ui+1)
〉

n

+ E
∑

0≤i<l−1

∑

k

τ
∣

∣Bk,i+1(Πnu(ti+1)) −Bk,i+1(ui+1)
∣

∣

2

n
+
∑

1≤j≤3

Sj

≤ E|e0|2n − λ
∑

1≤i≤l

τE‖ei‖2
n + L

∑

1≤i≤l

τE|ei|2n +
∑

1≤j≤3

Sj (4.10)

for l = 1, · · · , m, where

S1 = 2
∑

1≤i≤l

E

∫ ti

ti−1

〈ei , ΠnA(s, u(s)) − Ai(Πnu(ti))〉n ds,

S2 =
∑

k

∑

1≤i<l

E

∫ ti+1

ti

[

|Fk(s)|2n − |Bk,i(Πnu(ti)) − Bk,i(ui)|2n
]

ds,

S3 =
∑

k

E

∫ τ

0

|Fk(s)|2n ds.
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For any ε > 0

S1 ≤ ε
∑

1≤i≤l

τ E‖ei‖2
n + 1

ε
R,

where

R = R(tl) =
∑

1≤i≤l

E

∫ ti

ti−1

|ΠnA(s, u(s)) − Ai(Πnu(ti))|2n∗ ds ≤ 3
∑

1≤j≤3

Rj, (4.11)

R1 =
∑

1≤i≤l

E

∫ ti

ti−1

|ΠnA(s, u(s)) − ΠnA(ti, u(s))|2n∗ ds,

R2 =
∑

1≤i≤l

E

∫ ti

ti−1

|ΠnA(ti, u(s)) − Ai(Πnu(s))|2n∗ ds,

R3 =
∑

1≤i≤l

E

∫ ti

ti−1

|Ai(Πnu(s)) − Ai(Πnu(ti))|2n∗ ds.

Due to condition (2.11) on the time regularity ofA in Assumption 2.3, (2.13), (Cnτ),
the Lipschitz condition (4.3) in Assumption 4.1 and inequality (2.12) from Remark
2.5, we deduce

R1 ≤ τ 2ν p2E

∫ T

0

(K|u(s)|2V + η) ds, (4.12)

R2 ≤ c(τ 2ν + ε2
n)
(

E

∫ T

0

|u(s)|2V ds+
∑

1≤i≤m

τ Eξn,τ
i

)

, (4.13)

R3 ≤ L1p
2
∑

1≤i≤l

∫ ti

ti−1

E‖u(s) − u(ti)‖2 ds ≤ TL1p
2M1τ, . (4.14)

with M1 := C(r1 + r2 + M). By (2.13), the regularity condition (R3) on B from
Assumption 2.3, the growth condition (ST2) on Bi,k from Assumption 4.1, and by
condition (4.6) on the initial values we have

S3 ≤ 2
∑

k

∫ τ

0

E|ΠnBk(s, u(s))|2n ds+ 2
∑

k

τE|Bk,0(u
n,τ
0 )|2n

≤ 2τp2
(

K sup
t∈[0,T ]

E‖u(t)‖2
H + sup

t∈[0,T ]

Eη(t)
)

+2τ
(

K sup
n,m

E‖un,τ
0 ‖2

n + sup
n,m

Egn,τ
0

)

. (4.15)

Using the simple inequality |b|2n − |a|2n ≤ ε|a|2n + (1 + 1
ε
)|b− a|2n with

a := Bk,i(Πnu(ti)) −Bk,i(ui), b := Fk(s),

for any ε > 0 we have S2 ≤ εP1 + (1 + 1
ε
)P2 with

P1 = P1l =
∑

1≤i≤l

E
∑

k

τ |Bk,i(Πnu(ti)) − Bk,i(ui)|2n,

P2 = P2l =
∑

1≤i<l

E

∫ ti+1

ti

∑

k

|ΠnBk(s, u(s)) −Bk,i(Πnu(ti))|2n ds. (4.16)
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By Remark 4.1 on the Lipschitz continuity of Bk,i we get P1 ≤ L2E
∑

1≤i≤l τ‖ei‖2
n.

Clearly, P2 ≤ 3(Q1 +Q2 +Q3) with

Q1 =
∑

1≤i<l

E

∫ ti+1

ti

∑

k

|ΠnBk(s, u(s)) − ΠnBk(ti, u(s))|2n ds,

Q2 =
∑

1≤i<l

E

∫ ti+1

ti

∑

k

|ΠnBk(ti, u(s)) − Bk,i(Πnu(s))|2n ds,

Q3 =
∑

1≤i<l

E

∫ ti+1

ti

∑

k

|Bk,i(Πnu(s)) −Bk,i(Πnu(ti))|2n ds.

Due to (R4) (ii) in Assumption 2.3 on the time regularity of B, consistency (Cnτ),
the Lipschitz continuity of Bk,i proved in Remark 4.1 , (2.12) proved in Remark 2.5
and (2.13),

Q1 ≤ τ 2νp2
(

K E

∫ T

0

|u(s)|2V ds+ TEη
)

,

Q2 ≤ c(τ 2ν + ε2
n)
(

E

∫ T

0

|u(s)|2V ds+ sup
n,m

∑

0≤i<l

τEηn,τ
i

)

,

Q3 ≤ L2p
2T sup

|t−s|≤τ

E‖u(t) − u(s)‖2 ≤ τL2p
2TM1.

