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Abstract : A set of phytoplankton pigments measurements collected on eight quarterly 

transects from France to New Caledonia is analyzed, in order to identify the main 

assemblages of phytoplankton, and to relate their occurrence with oceanic conditions. 

Pigments concentrations are first divided by the sum monovinyl chlorophyll a plus divinyl 

chlorophyll a to remove the effect of biomass, and, second, normalized, to give an equal 

weight to all pigments. The resulting 17 pigments × 799 observations matrix is then classified 

into ten clusters using neural methodology. Eight out of these ten clusters have a well marked 

regional or seasonal character, thus evidencing adapted responses of the phytoplankton 

communities. The main gradient opposes two clusters with high fucoxanthin and chlorophyll 

c1+2 in the north Atlantic in January, April and July, to three clusters in the South Pacific 

Subtropical Gyre with high divinyl chlorophyll a, zeaxanthin and phycoerythrin. One of the 

clusters in the South Pacific Subtropical Gyre has relatively high zeaxanthin and 

phycoerythrin contents and dominates in November and February (austral summer) while 

another one, with relatively high divinyl chlorophylls a and b dominates in May and August 

(austral winter). The third one in this area is characterized by high carotene concentration and 

its occurrence peaks in February and May. In the equatorial currents system, one cluster, rich 

in chlorophylls b and c1+2, is strictly located in a narrow zone centred at the equator, while 

another one, with relatively high violaxanthin concentration, is restricted to the high nutrient – 

low chlorophyll waters in only the southern part of the South Equatorial Current. One cluster 

with relatively high prasinoxanthin content has a spatial distribution that spans the entire 

South Equatorial Current. Two clusters have a ubiquitous distribution: one in the equatorial 

Pacific, in the Carribbean Sea and in the north Atlantic in summer has pigments 

concentrations that are close to the average of the entire dataset, and the other one in the 

South Pacific Subtropical Gyre, in the Carribbean Sea and in the north Atlantic in autumn 

clearly has an oligotrophic character. Many of the differences between clusters are caused by 
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diagnostic pigments of nano or pico flagellates. While the space and time characteristics of 

the clusters are well marked and might correspond to differences in physical and chemical 

forcing, knowledge of the ecological requirements of these flagellates is generally lacking to 

understand how the variability of the environment triggers these clusters. 
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I.- INTRODUCTION 

 

 Representing marine primary production in models is a major challenge to understand 

the evolution of climate, as it is one of the processes which drive the greenhouse gas carbon 

dioxide from the atmosphere into the deep ocean. Photosynthesis depends for a large part on 

chlorophyll concentration, which is now monitored through the remote sensing of sea color 

(Antoine et al., 1996). However, the phytoplankton is composed of thousands of species, 

many of them having different consequences on the ocean biogeochemistry. They differ 

according to their capacity to assimilate nitrate, leading to new production, rather than 

ammonium leading to regenerated production (Dugdale and Goering, 1967). Where iron is 

available, blooms of diatom often cause intense fluxes of particulate carbon to the abyss 

(Romero et al., 1999) while in iron-limited oligotrophic waters, Prochlorococcus often 

dominates and grows essentially on regenerated nitrogen, so that its role in carbon export to 

depth is very small (Partensky et al., 1999b). The coccolithophorids build calcium carbonate 

pieces and thus carry out a flux of particulate inorganic carbon (Holligan et al., 1993; 

Fernandez et al., 1996), while Trichodesmium is able to assimilate nitrogen in the N2 form to 

fulfil its nitrogen requirements (Capone et al., 1997). The carbon to nitrogen ratio (as well as 

other ratios) in organic matter exported to depth has been found to vary much more than one 

could expect when the Joint Global Ocean Flux Study (JGOFS) international program was 

initiated in the early nineties. All of this is largely caused by the variability of populations that 

carry out the biogeochemical fluxes. The efficiency of many groups of algae to sink organic 

carbon in the ocean is generally poorly known. In addition, it is likely that phytoplankton 

assemblages have an impact on zooplankton populations, and on the export of organic 

particles to depth (Calbet and Landry, 1999). 
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 Thus, the sole knowledge of chlorophyll a distribution, which is a variable in simple 

biogeochemical models, is insufficient to assess the carbon fluxes in the ocean. Coupled 

physical-biogeochemical models now tend to use more and more complex ecosystems 

(Aumont et al., 2003; Le Quere et al., 2005; Hood et al., 2006; Litchman et al., 2006), in 

order to better represent the diversity of the impact of plankton functional groups on oceanic 

fluxes of matter. However, qualitative field data to validate these models, are very scarce, and 

there is a need to enhance our knowledge on the mechanisms which favour some 

phytoplankton species rather than other ones. The tools to observe phytoplankton populations 

are still very imperfect. Most nano- and picoplanktonic species can hardly be identified 

routinely by microscopy. However, some of the photosynthetic pigments are characteristic of 

phytoplankton groups (while often not strictly, and in variable amounts), so that quantitative 

pigments inventories reflect the natural assemblages of algal groups.  

 We describe here the variability of pigment assemblages using data collected along a 

shipping track from Europe to the south-western Pacific on 8 quarterly transects from 2000 to 

2002 and we attempt to relate this variability to the large scale variations of environmental 

parameters. In a previous work (Dandonneau et al., 2006), these data have been used to study 

the variability of the phytoplankton biomass and of some photosynthetic pigments inside a 

priori defined ecological provinces (Longhurst, 1998), in relation with environmental 

parameters. In the present work, the pigments from this field experiment are considered 

altogether, regardless of their time or space provenance. The objective is to identify 

assemblages that best represent the variability of the whole pigments dataset. Such 

assemblages might reflect phytoplankton assemblages, and to some extent, pelagic 

ecosystems. Each of them can be supposed to exert a specific effect on marine 

biogeochemistry, whatever its biomass and the region where it grows are. Then, we examine 

how they respond to environmental conditions. These data come from a wide variety of 
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regions, thus potentially giving a global significance to this study. They are first classified 

into homogeneous groups of observations, and then the differences between these groups are 

discussed. Ancillary nutrient and temperature data are used to investigate how environmental 

conditions may impact the phytoplankton composition. 

 The 8 cruises were part of the GeP&CO project (Geochemistry, Phytoplankton and 

Color of the Ocean : http://www.lodyc.jussieu.fr/gepco/gepco.html) coordinated by the 

PROOF (Processus Océaniques et Flux) French national programme. Financial support was 

from the Institut National des Sciences de l’Univers / Centre National de la Recherche 

Scientifique (INSU/CNRS), from the Institut de Recherche pour le Developpement (IRD), 

and from the Centre National d’Etudes Spatiales (CNES). 

 

 

 

II.- MATERIAL AND METHODS 

 

 The GeP&CO field data have been collected on the shipping line from Le Havre 

(France) to Nouméa (New Caledonia) via New York, Panama, Tahiti and Auckland. There 

were 12 cruises, 4 each year in January-February, April-May, July-August and October-

November. Due to changes in the HPLC equipment and standards after the third cruise 

(especially the addition of alloxanthin in the pigments standards and analysis of 

chromatograms), we did not consider the first year and only cruises 5 to 12 are used here. 