Hence

S2 ≤ εL2E
∑

1≤i≤l

τ ‖ei‖2
n + C

(

1 +
1

ε

)

(τ 2ν + ε2
n)

×
(

E

∫ T

0

|u(s)|2V ds+ TEη + sup
n,m

∑

i

τEηn,τ
i +M1

)

, (4.17)

where C = C(p,K, L2, c). Choosing ε > 0 sufficiently small, from (4.10) and (4.12)–
(4.17) we obtain for l = 1, · · · , m,

E|el|2n+λ
2
E
∑

1≤i≤l

τ‖ei‖2
n

≤ E|e0|2n + L
∑

1≤i≤l

τ E|ei|2n + C(τ 2ν + ε2
n)(r1 + r2 +M), (4.18)

where C = C(K, λ, p, T, c, L1, L2) is a constant. Since supm

∑m
i=1 τ = T < +∞,

if Lτ < 1 a discrete version of Gronwall’s lemma yields the existence of constants
C1 = C1(L, λ, T ) and C2 = C2(L,K, λ, p, T, c, L1, L2) such that for sufficiently large
m

max
1≤l≤m

E|el|2n ≤ C1E|e0|2n + C2(r1 + r2 +M)(τ 2ν + ε2
n)

holds for all n. This together with (4.18) concludes the proof of (4.9). To prove
(4.7) notice that from (4.8) by the same calculations as above, but taking first max
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in l and then expectation, we get

E max
1≤i≤m

|ei|2n ≤ E|e0|2n + E
∑

1≤i≤m

τ‖ei‖2
n + L

∑

1≤i≤l

τE|ei|2n

+R(T ) +R0 + E max
0≤i≤m

I(ti) + EQ(T ). (4.19)

where R(T ) = R(tm) is defined by (4.11) and

R0 = P1m + 2P2m + S3. (4.20)

The terms R(T ), P1m and P2m have already been estimated above by the right-hand
side of (4.18) and S3 has been estimated by (4.15). Notice that

EQ(T ) = E

∫ T

0

∑

k

|Fk(s)|2n ds ≤ 2P1m + 2P2m,

and by Davis’ inequality

E max
0≤i≤m

I(ti) ≤ 6E

{

∫ T

0

∑

k

|(e(s) , Fk(s))n|2 ds
}1/2

≤ 1
2
E max

0≤i<m
|ei|2n + 18E

∫ T

0

∑

k

|Fk(s)|2n ds.

Thus from (4.19) we obtain (4.7). �

Remark 4.5. One can show, like it is observed in [8], that if instead of the Lips-
chitz condition (4.3) we assume that An,τ

i are hemicontinuous and Bn,τ
k,i satisfy the

Lipschitz condition (4.4), then the order of the speed of convergence is divided by
two.

4.3. Examples. (i) Consider from Example 3.3 the normal triples

V →֒ H∗ →֒ V ∗, Vn →֒ H∗
n →֒ V ∗

n

with the orthogonal projection Πn : H = L2(Rd) → Hn and auxiliary spaces H =
W r+ρ

2 (Rd) and V = W r+l
2 (Rd) for some l > ρ ≥ 0.

Let A and B = (Bk) be P ⊗B(V )-measurable mappings from [0,∞[×Ω× V into
V ∗ and Hd1 , respectively, satisfying Assumptions 2.2 and 2.3 such that f and g in
(2.6) satisfies

sup
t∈[0,T ]

f(t) ≤M, sup
t∈[0,T ]

g(t) ≤M.

For ω ∈ Ω, j = 1, . . . , m and i = 0, . . . , m − 1 let An,τ
j (ω, ·) : V n → V ∗

n and
Bn,τ

k,i (ω, ·) : V n → Hn be defined by

〈An,τ
j (ω, u) , v〉n = 〈A(tj, ω, u, ) , v〉 and Bn,τ

k,i (ω, u) = ΠnBk(ti, ω, u) (4.21)

for all u, v ∈ Vn, where 〈 , 〉n denotes the duality between Vn and V ∗
n . Then it is easy

to see, like in Example 3.3, that due to (1), (2) and (3) in Assumption 2.2, (ST1),
(ST2) and (ST3) in Assumption 4.1 hold respectively. In the same way as (Cn)
is verified in Example 3.3, one can also easily show that the consistency assumption
(Cnτ) holds.
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(ii) Another choice for Anτ
j and Bnτ

k,i can be defined by

〈An,τ
j (u) , v〉n =

1

τ

∫ tj

tj−1

〈A(s, u) , v〉ds, u, v ∈ Vn,

Bn,τ
k,0 (u) = ΠnBk(0, u), Bn,τ

k,j (u) =
1

τ

∫ tj

tj−1

ΠnBk(s, u) ds, u ∈ Vn, (4.22)

instead of (4.21). One can show by a similar computation as before, combined with
the use of Jensen’s inequality, that Assumption 2.2 and (R3)-(R4) in Assumption
2.3 imply Assumption 4.1 and condition (Cnτ).

(iii) Finally, let Vn = V , Hn = H and let Πn be the identity operator for every n.
Let Assumptions 2.2 and 2.3 hold. Then one recovers the conclusions of Theorems
3.2 and 3.4 in [8] concerning the rate of convergence of the implicit time discretization
scheme with εn = 0.

5. Explicit space-time discretization scheme

5.1. Description of the scheme. Let Vn, Hn and V ∗
n be a normal triple and Πn

be continuous linear operators which satisfy the condition (2.13). Assume moreover
that for each n ≥ 0 as sets

Vn = Hn = V ∗
n ,

and there is a constant ϑ(n) such that

‖u‖2
Vn

≤ ϑ(n) |u|2Hn
, ∀u ∈ Hn. (5.1)

Then by duality we also have

|u|2Hn
≤ ϑ(n) |u|2V ∗

n
, ∀u ∈ V ∗

n .

Consider for each n and i = 0, 1, · · · , m− 1 the equations

un
τ,i+1 = un

τ,i + τ An,τ
i

(

un
τ,i

)

+
∑

k

Bn,τ
k,i

(

un
τ,i

) (

W k(ti+1) −W k(ti)
)

, (5.2)

for Vn-valued Fti-measurable random variables un
τ,i for i = 1, · · · , m, where un

τ,0 is a
given Vn-valued F0-measurable random variable, and

An,τ
i : Ω × Vn → V ∗

n and Bn,τ
k,i : Ω × Vn → Hn

are given Fti ⊗ B(Vn)-measurable mappings such that Assumption 4.1 holds.