Scientific observers onboard ensured the underway sampling for nutrients measurements and 

for the filtrations for pigments determinations at 6:00, 10:00, 14:00, 18:00 and 22:00 (local 

time). Seawater samples were collected at the seawater intake of the engine’s cooling system, 

at a depth of approximately 5 m. 
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II.1.- Pigments measurements 

 

 All pigments measurements were made in the laboratory after each cruise. Meanwhile, 

filters were kept frozen onboard at -80°C during 45 to 85 days. Dry ice was used during 

transport from the ship to the laboratories. In all cases, filtration pressure did not exceed 0.25 

atmospheres. Spectrofluorometry was used to measure the concentration of chlorophyll 

pigments and to estimate phycoerythrin at LOCEAN in Paris. HPLC instrumentation at the 

Station Marine d’Arcachon was used for the analysis of chlorophyll and carotenoid pigments. 

There was an overall agreement between spectrofluorimetric and HPLC determinations of 

chlorophyll pigments. Both methods gave similar monovinyl + divinyl chlorophyll 

concentration, but our HPLC technique failed to properly separate the monovinyl and divinyl 

forms of chlorophyll a and b (Dandonneau et al., 2006). Consequently, for chlorophylls, we 

retained here the results obtained by spectrofluorometry, which efficiently separates these 

forms. Abbreviations of pigment names are given in Table 1. 

 

 

II.1.1.- Spectrofluorimetric determinations of chlorophyllous pigments 

 

 Filtrations (500 mL) were made with 25 mm Whatman GF/F filters. The filters were 

then hand-ground in a glass tube with 6 ml of 90% acetone using a glass stick. Extraction was 

allowed overnight in the same tube at 5°C in the dark. Prior to measurement, extracts were 

centrifuged at 6000 rpm for 10 minutes. The method was calibrated versus standards 

purchased at DHI, Denmark (monovinyl chlorophyll a, monovinyl chlorophyll b, chlorophyll 

c1+2, chlorophyll c3, divinyl-chlorophyll a). Pure divinyl chlorophyll b was provided by 
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Jacques Neveux. Pheophytin a standards were also purchased from DHI, while the other 

pheopigments were obtained after acidification of the acetonic solution of standards. 

 The principle of the spectrofluorometric method is to compute the coefficients (i. e. 

concentrations) that minimize the sum of squares of deviations between the measured 

fluorescence of extracts and a linear combination of the fluorescence of 12 pigments 

standards, namely Chl a, Chl b, Chl c1+2, Chl c3, DV chl a, DV chl b, and all corresponding 

pheopigments (Neveux and Lantoine, 1993). A thirteenth pigment is added, with a flat 

excitation-emission fluorescence spectrum, which accounts for the turbidity of the extract. 

Fluorescence measurements were made at excitation wavelengths from 390 to 480 nm (at 3 

nm intervals), and emission from 620 to 720 nm (at 4 nm intervals), yielding 806 values. The 

numerical solution sometimes gives negative concentrations for some pigments at vanishing 

concentration (especially the pheopigments). In such cases, computation was made again, 

with the excitation-emission fluorescence spectrum of the corresponding standard discarded, 

until all concentrations found were positive. 

 

II.1.2.- HPLC determinations of carotenoid pigments 

 

  The method we used was adapted from Goericke and Repeta (1993). Details can be 

found on http://www.lodyc.jussieu.fr/gepco/gepco.html. Filtration onto 25 mm Whatman 

GF/F filters was stopped after 1 h. Filtered volume was generally around 2 L in offshore 

seawater. Extraction was 1 h long at 4°C in 2 mL of methanol after sonication. Pigment 

elution was achieved with a decreasing proportion of ammonium acetate and an increasing 

proportion of methanol, with a total runtime of 40 minutes. The method was calibrated with 

standards purchased from DHI, Denmark (Chl c3, Chl c1+2, Perid, But-fuco, Fuco, Hex-fuco, 

Pras, Viola, Diadino, Allo, Zea, DV chl b, Chl b,  DV chl a, Chl a, and ββ-car). As said 
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above, our HPLC technique did not separate accurately DV chl a from Chl a. This might be 

caused by our HPLC column which was not exactly the same as that recommended in the 

reference method. 

 

II.1.3.- Spectrofluorometric determinations of phycoerythrin 

 

 Phycoerythrin is present in the open sea primarily in the cyanobacteria, and also in 

cryptophytes which often make blooms in coastal areas. It is fluorescent but does not dissolve 

in acetone nor methanol, and is thus rarely estimated routinely. Its measurement necessitates 

filtration, after which it can be extracted, with variable efficiency, in a glycerol-phosphate 

buffer (Lantoine and Neveux, 1997). To avoid this uncertain extraction step, Wyman (1992) 

proposed an in vivo fluorescence technique, in which the cells were first concentrated on a 

filter, then washed off using a small water volume, and finally concentrated by centrifugation. 

In this technique, fluorescence measurements are made after addition of glycerol, in order to 

block the transfer of excitation energy from phycoerythrin to photosystem II. Indeed, this 

transfer, which is dependent on the physiological state of the cells, has a strong and variable 

quenching effect on the fluorescence yield of phycoerythrin. Due to the constraints of the 

GeP&CO experiment, we could not apply this methodology, and we used a simple procedure, 

in which the fluorescence of phycoerythrin was measured without extraction, as in Wyman 

(1992), but directly on the filter. Seawater (100 mL) was filtered onto 13 mm Millipore 

cellulose acetate HA black filters and stored at -80°C. Back in the laboratory, the filters were 

brought to ambient temperature, immersed in 200 µL of seawater (taken from standards for 

salinity measurements), fixed in a vertical position between two quartz prisms, and exposed at 

π/4 radians to the lamp and photomultiplier of a spectrofluorometer. Attempts to add glycerol 

did not result in an increase of fluorescence, suggesting that the transfer of excitation energy 
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to photosystem II had been disrupted during storage. Fluorescence measurements were made 

at excitation wavelengths from 384 to 576 nm (at 8 nm intervals), and emission from 500 to 

730 nm (at 10 nm intervals), and the computing procedure yielded coefficients that minimized 

the sum of squares of differences between these fluorescence measurements and a linear 

combination of four excitation emission fluorescence patterns. These patterns were (1) the 

instrumental response of a blank filter, (2) the fluorescence of photosystem II, (3) the 

fluorescence of phycourobilin chromophore of phycoerythrin (PUB), and (4) the fluorescence 

of phycoerythrobilin chromophore of phycoerythrin (PEB). The two latter patterns were 

obtained from cultures of two strains of the cyanobacterium Synechococcus sp., one with high 

PUB/PEB ratio and one with a low ratio. One difficulty with this method came from scatter of 

light by the “grey” membrane filter which dominated the fluorescence signal when excitation 

and emission wavelengths were close to each other. Indeed, in such cases, the spectrum of 

light scattered by the filter overlapped the spectrum of the instrument’s emission 

monochromator, resulting in a high blank and noise. Maximum PUB fluorescence occurs with 

excitation at 490 nm and emission at 565 nm (separated by 75 nm), while for PEB, maximum 

fluorescence occurs with excitation at 540 nm and emission at 580 nm (separated by only 40 

nm and yielding large uncertainties). Consequently, only the PUB fluorescence pattern was 

used here to estimate the concentration of phycoerythrin, and at this stage, units are arbitrary. 