Proposition 5.1. Let Assumption 4.1 hold. Then for any V -valued F0-measurable
random variable un

τ,0 such that E‖un
τ,0‖2

Vn
< ∞, the system of equations (5.2) has a

unique solution (un
τ,i)

m
i=1 such that un

τ,i is Fti-measurable and E‖un
τ,i‖2

Vn
< ∞ for all

i, m and n.

Proof. By (5.1) we have ‖un
τ,i+1‖2

n ≤ ϑ(n)|un
τ,i+1|2n, and by (5.2)

E|un
τ,i+1|2n ≤ 3E|un

τ,i|2n + 3τE|An,τ
i (un

τ,i)|2n + 3τ
∑

k

E|Bnτ
i (un

τ,i)|2n

≤ 3
(

ϑ(n) + ϑ(n)τK + τK
)

E‖un
τ,i‖2

n + 3τ
(

ϑ(n) + 1
)

M.

Hence we get the proposition by induction on i. �
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5.2. Rate of convergence of the scheme. The following theorem gives the rate
of convergence of en

τ,i := Πnu(ti) − un
τ,i.

Theorem 5.2. Let Assumption 2.3, Assumption 4.1 with index j = i = 0, . . . , m−1
in its formulation, and the consistency condition (Cnτ) hold. Let n and τ satisfy

L1τϑ(n) + 2
√

L1L2τϑ(n) ≤ q (5.3)

for some constant q < λ, where L1 and L2 are the Lipschitz constants in (4.3) and
(4.4), respectively. Then

E max
0≤i≤m

|en
τ,i|2Hn

+
∑

0≤i<m

τE‖en
τ,i‖2

Vn
≤ C1E|en

τ,0|2Hn
+C2(τ

2ν +ε2
n)(r1 +r2 +M), (5.4)

where C1 = C1(λ, q, L, T ) and C2 = C2(λ, q, L,K, T, p, c, L1, L2) are constants.

Proof. Note that when we refer to any condition in Assumption 4.1 then we mean
it with the index j replaced in its formulation with i running through 0, · · · , m− 1.
To ease notation we omit the indices n and τ from en

τ,i, u
n
τ,i, A

n,τ
i and Bn,τ

i when this
does not cause ambiguity. For any i = 0, · · · , m− 1

|ei+1|2n − |ei|2n = 2

∫ ti+1

ti

〈ei , ΠnA(s, u(s)) − Ai(ui))〉n ds

+ 2
∑

k

∫ ti+1

ti

(ei , Fk(s))n dW
k(s) +

∑

k

∣

∣

∣

∣

∫ ti+1

ti

Fk(s) dW
k(s)

∣

∣

∣

∣

2

n

+
∣

∣

∣

∫ ti+1

ti

[

ΠnA(s, u(s)) −Ai(ui)
]

ds
∣

∣

∣

2

n

+ 2
∑

k

(

∫ ti+1

ti

[

ΠnA(s, u(s)) −Ai(ui)
]

ds ,

∫ ti+1

ti

Fk(s) dW
k(s)

)

n
,

where

Fk(s) = ΠnBk(s, u(s)) − Bk,i(ui), s ∈]ti, ti+1], i = 0, 1, · · · , m− 1.

Hence for l = 1, · · · , m and every δ > 0,

|el|2n ≤ |e0|2n + 2
∑

0≤i<l

∫ ti+1

ti

〈ei , ΠnA(s, u(s)) −Ai(ui))〉n ds+ 2 I(tl) +Q(tl)

+(1 + 1
δ
)S(tl) + δQ(tl), (5.5)

where

I(tl) =

∫ tl

0

(e(s) , Fk(s)) dW
k(s), e(s) := ei for s ∈]ti, ti+1], i ≥ 0,

S(tl) =
∑

0≤i<l

∣

∣

∣

∫ ti+1

ti

[

ΠnA(s, u(s)) −Ai(ui)
]

ds
∣

∣

∣

2

n
,

Q(tl) =
∑

0≤i<l

∑

k

∣

∣

∣

∣

∫ ti+1

ti

Fk(s) dW
k(s)

∣

∣

∣

∣

2

n

.
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First we prove

max
1≤i≤m

E|ei|2n +
∑

0≤i<m

τE‖ei‖2
n ≤ C1E|e0|2n + C2(τ

2ν + ε2
n)(r1 + r2 +M), (5.6)

with some constants C1 = C1(λ, q, L, T ) and C2 = C2(λ, q, L,K, T, p, c, L1, L2). To
this end we take expectation in both sides of (5.5) and use the strong monotonicity
condition (4.2) in Assumption 4.1, to get

E|el|2n ≤ E|e0|2n + 2E
∑

0≤i<l

τ〈ei , Ai(Πnu(ti)) − Ai(ui)〉n

+ E
∑

0≤i<l

τ |Bk,i(Πnu(ti)) −Bk,i(ui)|2n +
∑

i=1,2

Si + (1 + 1
δ
)ES(tl) + δEQ(tl)

≤E|e0|2n − λE
∑

0≤i<l

τ‖ei‖2
n + LE

∑

0≤i<l

τ |ei|2n +
∑

i=1,2

Si + (1 + 1
δ
)ES(tl) + δEQ(tl),

for any δ > 0, where

S1 = 2
∑

0≤i<l

E

∫ ti+1

ti

〈ei , ΠnA(s, u(s)) −Ai(Πnu(ti))〉n ds,

S2 =
∑

k

∑

0≤i<l

E

∫ ti+1

ti

[

|Fk(s)|2n − |Bk,i(Πnu(ti)) −Bk,i(ui)|2n
]

ds.