This has a limited impact on the conclusions derived from this approach since the PUB to 

PEB ratio is quite stable at 1.9 (Lantoine and Neveux, 1997) in surface mesotrophic and 

oligotrophic waters, which dominate in the GeP&CO dataset. 

 

 

II.2. Ancillary measurements 
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 Temperature and salinity data were acquired with a SEABIRD thermosalinograph 

located at the seawater intake of the engine’s cooling system. At each observation, seawater 

samples were stored in 50 mL glass tubes for nutrient analysis (silicate, nitrate + nitrite, and 

phosphate), and in 1.5 mL cryotubes for flow cytometry counts of picoplankton 

(Prochlorococcus, Synechococcus, picoeucaryotes, and heterotrophic bacteria), poisoned 

respectively with mercury chloride and glutaraldehyde. Details on these methodologies are 

given in Dandonneau et al. (2006). 

 

II.3.- Clustering of the observations 

  

 In the domain investigated during GeP&CO, the phytoplankton pigment biomass 

varies by nearly two orders of magnitude between the chlorophyll rich North Atlantic in 

spring, and oligotrophic waters of the subtropical south Pacific. Here, we are interested in the 

relative variations of algal groups in the phytoplankton populations, rather than in the 

distribution of total phytoplankton biomass. Hence, emphasis is put equally on all pigments, 

whatever they are usually abundant or scarce, and the unwanted effect of biomass must be 

removed. For this goal, the so-called pigments ratios obtained by dividing each pigment 

concentration by the Chl a concentration (Mackey et al., 1996) may indeed remove the 

biomass effect. However, such pigments ratios have infinite values for genus Prochlorococcus 

which has no Chl a, but instead DV chl a. This may strongly impact this study since the 

GeP&CO observations include many samples taken in tropical oligotrophic waters where 

Prochlorococcus dominates. We thus considered that the sum chlorophyll a + divinyl 

chlorophyll a (TChla) was an indicator of the biomass of the photosynthetic population, and 

for each observation, we divided the pigment concentrations by this sum (note that after this 

transformation, “biomass-free” TChla is is equal to 1 for all observations, and “biomass-free 
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DV chl a” can be deduced from the knowledge of “biomass-free Chl a”). The resulting 

dataset would still be confounded by the fact that some pigments, that may be of interest 

because they are indicators of phytoplankton groups, occur only at low concentrations (for 

instance : Pras for Prasinophytes, Allo for Cryptophytes) while other ones are abundant 

everywhere (Chl a, Chl c1+2, Hex-fuco) and would mask the variance of less abundant 

accessory pigments. In order to allocate an equal weight to all pigments, we thus further 

normalized the concentration of each pigment so that its average concentration for all 

observations be null, and standard deviation be 1, as is often done in principal component 

analysis softwares.  

 The resulting matrix consisted of approximately 1120 observations × 23 dimensionless 

twice-normalized pigments concentrations (further denoted by an asterix), representing 8 

cruises, i. e. four seasons during two years (October 2000 to August 2002). The pheopigments 

data were not included since these pigments are not found in healthy phytoplankton. Further, 

we randomly subsampled the observations, to reserve about one third of the observations to 

validate the classification. The resulting 799 observations × 17 pigments* matrix was first 

summarized into a discrete set of formal neurons (9 x 9) and their associated referent vectors, 

using the Self Organizing Map model developed by Kohonen (1984) for visualising and 

clustering high dimensional data sets. Each observation was captured by the closest neuron. 

Finally, a hierarchical ascendant clustering was applied to the neurons to obtain a reasonable 

number of clusters, each one corresponding to a group of closely resembling observations, as 

in Niang et al. (2003). For this clustering, the distances between observations were computed 

according to probabilities while the most widespread techniques are based on inertia. This 

however had very little impact on the final results. The desirable number of clusters must be 

initially specified. Intuitively, this number must be larger than 3, but should not exceed 15. 

We made several attempts by applying a hierarchical clustering to the set of reference vectors. 
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All gave clusters with coherent geographical distribution, but small numbers resulted in 

clusters that were too ubiquitous and could not be firmly associated with specific regimes. 

Finally, with the number of clusters set to 10, the unsupervised classification returned well 

organized clusters in terms of time and space distribution. 

 

III.- RESULTS 

 Five out of the ten clusters that resulted from the probabilistic self organizing map 

(clusters #2, #3, #4, #8 and #9) occurred strictly in tropical zones (Figure 1). Two were found 

mostly in the temperate north Atlantic (clusters #6 and #10). Cluster #5 was dominantly a 

tropical one, but was also found frequently at about 30°S near New Zealand, as well as cluster 

#7, which also occurred in the north Atlantic in boreal autumn. The ubiquitous cluster #1 

occurred both in the subtropical and equatorial Pacific, in the Carribbean Sea and in the 

temperate north Atlantic. The balance between Chl a and DV chl a was responsible for most 

of the differences between clusters. It introduced a marked difference between the Chl a-rich 

north Atlantic (clusters #6, #10, and, to a lesser extent, #1) and DV chl a-dominated waters in 

clusters #5, #7, #8 and #9 (Table 2). This transition from eutrophic or mesotrophic waters to 

oligotrophic ones appears clearly on a dendrogram (Figure 2), in which the close vicinity of 

pigments assemblages in the nutrient-rich north Atlantic and equatorial Pacific is obvious. 

Generally, the clusters show a strong affinity for a given space and time domain in which the 

majority of its observations are found, and some sparse points in some other domains. Given 

these affinities, the clusters are further designated and abbreviated as follows : 

 - Cluster #1, Undefined Mesotrophic (#UM) 

 - Cluster #2, South Pacific Subtropical Gyre in austral Summer (#SGS) 

 - Cluster #3, Equatorial Upwelling (#EU) 

 - Cluster #4, South Equatorial Current (#SEC) 
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 - Cluster #5, South Pacific Subtropical Gyre (#SG) 

 - Cluster #6, North Atlantic – Winter to Summer (#NAWSu) 

 - Cluster #7, Undefined Oligotrophic (#UO) 

 - Cluster #8, Southern Branch of South Equatorial Current (#SBSEC) 

 - Cluster #9, South Pacific Subtropical Gyre in austral Winter (#SGW) 

 - Cluster #10, North Atlantic – Winter to Spring (#NAWSp) 

An examination of the variability of the relative abundance of each pigment in all clusters 

reveals which pigments respond to habitat variability. Chl b* was the most variable among 

the accessory pigments (Table 2), being at more than 50% higher than its average relative 

concentration in the equatorial Pacific (#EU, #SEC and #SBSEC), and at less than 50% lower 

south of this area, in the south Pacific subtropical gyre (#SGS, #SG, #UO and #SGW). DV 

chl b* was abundant in #SG and #SGW, and at low concentrations in the equatorial Pacific 

(#EU and #SBSEC) and in the north Atlantic (#NAWSu and #NAWSp). Chl c1+2* was higher 

than its relative average in the equatorial Pacific and in the north Atlantic (#EU, #NAWSu 

and #NAWSp), and lower in #SGS, #SG, #UO and #SGW. Chl c3* and But-fuco* 

characterized only #NAWSu where they occurred at relatively high concentrations. Fuco 

marked the temperate north Atlantic (#NAWSu and #NAWSp) and was very low in #SGW. 

Hex-fuco* did not exhibit large differences between clusters, except in the Pacific, south of 

the equator (#SBSEC). Pras* occurred noticeably only in #SEC, Viola* in #SBSEC, and 

Allo* in #NAWSp. Zea* was abundant in #SGS, #SG and #SGW, and was low in the north 

Atlantic (#NAWSu and #NAWSp). ββ-car* was also at relatively low concentrations in the 

same north Atlantic clusters, and at high concentrations in #SG and #UO. High relative 

concentrations of Phycoer* occurred in #SGS and #SGW, and low values were observed in 

clusters #NAWSu and #NAWSp of the north Atlantic. Average relative normalized 
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concentrations of the two remaining pigments (Perid* and Diadino*) were in no case lower 

than -0.5 or higher than 0.5, giving these pigments a low weight in this classification. 

 

 The ten clusters are generally located in well defined areas and, often, seasons (Figure 

1). The space and time location, main pigment characteristics, and inferred populations trends 

of all ten clusters are listed in Table 3. 

 #UM is the most ubiquitous of all ten clusters, and contained 134 observations from 

high as well as from low latitudes in both hemispheres, collected mostly in July-August and 

October-November. They were found sparse all along the GeP&CO track, in the north 

Atlantic, Carribbean Sea and Tasman Sea in January-February, Carribbean Sea and equatorial 

Pacific in April-May, and almost everywhere in July-August and October-November. 

Normalized pigments concentrations in this cluster did not depart markedly from the overall 

average (Table 2). Its most noticeable pigments feature was the dominance of Chl a* over DV 

chl a*. The distribution of all ancillary properties is close to that in the entire GeP&CO 

dataset (Table 4). 

 #SGS is remarkably focused on the South Pacific Subtropical Gyre in austral summer 

(cruises in January-February and October-November). Only 5 out of its 61 samples were 

taken in austral winter (Figure 1). Specificity of this cluster is mostly due to highest values of 

Phycoer* and Zea*, and low values of Chl b* and Chl c21+2* (Tables 1 and 2). Its observations 

had low TChla, low nutrients, and low picoplankton counts (Table 4). 

 The 60 observations in #EU were located near the equator at all seasons, except 7 from 

the north Atlantic in northern autumn and 3 near New Zealand in July-August and October-

November (Figure 1). They were characterized by relatively high Chl b* and Chl c1+2*, and 

low DV chl b* and Phycoer* (Tables 2 and 3). They corresponded to TChla ranging between 
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0.1 and 0.3 µg L-1, relatively high picoeucaryotes at the expense of Prochlorococcus, highest 

nutrient concentrations and sea surface temperature generally greater than 23°C (Table 4). 

 #SEC (99 observations) has a space and time distribution very similar to that of #EU, 

but is not strictly restricted to the equatorial band (Figure 1). Some samples in this cluster 

were from the Carribbean Sea and the vicinity of New Zealand, and from the north Atlantic in 

October-November. In October-November and January February, its observations near the 

equator extended south-westwards to 14°S near Tahiti. Normalized pigment concentrations in 

this cluster did not depart widely from the global average, except Chl b* and Pras*, the 

average of which exceeded 0.5 (Table 2). Nutrient concentrations were moderately high and 

sea surface temperature was generally greater than 24°C (Table 4). 

 #SG (82 observations) was mostly present in the south-western tropical Pacific in 

January-February and October-November. Some of its observations were also collected in the 

Carribbean Sea and in the north Atlantic in October-November (Figure 1). It is characterized 

by high DV chl a* and DV chl b*. It has low Chl c1+2*, high Zea*, and highest record of ββ-

car*. Similar to #SGS, ratios of picoeucaryotes, and especially Prochloroccus (highest record) 

to TChla were high, while Synechococcus/Tchla was low. Nutrient concentrations were low, 

and sea surface temperature was high (Table 4). 

 Most of the 95 observations of #NAWSu were located in the north Atlantic, a few 

ones being right at the equator at all seasons or near New Zealand in winter (July-August and 

October-November) (Figure 1). Chl a*, Chl c1+2* and Chl c3* were relatively high in this 

cluster, as well as Fuco* and But-fuco*. DV chl a* and DV chl b* were low, as well as 

Phycoer* and the photoprotectant pigments Zea* and ββ-car* (table 2). All picoplankton 

groups were low relatively to TChla ; nutrients were high, and sea surface temperature was 

low (Table 4). 
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 #UO (57 observations) was found in the Carribbean Sea in January-February, in the 

southwestern tropical Pacific in April-May and July-August, and in the north Atlantic in 

October-November (Figure 1). Its pigments composition resembled that of #SG, with 

however less DV chl b* and less Zea* (Table 2). The three categories of picoplankton behave 

differently in this cluster: abundances of picoeucaryotes, Synechococcus  and 

Prochlorococcus were low, medium and high, respectively. Nutrients were low and sea 

surface temperature was high (Table 4). 

 #SBSEC has 82 observations that were astonishingly focused on the South Equatorial 

Current between ~3°S and ~12°S (Figure 1). These observations had low Chl a* and high DV 

chl a*, and reversely, high Chl b* and low DV chl b*. They also had high Hex-fuco* and 

high Viola* (Table 2). If divided by TChla, the abundance of all three picoplankton categories 

was higher in this cluster than in the whole data set average. Nutrients were high, and sea 

surface temperature was the highest in the GeP&CO record (Table 4). 

 #SGW (64 observations) occupied the South Pacific Subtropical Gyre in austral winter 

(April-May and July-August). Thus, it complements #SGS whose observations were in the 

same area, but in the summer months (Figure 1). It is characterized by low Chl a*, Chl b* and 

Chl c1+2, and high DV chl a* and DV chl b*, low Fuco* and high Zea* and Phycoer* 

relatively to TChla (Table 2). It had few picoeucaryotes and Synechococcus but 

Prochlorococcus numbers were higher than the average. Nutrients were at low concentrations 

in this cluster, especially nitrate + nitrite, and sea surface temperature was high (Table 4). 

 The north Atlantic in northern winter and spring contains most of the 76 observations 

captured by #NAWSp, except one observation right at the equator and three in the Gulf of 

Panama in April-May, one right at the equator, one near Tahiti and eight in the north Atlantic 

in July-August, and three in the Channel and Gulf of Biscay in October-November (Figure 1). 

Observations in this cluster had highest normalized concentration of Fuco* and Allo*, high 
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Chl c1+2*, and low DV chl a*, DV Chl b*, Zea*, ββ-car*, and Phycoer* (Table 2). They also 

had highest TChla concentrations, highest picoeucaryotes and Synechococcus numbers and 

lowest Prochlorococcus numbers (Table 4). Nutrient concentrations were higher than the 

GeP&CO average (but lesser than in the equatorial Pacific #EU) and sea surface temperature 

was lowest. 