As in the proof of Theorem 4.4 we get for any ε > 0,

S1 ≤ ε
∑

0≤i<l

τE‖ei‖2
n + 1

ε
C(r1 + r2 +M)(τ 2ν + ε2

n),

S2 ≤ L2 ε
∑

0≤i<l

τE‖ei‖2
n + 1

ε
C(r1 + r2 +M)(τ 2ν + ε2

n)

with a constant C = C(K, p, T, L1, L2, c). Notice that for any ε > 0,

ES(tl) ≤τϑ(n)J(tl),

J(tl) :=
∑

0≤i<l

E

∫ ti+1

ti

|ΠnA(s, u(s)) −Ai(ui)|2n∗ ds ≤ (1 + ε)R0 + (1 + 1
ε
)R, (5.7)

EQ(tl) ≤(1 + ε)P1 + (1 + 1
ε
)P2, (5.8)

where

P1 :=
∑

0≤i<l

E
∑

k

|Bk,i(Πnu(ti)) − Bk,i(ui)|2nτ ≤ L2E
∑

0≤i<l

τ‖ei‖2
n

P2 :=
∑

0≤i<l

E

∫ ti+1

ti

∑

k

|ΠnBk(s, u(s)) − Bk,i(Πnu(ti))|2n ds,

R0 := E
∑

0≤i<l

τ |Ai(Πnu(ti)) − Ai(ui)|2n∗ ≤ L1E
∑

0≤i<l

τ‖ei‖2
n,

R := E
∑

0≤i<l

∫ ti+1

ti

|ΠnA(s, u(s)) −Ai(Πnu(ti))|2n∗ ds,
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for any l = 1, 2, · · · , m. In the same way as in the proof of Theorem 4.4 we obtain

R ≤ C(τ 2ν + ε2
n)(r1 + r2 +M), (5.9)

and that

P2 ≤ C ′(τ 2ν + ε2
n)(r1 + r2 +M), (5.10)

where C = C(K, p, c, L1, T ) and C ′ = C ′(K, p, c, L2, T ) are constants. Consequently,

E|el|2n ≤ E|e0|2n + (µ− λ)E
∑

0≤i<l

τ‖ei‖2
n + LE

∑

0≤i<l

τ |ei|2n

+
(

1 + τϑ(n)
)

(1 + 1
δ

+ 1
ε
)C(τ 2ν + ε2

n)(r1 + r2 +M) (5.11)

for any δ > 0 and ε > 0, where

µ = (1 + ε)
[

(1 + 1
δ
)τϑ(n)L1 + δL2

]

+ ε(1 + L2),

and C = C(K, p, c, T, L1, L2) is a constant. It is easy to see that due to (5.3)

inf
δ>0

(1 + 1
δ
)τϑ(n)L1 + δL2 = τϑ(n)L1 + 2

√

τϑ(n)L1L2 ≤ q.

Therefore we can take δ > 0 and ε > 0 such that µ ≤ (q + λ)/2. Thus from (5.11)
we can get

E|el|2n ≤ E|e0|2n − 1
2
(λ− q)E

∑

0≤i<l

τ‖ei‖2
n + LE

∑

0≤i<l

τ |ei|2n

+C(τ 2ν + ε2
n)(r1 + r2 +M),

with a constant C = C(K, λ, q, p, c, T, L1, L2). Hence by a discrete version of Gron-
wall’s lemma we obtain (5.6). To prove (5.4) note that (5.5) yields

E max
1≤l≤m

|el|2n ≤ |e0|2n + E
∑

0≤i<l

τ‖ei‖2
n + 2ES(T ) + 2E max

1≤l≤m
I(tl) + 2EQ(T ), (5.12)

where by (5.7)–(5.9) ES(T ) ≤ τϑ(n)J(T ), and

J(T ) ≤ 2L1E
∑

0≤i<m

τ‖ei‖2
n + 2C(τ 2ν + ε2

n)(r1 + r2 +M).

By (5.8), (5.9) and (5.10)

EQ(T ) ≤ 2L2

∑

0≤i<m

τ‖ei‖2
n + 2C ′(τ 2ν + ε2

n)(r1 + r2 +M).

Finally, in the same way as equation (4.21) is obtained, we get

E max
1≤i≤m

I(ti) ≤ 6E

{

∫ T

0

∑

k

|(e(s) , Fk(s))n|2 ds
}1/2

≤ 1
2
E max

0≤i<m
|ei|2n + 18E

∫ T

0

F 2
k (s) ds ≤ 1

2
E max

0≤i<m
|ei|2n + 18EQ(T ).

Consequently, from (5.12) we obtain (5.4) by (5.6). �
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5.3. Example. Consider again the spaces

V ⊂ H ⊂ V →֒ H →֒ V ∗, Vn →֒ Hn →֒ V ∗
n

from Examples 3.3 and 4.3. Notice that Vn, Hn and V ∗
n are identified as sets and

that due to the converse inequality (2.15) we have (5.1) with ϑ(n) = C2nr.
Let A and B satisfy the same conditions as in Example 4.3. Define An,τ

j and Bn,τ
k,i

for j = i = 0, . . . , m−1 by (4.21) or define An,τ
j by (4.21) for j = 0 and An,τ

j , Bn,τ
k,i by

(4.22) for j = 1, . . . , m−1 and i = 0, . . . , m−1. Then, as shown in section 4.3, An,τ
j

and Bn,τ
k,i satisfy the conditions in Assumption 4.1 as well as (Cnτ). Hence, if the

solution u satisfies (R1)-(R2) in Assumption 2.3, and L1τϑn+2
√
L1L2τϑn ≤ q < λ,

then the conditions of Theorem 5.2 hold.

6. Examples of approximations of stochastic PDEs

In this section we present some examples of stochastic PDEs for which the pre-
vious theorems provide rates of convergence for the above space and space-time
discretization schemes. We refer to section 5 in [8] for more details. In this section
for integers l the notation |u|l = |u|W l means the norm of u in H l = W l(Rd).