 

IV.- DISCUSSION 

 

 The pigments observations made during the GeP&CO experiment differed mostly by 

their DV chl a to TChla ratio. Clusters in which this ratio was high had phytoplankton 

populations dominated by Prochlorococcus spp., the only genus that contains DV chl a, and 

thus corresponded to oligotrophic waters (Partensky et al., 1999a; Mackey et al., 2002). 

Inversely, those with a low ratio corresponded to temperate or colder waters, generally rich in 

nutrients and in Chl a, where Prochlorococcus does not dominate or even is absent. #UM, 

#NAWSu and #NAWSp include many observations from the north Atlantic, and also from the 

south Pacific near New Zealand, and from the equatorial upwelling in the Pacific Ocean. 

Oppositely, #SG, #UO, #SBSEC and #SGW correspond to the South Pacific Subtropical 

Gyre, and, for a few observations, to the temperate north Atlantic in autumn (Figure 1). Along 

with this gradient from oligotrophic to productive waters, the relative zeaxanthin 

concentration tended to decrease while that of Chl c1+2, Chl c3, and Fuco, tended to increase. 

Thus, the contribution of DV chl a and zeaxanthin bearing cyanobacteria to total 

phytoplankton generally increases when the oligotrophic character of water masses is 

asserted, as previously described by Gibb et al. (2000, 2001) in the Atlantic Ocean. 

 

IV.1.- The north Atlantic 
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 Examining the ten clusters beyond this first order difference between mesotrophic and 

oligotrophic waters leads to some interesting new features. #NAWSp which mostly contains 

observations from the north Atlantic in winter and spring (Figure 1) is the cluster in which 

Fuco had the highest relative concentrations (Table 2). Observations in #NAWSu also had 

high Fuco* (Table 3), in the same area and at the same seasons as #NAWSp, and, 

additionally, in summer (Figure 1). In these two clusters, relatively high Fuco marks the 

diatom bloom that occurs each year in the north Atlantic (Barlow et al., 1973). Both had high 

TChla and nutrient levels, and low sea surface temperature (Table 4). They differed mostly by 

relatively more Viola* and Allo*, and less Chl c1+2* and Chl c3*, Hex-fuco* and But-fuco*, 

Perid* and Diadino* in #NAWSp than in #NAWSu (Figure 3). Phycoer in #NAWSu had a 

higher phycourobilin to phycoerythrobilin ratio than in #NAWSp (data not shown). The lower 

salinity in cluster #NAWSu than in #NAWSp, and persistence of #NAWSu trough summer 

suggests that it marks the polar north Atlantic waters, in which the bloom appears later than in 

the Gulf Stream drift waters (Longhurst, 1998; Dandonneau et al., 2006). These drift waters 

are better represented by #NAWSp. 

 A tentative diagnostic of the phytoplankton groups in the north Atlantic GeP&CO 

observations using CHEMTAX (Mackey et al., 1996), initiated with the pigments ratios 

characteristic of the Antarctic and modified to account for DV chl a, indicates that 

chlorophytes (47%) dominated the phytoplankton biomass, followed by haptophytes (27%), 

Synechococcus (7%), prasinophytes (7%), diatoms (4%), dinoflagellates (4%), and 

Prochlorococcus (2%). 

 The large time and space overlap of the two clusters may be an effect of the many 

eddies that characterize this region and interpenetrate Gulf Stream drift waters and colder 

waters from the north. Pigments differences indicate that the polar north Atlantic waters 
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(#NAWSu) have more dinoflagellates (Perid* and Chl c1+2
*) haptophytes and chrysophytes 

(Chl c3*, Hex-fuco* and But-fuco*), and less cryptophytes (Allo*) than the Gulf Stream 

waters according to commonly accepted pigment criteria (Jeffrey and Vesk, 1997; Gibb et al., 

2001). Relatively high Diadino* in #NAWSu is consistent with the role played by this 

pigment in the xantophyll-cycle in dinoflagellates and haptophytes. Interestingly, #NAWSu 

includes a few observations right at the equator in the Pacific (figure 1), i. e. in a region where 

the occurrence of diatoms has often been reported (Blain et al., 1999; Kobayashi and 

Takahashi, 2002; Latasa et al., 1997), but where massive diatoms blooms are scarce (Chavez, 

1989). #UM, #SEC and #UO also included some observations in the north Atlantic in summer 

and autumn (Figure 1). They had less Fuco* than #NAWSu and #NAWSp observations, 

corresponding to the oligotrophic conditions that prevail after the spring bloom of diatoms. 

 

IV. 2.- The South Pacific Subtropical Gyre 

 The South Pacific Subtropical Gyre between Tahiti and New Zealand is best 

represented in three clusters : #SGS, #SG and #SGW (Figure 1). According to CHEMTAX 

attempts, initiated with the pigments ratios characteristic of the equatorial Pacific (Mackey et 

al., 1996), this area was always dominated by Prochlorococcus (39%), Synechococcus (27%), 

haptophytes (19%) and cryptophytes (15%). Other groups had a very low contribution : 

diatoms (2%), dinoflagellates (1%) and prasinophytes (1%). Interestingly, #SGS and #SGW 

are found in exactly the same area, but the first one was present in October - November and in 

January - February (i. e. in the warm austral season), while the second was quasi exclusively 

found in April - May and in July - August (i. e. the austral winter). These two clusters have in 

common low Chl b* and Chl c1+2*, and relatively high levels of Phycoer* and Zea* (Table 2). 

Additionally, #SGW is marked by high DV chl a* and DV chl b* and by low Fuco*. #SG 

differs from cluster #SGW by less Phycoer* and more ββ-car* (Table1). These characteristics 
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confirm that the south Pacific subtropical gyre is dominated by cyanobacteria (Table 4), and 

has few diatoms, chlorophytes, pelagophytes and haptophytes (Jeffrey and Vesk, 1997), as 

expected in this oligotrophic area (Partensky et al., 1999a). Seasonal alternance of #SGS and 

#SGW might be a response to the variation of solar radiation. In this area, TChla has a weak 

but clear seasonal cycle that may indeed be a photoadaptative response of the phytoplankton 

rather than enhanced growth (Dandonneau et al., 2006). Detailed comparison of these two 

clusters (Figure 4) shows that #SGS (austral summer) had more Zea* and Phycoer*, and less 

DV chl a* and DV chl b* than #SGW (austral winter). High Zea* in summer is consistent 

with the well-known photoprotectant function of this pigment. In addition, the lower 

normalized DV chl a* and DV chl b* levels in #SGS (Figure 4) is a likely response to higher 

irradiance. Summer #SGS is also a habitat with the highest Phycoer* values (Table 2). This 

cannot be explained by photoadaptation since this process tends to decrease the amount of 

Phycoer per cell at high irradiance (Kana and Glibert, 1987): consequently, an increase in 

Synechococcus abundance would be a likely explanation. However, flow cytometry counts of 

picoplankton (Table 4) indicate rather larger numbers of Prochlorococcus (Table 4 and Figure 

4) while Synechococcus numbers were low and did not differ between #SGS and #SGW 

(Table 4). Thus, the normalized pigments data and flow cytometry counts of picoplankton 

give contradictory indications, making it difficult to understand the difference between #SGS 

and #SGW. The presence of phycoerythrin-containing Prochlorococcus strains in summer 

conditions might explain the increase in both the numbers of Prochlorococcus and Phycoer*. 

However, such strains are rather considered to be adapted to low irradiance (Penno et al., 

2000). A marked decrease in the DV chl a per Prochlorococcus cell under high irradiance 

might finally provide an acceptable explanation: indeed, under such conditions, the red 

fluorescence of Prochlorococcus is known to decrease drastically (Dandonneau et al., 2006), 

indicating a decrease in DV chl a / Prochlorococcus cell at the sea surface. This may account 



 22 

for the summer decrease in TChla. After normalization by Tchla, a relative increase in 

phycoerythrin and zeaxanthin would then result even if abundance of Synechococcus did not 

change. Thus, the transition from austral winter to summer illustrated by the drastic separation 

of summer and winter samples in #SGS and #SGW would result from photoadaptation rather 

than from a change of phytoplankton species. A marked increase of heterotrophic bacteria 

counts in summer (#SGS) is also noteworthy (Table 4 and Figure 4). 

 As observed for #SGS and #SGW, #SG also captured many observations from the 

South Pacific Subtropical Gyre (Figure 1). This cluster had a pigments average composition 

very close to that of #SGW, except that it had abundant ββ-car* and low Phycoer* (Table 2). 

It occurred in a wider area which included the Tasman Sea, and spread farther northwards to 

14°S. Some observations in the Carribbean Sea and the north Atlantic in boreal autumn also 

belong to this cluster. In the South Pacific Subtropical Gyre, it occurred mainly in austral 

summer and autumn. Observations in #SG had much more picoeucaryotes, and more nutrients 

than those in clusters #SGS and #SGW. These minor differences make #SG representative of 

conditions slightly less oligotrophic than the two former ones. 

 

IV.3.- The equatorial Pacific system 

 The zone which corresponds to the South Equatorial Current, from about 13°S to 4°N 

is well known as a “high nutrient – low chlorophyll” (HNLC) regime. This HNLC character is 

attributed to iron limitation and to high grazing pressure all year round (Landry et al., 1997). 

This region was shared by three clusters: #EU, #SEC and #SBSEC that included observations 

at all four seasons (Figure 1). #EU and #SBSEC are remarkably separated, the first one being 

restricted to a narrow equatorial band between 5°S and 4°N, while the second is confined into 

the 1°S to 13°S band. The area covered by #SEC merges the two other ones, and also 

included a few observations in the Carribbean Sea and in the North Atlantic. #EU and 
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#SBSEC both had high Chl b* content and low DV chl b*. In addition, equatorial cluster #EU 

had high Chl c1+2* and low Phycoer*, while south equatorial cluster #SBSEC had a very low 

Chl a to TChla ratio, and relatively high Hex-fuco* and Viola* levels (Table 2). These two 

clusters differed markedly in their balance between Chl a and DV chl a. #EU had a lower 

contribution of DV chl a to TChla, and higher Chl c1+2*, But-fuco* and Fuco* (Table 4 and 

Figure 5), indicating that the upwelling may favour the cryptophytes, the dinoflagellates, 

haptophytes, pelagophytes, and diatoms (Jeffrey and Vesk, 1997). #SBSEC in the nitrate-rich 

South Equatorial Current had relatively high DV chl a*, Zea* and Phycoer* (indicative of 

abundant picoplanktonic cyanobacteria Prochlorococcus and Synechococcus), 

photoprotectant ββ-car*, Viola* and Chl b* (indicative of chlorophytes and prasinophytes). 

CHEMTAX tests suggest that #EU was dominated by haptophytes (39 %) and cryptophytes 

(29 %), and that 44 % of the biomass in #SBSEC was due to Prochlorococcus. The higher sea 

surface temperature in #SBSEC than in #EU (Figure 5) is a consequence of the warming of 

upwelled waters along their drift away from the equator. Average nitrate + nitrite 

concentration should expectedly be higher in the equatorial upwelling than in the southern 

branch of the South Equatorial Current, but the difference between the two clusters was small 

(Table 4). This might be caused by some #EU observations in autumn which were, in fact, in 

the north Atlantic (Figure 1), where the nitrate + nitrite concentration is lower than in the 

equatorial upwelling zone (Dandonneau et al., 2006). Equatorial upwelling of deep waters 

made #EU observations less warm than those of #SBSEC. 

 The area occupied by #SEC is the addition of the two former ones, i. e. the South 

Equatorial Current including the equatorial upwelling (Figure 1). It also includes some 

observations in the north Atlantic in boreal autumn. This cluster is marked by Pras*, a 

diagnostic pigment for prasinophytes, and also, like #EU and #SBSEC, by Chl b*. #SEC 

observations had markedly lower nutrient concentrations than those of #EU and #SBSEC 
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(Table 4), so that it might correspond to older equatorial upwelling waters, in which nutrients 

removal by the iron limited HNLC ecosystem was more advanced than in the two other ones. 

 

 

IV.4.- The response of clusters to environmental conditions 

 While most clusters closely correspond to restricted space-time domains (Figure 1), 

these domains overlap slightly. Thus, most observations in the north Atlantic in January-

February correspond to #NAWSu and #NAWSp, but a few ones belonged to #UM. In the 

same area in April-May, #NAWSu and #NAWSp shared all the observations, but the situation 

was more complicated in July-August, when observations were also captured by clusters 

#UM, #NAWSu, #SEC, #UO, #SGW and #NAWSu. In October-November, #SEC and #UO 

were dominant, but there were other observations, belonging to #UM, #EU, #SG and 

#NAWSu. Finally, only #SGS (subtropical gyre in austral summer) and #SBSEC (south 

equatorial waters) were missing from this large north Atlantic area. 

 The South Pacific Subtropical Gyre was dominantly associated to #SGS during the 

austral summer and #SGW in winter, but similarly, quite a significant number of observations 

in this area was captured by other clusters, i. e. #UM, #SG and #UO (Figure 1). #EU which 

was restricted to within 4 degrees off the equator (with a few exceptions in the north Atlantic 

or in the Tasman Sea) shared this zone with #UM and #SEC, and, to a lesser extent, with 

clusters #NAWSu and #NAWSp. 

 Thus, observations in a given area at a given time may often relate to several clusters. 

This is not surprising since photosynthetic pigments which support this classification 

characterize taxonomic phytoplankton groups, and because each one of these groups tends to 

diversify into many species, and colonize the entire world ocean. In addition, water masses 

are separated by meanders and eddies, rather than by abrupt lines. The GeP&CO transects 
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thus crossed the North Atlantic near the subtropical front, and crossed the equatorial currents 

system in an area where it is affected by tropical instability waves, that induce mixing 

between upwelled waters with diverse history and equatorial counter currents waters (Menkes 

et al., 2002). In spite of these characteristics which tend to temper the differences between 

phytoplankton populations, two main schemes of variability can be identified in the clusters 

derived from the GeP&CO data. 