6.1. Quasilinear equations. Let us consider the stochastic partial differential
equation

du(t, x) =
(

Lu(t) + F (t, x,∇u(t, x), u(t, x)
)

dt

+
∑

k

(

Mku(t, x) + gk(t, x)
)

dW k(t), t ∈ (0, T ], x ∈ R
d, (6.1)

with initial condition
u(0, x) = u0(x), x ∈ R

d, (6.2)

where F and gk are Borel functions of (ω, t, x, p, r) ∈ Ω× [0,∞)×Rd ×Rd ×R and
of (ω, t, x) ∈ Ω × [0,∞) × Rd, respectively, and L, Mk are differential operators of
the form

L(t)v(x) =
∑

|α|≤1,|β|≤1

Dα(aαβ(t, x)Dβv(x)), Mk(t)v(x) =
∑

|α|≤1

bαk (t, x)Dαv(x),

with functions aαβ and bαk of (ω, t, x) ∈ Ω × [0,∞) × R
d, for all multi-indices α =

(α1, ..., αd), β = (β1, ..., βd) of length |α| =
∑

i αi ≤ 1, |β| ≤ 1. Here, and later onDα

denotes Dα1

1 ...Dαd

d for any multi-indices α = (α1, ..., αd) ∈ {0, 1, 2, ...}d, where Di =
∂

∂xi
and D0

i is the identity operator. We use the notation ∇p := (∂/∂p1, ..., ∂/∂pd).
Let K and M denote some non-negative numbers. Fix an integer l ≥ 0 and

suppose that the following conditions hold:
Assumption (A1) (Stochastic parabolicity). There exists a constant λ > 0 such
that

∑

|α|=1,|β|=1

(

aαβ(t, x) − 1
2

∑

k

(

bαk b
β
k

)

(t, x)

)

zα zβ ≥ λ
∑

|α|=1

|zα|2

for all ω ∈ Ω, t ∈ [0, T ], x ∈ Rd and z = (z1, ..., zd) ∈ Rd, where zα := zα1

1 zα2

2 ...zαd

d

for z ∈ Rd and multi-indices α = (α1, α2, ..., αd).

Assumption (A2) (Smoothness of the initial condition). Let u0 be W 2
l -valued

F0-measurable random variable such that E|u0|2l ≤ M .
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Assumption (A3) (Smoothness of the linear term). The derivatives of aαβ and bαk
up to order l are P ⊗ B(Rd) -measurable real functions such that almost surely

|Dγaαβ(t, x)| + |Dγbαk (t, x)| ≤ K, for all |α| ≤ 1, |β| ≤ 1, k = 1, · · · , d1,

t ∈ [0, T ], x ∈ Rd and multi-indices γ with |γ| ≤ 2.

Assumption (A4) (Smoothness of the nonlinear term). The function F and their
first order partial derivatives in p, x and r are P⊗B(Rd)⊗B(Rd)⊗B(R)-measurable
functions. The function gk and its derivatives in x are P ⊗B(Rd)-measurable func-
tions for every k = 1, .., d1. There exists a constant K and a P ⊗ B-measurable
function ξ of (ω, t, x) such that almost surely

|∇pF (t, x, p, r)| + | ∂
∂r
F (t, x, p, r)| ≤ K ,

|F (t, ·, 0, 0)|20 +
∑

k

|gk(t, ·)|22 ≤ η ,

|∇xF (t, x, p, r)| ≤ L(|p| + |r|) + ξ(t, x), |ξ(t)|20 ≤ η

for all t, x, p, r, where η is a random variable such that Eη ≤M .

Set H = L2(Rd) = W 0
2 , V = W 1

2 , H = W 2
2 and V = W 3

2 and suppose that the
assumptions (A1)–(A4) hold with l = 2. Then the operators

A(t, ϕ) = L(t)ϕ+ F (t, .,∇ϕ, ϕ), Bk(t, ϕ) = Mk(t)ϕ+ gk(t, .), ϕ ∈ V

and u0 satisfy the conditions of Theorem 2.2. Hence (6.1)–(6.2) has a unique solution
u on [0, T ]. Furthermore, u has a W 2

2 -valued continuous modification such that

E sup
0≤t≤T

|u(t)|22 + E

∫ T

0

|u(t)|23 dt <∞.

Consequently the regularity conditions (R1) and (R2) in Assumption 2.3 hold. It
is easy to check that A and Bk verify condition (R3).

Assumption (A5) (Time regularity of A and B) Almost surely
(i)

∑

k

|Dγ(bαk (t, x) − bαk (s, x))|2 ≤ K|t− s|,
∑

k

|gk(s, .) − gk(t, .)|21 ≤ η |t− s|.

(ii)

|Dγ(aα,β(t, x) − aα,β(s, x))|2 ≤ K|t− s|,
|F (t, x, p, r) − F (s, x, p, r)|2 ≤ K |t− s| (|p|2 + |r|2),

|∇xF (t, x, p, r) −∇xF (s, x, p, r)|2 ≤ K |t− s| (|p|2 + |r|2),
|∇pF (t, x, p, r) −∇pF (s, x, p, r)|2 ≤ K |t− s|,
| ∂
∂r
F (t, x, p, r) − ∂

∂r
F (s, x, p, r)|2 ≤ K |t− s|.

for all |α| ≤ 1, |β| ≤ 1, |γ| ≤ 1, s, t ∈ [0, T ] and x ∈ Rd, where K is a constant and
η is a random variable such that Eη ≤ M .