 The north Atlantic, which was crossed by the GeP&CO transects at about 40 – 50 °N, 

was occupied in January by populations that were captured by #NAWSu and #NAWSp, and 

for some observations, by the ubiquitous #UM (Figure 1). In April, it was still populated by 

#NAWSu and #NAWSp . During these winter and spring months, nutrients-rich waters (Table 

4) favoured the growth of diatoms which dominated these clusters (Table 3) and were 

responsible for the spring bloom that peaked in April in the GeP&CO data (Dandonneau et 

al., 2006). It is noteworthy that the phytoplankton populations that made this bloom were 

captured by the same clusters as those observed in January, when the mixed layer was deep 

and light was limiting. Cluster #NAWSp tended to disappear from this area in July, replaced 

by many observations classified into #UM, denoting a diversification of the phytoplankton 

populations. Isolated observations closer to the tropical clusters #SEC, #UO and #SGW were 

indicative of the transition towards summer stratified conditions with a nutrient-exhausted 

mixed layer. In October, phytoplankton populations in the north Atlantic were similar to those 

in the tropics, most observations belonging to the mesotrophic clusters #EU and #SEC and to 

the oligotrophic clusters #SG and #UO (Figure 1). Some observations in clusters # NAWSu 

and #NAWSp however indicated that, in some areas, the autumn bloom was active. This may 

be an effect of the variety of ecological conditions offered by the eddies that develop in this 

area and their interaction with the summer thermocline. 
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 The second scheme of variability corresponds to the low latitudes where seasonal 

variations are weak, and the supply of nutrients is controlled by the zonal equatorial currents 

system. There is a very strong affinity between some clusters and some currents or ocean 

dynamical processes. Thus, #EU was remarkably focused on the equatorial Pacific (Figure 1) 

where upwelling is permanent and nutrients were highest in the GeP&CO record (Table 4). 

#SBSEC was strictly located in the upwelled waters around 5°S after their southwest drift 

from the equator. Farther south, the South Pacific Subtropical Gyre was occupied by 

oligotrophic waters in which phytoplankton populations were captured by clusters #SGS, 

#SG, #UO and #SGW. One may consider that the waters of the southern branch of the South 

Equatorial Current have drifted south-westwards from the equatorial upwelling. According to 

the average pigments composition in #EU and #SBSEC, this drift resulted in a relative 

decrease of the diatoms, prymnesiophytes, dinoflagellates, chrysophytes and cryptophytes, 

and in an increase in prasinophytes (Tables 1 and 2). Farther south, in the subtropical gyre, 

the populations changed drastically, being dominated by Prochlorococcus and 

Synechococcus. The equatorial upwelled waters may also evolve into cluster #SEC whose 

geographical distribution combines those of #EU and #SBSEC (Figure 1). #SEC has slightly 

less nutrients than clusters #EU and #SBSEC (table 4) and had an average pigments 

composition close to the overall GeP&CO average, with however noticeably high relative 

prasinoxanthin concentration, indicative of a high contribution of prasinophytes to this cluster 

(table 2 and 3). 

 This variability with time and/or space is certainly driven by the ocean circulation, 

nutrients supply and irradiance. Table 4 clearly shows that nitrate concentrations were 

generally smaller (less than 0.27 µM l-1) in clusters #SGS, #SG, #UO and #SGW, which 

occupied the south Pacific subtropical gyre, than in the other ones. These are the clusters in 

which the cyanobacteria Prochlorococcus and Synechococcus dominated. However, in a large 



 27 

band across the equator (#SEC) and in the north Atlantic in winter and spring (#NAWSu), 

where nitrate + nitrite concentrations are generally high, 25% of the nitrate concentrations 

were less than 0.15 or 0.25 µM, respectively. Thus, it seems that in these actively growing 

ecosystems, the phytoplankton populations remain unchanged until complete exhaustion of 

the available nitrate. As a consequence, the ranges of nutrient concentration largely overlap 

between clusters, so that the phytoplankton populations cannot be assessed from 

macronutrients concentrations alone. Iron supply by the equatorial upwelling is a likely cause 

for the differentiation of phytoplankton populations that correspond to #EU and #SBSEC, but 

the triggering of #UO vs #SGS and #SGW, or #NAWSp vs #NAWSu, is not yet well 

understood. Phytoplankton populations tend to subsist throughout the short term (one or 

several months) evolution of water masses. This contrasts with the high variability of 

chlorophyll concentration and demonstrates that large scale sampling experiments such as 

GeP&CO are useful to understand how the composition of phytoplankton populations 

responds to the ocean circulation. 

 

 

 

V.- CONCLUSIONS 

 

 Phytoplankton pigment data collected along quarterly GeP&CO cruises from the 

eastern north Atlantic to the south western tropical Pacific show patterns which clearly 

correspond to well-known seasonal or regional variability. Global biogeochemical models 

often include two categories of phytoplankton, i. e. large (diatoms) or small (Lancelot et al., 

2000; Aumont et al., 2003; Fasham et al., 2005). This distinction indeed is needed to better 

represent the differences between areas where export production is rapid and intense and 
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those where most of the primary production is recycled within the photic layer. The 

classification developed here, in which the fucoxanthin-rich clusters found in the north 

Atlantic and at the equator are placed close together, and well separated from the oligotrophic 

clusters (Figure 2), accounts for this major difference. Additionally, it also points on second 

order differences which, in most cases have a well marked geographical or seasonal signature. 

Major biogeochemical issues such as the occurrence of biocalcifying coccolithophores, or 

diazotrophic Trichodesmium, have been missed by this large-scale GeP&CO sampling. Some 

GeP&CO observations with highest fucoxanthin concentration proved however useful to 

identify diatoms from space (Alvain et al., 2005), but most of the fucoxanthin-rich samples 

that were encountered had chlorophyll concentrations lesser than 1 µg l-1, and thus did not 

correspond to the extremely rich diatoms blooms that massively export carbon to depth. This 

illustrates the difficulty to observe the sudden and important biogeochemical events, which 

often occur in restricted areas and have a short life. However, given that this work is based on 

eight cruises in two years, one can consider that it represents some of the main oceanic 

features and their seasonal cycles. Allocation of four clusters to oligotrophic conditions, 

mostly in the South Pacific Subtropical Gyre, where the dominant pigments are divinyl 

chlorophyll a, zeaxanthin and phycoerythrin, undoubtedly results from an ecosystem 

dominated by picophytoplankton (i. e. Prochlorococcus and Synechococcus). It is much more 

difficult to explain the subtle changes in phytoplankton populations that may force the 

differences between the clusters that dominated in the HNLC waters from the equatorial 

Pacific or in the waters that are not permanently oligotrophic. These clusters are characterized 

either by some relatively abundant carotenoids, or by monovinyl chlorophyll b or chlorophyll 

c, which are generally indicative of poorly known pico- or nanoeucaryotes. For instance, the 

#SBSEC cluster that focused on the nutrient-rich waters south of the equator in the Pacific 

Ocean had a pigment composition that departed noticeably from the GeP&CO average by 
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relatively high monovinyl chlorophyll b and violaxanthin, indicating that some chlorophytes 

and/or prasinophytes were especially successful in this HNLC system; what triggered their 

growth is still unknown. We lack series of observations with accurate determinations of 

phytoplanktonic pico- or nanoeucaryotes in which the response to environmental changes 

could be related to population changes. Identifying these algae is still a difficult task which 

can hardly be undertaken routinely on a large scale. Some phytoplankton pigments are 

diagnostic pigments for groups of microalgae, but this permits only rough approximations of 

the phytoplankton composition. The case of pico- and nanoeucaryotes is especially complex. 