Clearly, Assumptions (i) and (ii) of (A5) imply conditions (i) and (ii) of (R4) in
Assumption 2.3, respectively with ν = 1/2.
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Let Hn, Vn and Πn be defined as in Example 2.6 and let An(t, u) and Bn
k (t, u) be

defined by (3.12). Let u0 ∈W 2
2 = H and un

0 = Πnu0. Recall Example 3.3 and notice
that we can apply Theorem 3.1, and by making use of (2.14) we get the estimate

E sup
0≤t≤T

|un(t) − u(t)|20 + E

∫ T

0

|un(t) − u(t)|21 dt ≤ C 2−2n,

with a constant C independent of n. Assume now also (A5), recall Example 4.3
and define An,τ and Bn,τ by (4.21). Notice that we can apply Theorem 4.4. Hence
if un,τ

0 = Πnu(0) we get the estimate

E max
0≤i≤m

|un,τ
i − u(iτ)|20 + τE

∑

0≤i≤m

|un,τ
i − u(iτ)|21 ≤ C

(

τ + 2−2n
)

. (6.3)

Finally recall Example 5.3 and define An,τ and Bn,τ as in Example 5.3. Then we
can apply Theorem 3.1, and if un

τ,0 := Πnu(0) and T22n/m ≤ γ for some constant
γ < cλ, then we get estimate (6.3) for the explicit space-time approximations un

τ,i,
in place of un,τ

i , with some constant C.

Let us now recall Example 2.7 and approximate (6.1)–(6.2) by finite difference
schemes. Consider first the following system of SDEs, corresponding to the space
discretization with finite differences for fixed h ∈ (0, 1):

dv(t) =
(

Lh(t)v(t) + Fh(t,∇hv(t), v(t))
)

dt

+
∑

k

(

Mk,h(t)v(t) + gk,h(t)
)

dW k(t), z ∈ G = hZd, (6.4)

v(0) = (u0(z))z∈G, (6.5)

where gk,h(t) = (gk(t, z))z∈G, Fh(t, p, r) = (F (t, z, p, r)z∈G) and

Lh(t)ϕ :=
∑

|α|≤1,|β|≤1

δα
−(aαβ(t, ·)δβ

+ϕ), ∇hϕ := (δ1ϕ, δ2ϕ, . . . , δdϕ), (6.6)

Mk,h(t)ϕ :=
∑

|α|≤1

bαk (t)δαϕ, (6.7)

for functions ϕ defined on G. It is not difficult to see that taking the triple Vn :=
W 1

h,2, Hn := W 0
h,2, V

∗
n = (W 1

h,2)
∗, problem (6.4)-(6.5) can be cast into equation

(3.1), and we can easily check that Assumption 3.1 and equation (3.2) hold. Thus
(6.4)-(6.5) has a unique continuous W 0

h,2-valued solution v = vh such that for every
h ∈ (0, 1),

E sup
t∈[0,T ]

|vh(t)|2h,0 + E

∫ T

0

|vh(t)|2h,1 dt ≤M <∞.

Assume now that d = 1. Consider the normal triple V →֒ H ≡ H∗ →֒ V ∗ with
V := W 1

2 (R), H := W 0
2 (R) and V ∗ ≡W−1

2 (R). Notice that Using (2.19) we can see
that there is a constant C such that almost surely for all t ∈ [0, T ]

|Dα(aαβ(t)Dβϕ) − δα
−(aαβ(t)δβ

+ϕ)|h,0 ≤ Ch|ϕ|W 3
2
(R),

|bαk (t)Dαϕ− bαk (t)δαϕ|h,0 ≤ Ch|ϕ|W 2
2
(R),

|Fh(t, Dϕ, ϕ) − Fh(t, δϕ, ϕ)|h,0 ≤ C|h|W 2
2
(R)
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for all ϕ ∈W 3
2 (R) and h ∈ (0, 1). Hence the consistency condition (Cn) holds with

V = W 3
2 (R) and εn = h. Set H = W 2

2 (R). Assume (A1)-(A4) with l = 2. Then the
assumptions of Theorem 3.1 are satisfied. Thus there is a constant C such that

E sup
t∈[0,T ]

|u(t) − vh(t)|2h,0 + E

∫ T

0

|u(t) − vh(t)|2h,1 dt ≤ Ch2

for all h ∈ (0, 1). Now we approximate (6.5) by the following Euler approximation
schemes:

wi+1 = wi +
(

Lh(ti+1)wi+1 + Fh(ti+1,∇hwi+1, wi+1)
)

τ

+
∑

k

(

Mk,h(ti)wi + gk,h(ti)
)

(W k(ti+1) −W k(ti)), w0 = u0, (6.8)

ui+1 = ui +
(

Lh(ti)ui + Fh(ti+1,∇hui+1, ui)
)

τ

+
∑

k

(

Mk,h(ti)ui + gk,h(ti)
)

(W k(ti+1) −W k(ti)), v0 = u0.

for i = 0, 1, 2, . . . , m − 1, τ = T/m, ti = iτ . Then by Proposition 4.3 we get
the existence of a unique W 1

h,2-valued solution wi of (6.8), such that wi is Fti-

measurable for i = 1, 2, . . . , m, if τ is sufficiently small. By Theorem 4.4 for eh,τ
i =

(u(ti, z) − wi(z))z∈G, we get

E max
0≤i≤m

|eh,τ
i |2W 0

h,2
+ τ

∑

1≤i≤m

E|eh,τ
i |2W 1

h,2
≤ C(τ + h2)

with a constant C independent of τ and h. Recall that ϑ(n) = κ2/h2
n for any

sequence hn ∈ (0, 1) by (2.16). Set eh
i,τ = (u(ti, z) − ui(z))z∈G. Then applying

Theorem 5.2 we get

E max
0≤i≤m

|eh
τ,i|2W 0

h,2
+ τ

∑

0≤i<m

E|eh
τ,i|2W 1

h,2
≤ Ch2,

with a constant C independent of τ and h, provided (5.3) holds with κ2/h2 in place
of ϑ(n). To obtain the corresponding results when d > 1 we need more regularity in
the space variable from the solution u of (6.1)-(6.2). Assuming more regularity on
the data, it is possible to get the required regularity of u. We do not want to prove
in this paper further results on regularity of the solutions to (6.1). Instead of that
we consider the case of linear equations, i.e., when F does not depend on p and r,
since in this case the necessary results on regularity of the solutions are well known
in the literature. (See e.g. [9] and [16].)

6.2. Linear stochastic PDEs. We consider again equation (6.1)-(6.2) and assume
that F = F (t, x, p, r) does not depend on p and r. We fix and integer l ≥ 0. Instead
of (A4) we assume the following.
Assumption (A*4) F (t, x, p, r) = f(t, x) and gk(t, x) are P ⊗ B(Rd) -measurable
functions of (t, ω, x), and their derivatives in x up to order l are P⊗B(R)-measurable
functions such that

|f(t, .)|2l +
∑

k

|gk(t, .)|2l ≤ η,

where η is a random variable such that Eη ≤M .
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Instead of (A5) we make the following assumption.
Assumption (A*5) Almost surely

(i)
∑

k |Dγ(bαk (t) − bαk (s))| ≤ K|t− s| 12 , ∑

k |gk(s) − gk(t)|2l ≤ η |t− s|.
(ii) |Dγ(aα,β(t) − aα,β(s))| ≤ K|t− s| 12 , |f(t) − f(s)|2l ≤ η |t− s|

for all |γ| ≤ l, s, t ∈ [0, T ], x ∈ Rd and multi-indices |α| ≤ 1 and |β| ≤ 1, where K
is a constant and η is a random variable such that Eη ≤M .

Consider the space-time discretizations with finite differences. The implicit and
the explicit approximations, vh,τ and vh

τ are given by the systems of equations defined
for i = 0, · · · , m− 1 by

vh,τ(ti+1) = vh,τ(ti) + τ
(

Lh(ti+1)v
h,τ(ti+1) + f(ti+1)

)

+
∑

k

(

Mk,hv
h,τ(ti) + g(ti)

)(

W k(ti+1) −W k(ti)
)

, (6.9)

vh,τ(0, z) = u(0, z), z ∈ G, (6.10)

and

vh
τ (ti+1) = vh

τ (ti) + τ(Lh(ti)v
h
τ (ti) + f(ti))

+
∑

k

(

Mk,hv
h
τ (ti) + g(ti)

)(

W k(ti+1) −W k(ti)
)

, (6.11)

vh
τ (0, z) = u(0, z), z ∈ G, (6.12)

respectively, where ti = iτ = iT/m, vh,τ(ti) and vh
τ (ti) are functions on G, Lh(t) and

Mk,h(t) are defined by (6.6) and (6.7).
Take Hn := W 0

h,2 and the normal triple Vn →֒ Hn ≡ H∗
n →֒ V ∗

n with Vn := W 1
h,2.

Then it is easy to see that

(Lh(ti)ϕ, ψ)n ≤ C|ϕ|Vn
||ψ|Vn

, (Mk,h(ti)ϕ, ψ)n ≤ C|ϕ|Vn
||ψ|Hn

(6.13)

for all ϕ, ψ ∈ Vn, where (·, ·)n denotes the inner product in Hn, and C is a constant
depending only on d and the constant K from Assumption (A3). Thus we can
define Lh(ti) and Mh,k(ti) as bounded linear operators from Vn into V ∗

n and Hn

respectively. Due to (2.17) and (2.18), the restriction of u0, f(ti) and gk(ti) onto G

are Hn-valued random variables such that

E|f(ti)|2Hn
≤ p2E|f(ti)|2l , E|gk(ti)|2Hn

≤ p2E|g(ti)|2l ,
E|u0|2Hn

≤ p2E|u0|2l ,
where p is the constant from (2.17). Moreover,

2(Lh(ti)ϕ, ϕ)n +
∑

k

|Mh,kϕ|2Hn
≤ −λ

2
|ϕ|2Vn

+ C|ϕ|2Hn
(6.14)

for all ϕ ∈ Vn, where C is a constant depending only on d and on the constant K
from Assumption (A2). Thus using the notation un,τ

i = vh,τ(ti), u
n
τ,i = vh,τ(ti) and

defining

An,τ
i (ϕ) = Lh(ti)ϕ+ f(ti), Bn,τ

k,i (ϕ) = Mk,h(ti)ϕ+ gk(ti)

for ϕ ∈ W 1
h,2, we can cast (6.9)–(6.10) and (6.11)–(6.12) into (4.1) and into (5.2),

respectively, and we can see that Assumption 4.1 and condition (4.6) hold. Conse-
quently, by virtue of Proposition 4.3, for sufficiently small τ (6.9)–(6.10) has a unique
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solution {vh,τ(ti)}m
i=0, such that vh,τ(ti) is a W 1

h,2-valued Fti-measurable random vari-

able and E|vh,τ
i |2h,2 < ∞. Furthermore, by virtue of Proposition 5.1, (6.11)–(6.12)

has a unique solution {vh
τ (ti)}m

i=0, such that vh
τ (ti) is a W 1

h,2-valued Fti-measurable

random variable and E|vh
τ (ti)|2h,2 <∞.

Let r ≥ 0 be an integer, and assume that

l > r + 2 +
d

2
. (6.15)

Then Theorem 4.4 gives the following result.

Theorem 6.1. Let Assumptions (A1), (A2), (A3), (A*4) and (A*5) hold with
l satisfying (6.15). Then for sufficiently small τ

E max
1≤i≤m

|vh,τ(ti) − u(ti)|2h,r + E
∑

1≤i≤m

τ |vh,τ(ti) − u(ti)|2h,r+1 ≤ C(h2 + τ)

for all h ∈ (0, 1), where C = C(r, l, p, λ, T,K,M, d, d1) is a constant.

Proof. Take Hn := W r
h,2, H := W l−2

2 (Rd), H := W l
2(R

d) and the normal triples

Vn →֒ Hn ≡ H∗
n →֒ V ∗

n , V →֒ H ≡ H∗ →֒ V ∗, V →֒ H ≡ H∗ →֒ V∗

where Vn := W r+1
h,2 , V ∗

n ≡ W r−1
h,2 , V := W l−1

2 (Rd), V ∗ ≡ W l−3
2 (Rd), V := W l+1

2 (Rd)

and V∗ ≡ W l−1
2 (Rd) = V . Then due to (6.15) there is a constant p such that for

Πn := Rh,
|Πnϕ|Vn

≤ p|ϕ|V ,
for all ϕ ∈ V , by virtue of (2.20). It is easy to check that (6.13)–(6.14) still hold, and
hence (6.9)–(6.10), written as equation (4.1), satisfies Assumption 4.1 and condition
(4.6) in the new triple as well. Using (2.20) it is easy to show that due to Assumption
(A3)

|L(ti)ϕ− Lh(ti)ϕ|V ∗

n
≤ |L(ti)ϕ− Lh(ti)ϕ|Hn

≤ Ch|ϕ|W l+1

2
(Rd),

∑

k

|Mk(ti)ϕ−Mk,h(ti)ϕ|Hn
≤ Ch|ϕ|W l

2
(Rd)

for all ϕ ∈W l+1
2 (Rd), where C is a constant depending on d, l, r and on the constant

K from Assumption (A3). Hence we can see that (Cnτ) holds with εn = h. Due
to Assumption (A*5) we have

|L(t)ϕ− L(s)ϕ|2V ≤ C|t− s|, |f(t) − f(s)|2V ≤ η|t− s|,
∑

k

|Mk(t)ϕ−Mk(s)ϕ|2V ≤ C|t− s|,
∑

k

|gk(t) − gk(s)|2V ≤ η|t− s|,

where η is the random variable from Assumption (A*5), and C is a constant de-
pending on d, d1, l and on the constant K from Assumption (A*5). It is an easy
exercise to show that due to Assumptions (A3) and (A*4) condition (R3) from
Assumption 2.3 holds. From [9] it is known that under the Assumptions (A1)–(A3)
and (A*4) the problem (6.4)–(6.5) has a unique solution u on [0, T ], and that u is
a continuous W l

2(R
d)-valued (Ft)-adapted stochastic process such that

E sup
t∈[0,T ]

|u(t)|2l + E

∫ T

0

|u(t)|2l+1 dt ≤
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CE|u0|2l + CE

∫ T

0

(

|f(t)|2l−1 +
∑

k

|gk(t)|2l
)

dt,

where C is a constant depending on d, d1 and the constants λ and K from Assump-
tions (A1), (A3) and (A*4). Hence the regularity conditions (R1) and (R2) in
Assumption 2.3 clearly hold. Now we can conclude the proof by applying Theorem
4.4. �

Let us now investigate the rate of convergence of the explicit space-time ap-
proximations. Take the normal triple Vn →֒ Hn ≡ H∗

n →֒ V ∗
n with Vn := W r+1

h,2 ,
Hn := W r

h,2, and notice that due to Assumption (A3)

(L(ti)ϕ, ψ)n ≤ C1|ϕ|Vn
|ψ|Vn

, (Mk,h(ti)ϕ, ψ)n ≤ C2k|ϕ|Vn
|ψ|Hn

(6.16)

with some constants C1 and C2k depending only on d, r and the constant K from
Assumption (A3). Set L1 = C2

1 and L2 =
∑

k C
2
2k. Then Theorem 5.2 yields the

following theorem, which improves a result from [18].

Theorem 6.2. Let Assumptions (A1), (A2), (A3), (A*4) and (A*5) hold with
l satisfying (6.15). Let h and τ satisfy

L1κ
2 τ

h2
+ 2κ(L1L2)

1/2

√
τ

h
≤ q (6.17)

for a constant q < λ. Then

E max
1≤i≤m

|vh
τ (ti) − u(ti)|2h,r + E

∑

0≤i<m

τ |vh
τ (ti) − u(ti)|2h,r+1 ≤ C(h2 + τ)

for all h ∈ (0, 1), where C = C(r, l, p, λ, q, T,K,M, d, d1) is a constant.

Proof. As in the proof of Theorem 6.1 we take Hn := W r
h,2, H := W l−2

2 (Rd), H :=

W l
2(R

d) and the normal triples

Vn →֒ Hn ≡ H∗
n →֒ V ∗

n , V →֒ H ≡ H∗ →֒ V ∗, V →֒ H ≡ H∗ →֒ V∗

with Vn := W r+1
h,2 , V := W l−1

2 (Rd), V = W l+1
2 (Rd), we cast (6.11)–(6.12) into (5.2),

and see that Assumptions 2.3 and 4.1, conditions (Cnτ) and (4.6) of Theorem 5.2

hold. Furthermore, ϑ(n) = κ2

h2 . We can easily check that by virtue of (6.16) and
(2.16), condition (6.17) yields condition (5.3). Hence applying Theorem 5.2 we finish
the proof. �

Corollary 6.3. Let k ≥ 0 be an integer and let Assumptions (A1), (A2), (A3),
(A*4) and (A*5) hold with l satisfying l > k+2+d. Then the following statements
are valid for all multi-indices |α| ≤ k:

(i) For sufficiently small τ

E max
1≤i≤m

sup
z∈G

|δα(vh,τ(ti, z) − u(ti, z))| ≤ C(h+
√
τ )

holds for all h ∈ (0, 1), where C = C(l, p, λ, T,K,M, d, d1) is a constant.
(ii) Assume also that τ and h satisfy (6.17). Then

E max
1≤i≤m

sup
z∈G

|δα(vh
τ (ti, z) − u(ti, z))| ≤ C(h +

√
τ) ≤ C

(

1 + κ−1
√

λ/L1

)

h

for all h ∈ (0, 1), where C = C(r, l, p, λ, q, T,K,M, d, d1) is a constant.
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Proof. By the discrete version of Sobolev’s theorem on embedding W 2
m(Rd) into

Ck(Rd) one knows that if m ≥ k + d
2
, then

sup
z∈G

|δαϕ(z)| ≤ C|ϕ|W m
h,2

for all h ∈ (0, 1), ϕ ∈ Wm
h,2 and |α| ≤ k, where C = C(d,m, k) is a constant (see

e.g. [18]). Hence the above statements follow immediately from Theorems 6.1 and
6.2. �
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