Algal classes often tend to colonize all kinds of environments while retaining their pigments 

characteristics (e. g. the ubiquitous 19’ hexanoyloxyfucoxanthin). Better understanding of 

patterns such as those evidenced in this work in the tropical Pacific zonal current system, or 

as the plankton succession in temperate waters, requires improved methods to routinely 

identify the main taxa of the phytoplankton populations. 
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Table 1 : Abbreviations of pigment names following Jeffrey et al. (1997). Asterisks refer to 

biomass-free normalized pigments 

 

Abbreviation Pigment name 

 

Chl a, Chl a* Monovinyl chlorophyll a 

DV chl a, DV chl a* Divinyl chlorophyll a 

Chl b, Chl b* Monovinyl chlorophyll b 

DV chl b, DV chl b* Divinyl chlorophyll b 

Chl c1+2, Chl c1+2* Chlorophyll c1 + Chlorophyll c2 

Chl c3, Chl c3 Chlorophyll c3 

Perid, Perid* Peridinin 

Fuco, Fuco* Fucoxanthin 

But-fuco, But-fuco* 19’-Butanoyloxyfucoxanthin 

Hex-Fuco, Hex-Fuco* 19’-Hexanoyloxyfucoxanthin 

Pras, Pras* Prasinoxanthin 

Viola, Viola* Violaxanthin 

Diadino, Diadino* Diadinoxanthin 

Allo, Allo* Alloxanthin 

Zea, Zea* Zeaxanthin 

ββ-car, ββ-car* ββ-Carotene 

Phycoer, Phycoer* Phycoerythrin 

TChl a Monovinyl chlorophyll a + divinyl chlorophyll a 
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Table 2 : Average values of normalized pigments concentrations for the ten clusters of 

observations. Bold characters indicate the largest deviations from the whole dataset average 

(absolute value greater than 0.5). 

 

 #UM #SGS #EU #SEC #SG #NAWSu #UO #SBSEC #SGW #NAWSp 

 

Chl a* 0.51 -0.45 0.47 -0.38 -1.02 1.26 -0.95 -0.58 -1.15 1.35 

DV chl a* -0.51 0.45 -0.47 0.38 1.02 -1.26 0.95 0.58 1.15 -1.35 

Chl b* -0.37 -0.75 0.95 0.52 -0.78 0.13 -0.81 1.59 -0.99 0.45 

DV chl b* 0.28 0.21 -0.78 0.01 1.01 -0.80 0.10 -0.82 1.53 -0.74 

Chl c1+2* -0.15 -0.75 0.85 -0.02 -0.90 1.10 -0.85 0.31 -0.54 0.62 

Chl c3 -0.06 -0.20 -0.18 -0.16 -0.16 1.12 -0.23 -0.23 -0.23 -0.02 

Perid* 0.13 -0.34 0.16 0.05 -0.31 0.49 -0.42 0.43 -0.38 -0.21 

Fuco* 0.12 -0.37 0.21 -0.21 -0.44 0.62 -0.31 -0.21 -0.56 0.81 

But-Fuco* 0.00 -0.42 0.38 0.00 -0.26 0.62 -0.47 -0.03 -0.41 0.27 

Hex-Fuco* 0.06 -0.29 0.34 -0.06 -0.22 0.48 -0.45 0.53 -0.38 -0.28 

Pras* -0.13 -0.25 0.00 0.62 -0.18 0.11 -0.25 -0.21 -0.20 0.24 

Viola* -0.22 -0.45 0.48 0.02 -0.48 -0.11 -0.37 1.29 -0.46 0.46 

Diadino* 0.10 -0.07 0.06 -0.11 -0.04 0.40 -0.36 0.11 -0.32 -0.04 

Allo* 0.19 -0.21 -0.14 -0.11 -0.14 0.05 -0.19 -0.11 -0.16 0.56 

Zea* -0.28 1.27 -0.45 0.10 0.97 -1.10 0.49 0.31 0.61 -1.16 

ββ-car* -0.07 0.22 -0.49 0.20 0.85 -0.98 0.68 0.29 0.39 -0.74 

Phycoer* -0.01 2.00 -0.56 -0.33 0.38 -0.78 0.20 -0.11 0.55 -0.75 
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Table 3 : Summary of clusters characteristics. Bold or italicized: pigments for which the 
average value of normalized concentrations (see table 2) is greater than 0.75 or lesser than -
0.75, respectively. Upward / downward arrows indicate algal groups that are likely to be 
above / below their GeP&CO average (according to Gibb et al., 2000) 
 

cluster designation Pigments 
characteristics 

Inferred population trends 

#UM Undefined 
mesotrophic   

#SGS Subtropical gyre 
in summer 

Zea Phycoer 
Chl b Chl c1+2 

Synechococcus ↑ chlorophytes ↓ 
prasinophytes ↓ diatoms ↓ haptophytes ↓ 

dinoflagellates ↓ pelagophytes ↓ 
cryptophytes ↓ 

#EU Equatorial 
upwelling 

Chl b Chl c1+2 
DV chl b  

diatoms↑ chlorophytes↑ haptophytes↑ 
prasinophytes ↑   dinoflagellates ↑ 

pelagophytes ↑ cryptophytes ↑ 
Prochlorococcus ↓ 

#SEC South equatorial 
current none  

#SG Subtropical gyre 

DV chl a DV chl b 
Zea 

 β-βcar 
Chl a Chl b 

Chl c1+2 

Prochlorococcus ↑ diatoms ↓ 
haptophytes ↓ dinoflagellates ↓ 
pelagophytes ↓ cryptophytes ↓ 

#NAWSu 
north Atlantic 

bloom winter to 
summer 

Chl a Chl c1+2 
Chl c3 

DV chl a DV chl b 
Zea ββ-car 

Phycoer 

diatoms ↑ haptophytes ↑ 
pelagophytes ↑dinoflagellates ↑  

cryptophytes ↑ Prochlorococcus ↓ 
Synechococcus ↓ 

#UO Undefined 
oligotrophic 

DV chl a ββ-car 
Chl a Chl b 

Chl c1+2 

Prochlorococcus ↑ chlorophytes ↓ 
prasinophytes ↓ diatoms ↓ haptophytes ↓ 

dinoflagellates ↓ pelagophytes ↓ 
cryptophytes ↓ 

#SBSEC 
South branch of 
South Equatorial 

Current 

Chl b Viola 
DV chl b 

chlorophytes ↑ prasinophytes ↑ 
Prochlorococcus ↓ 

#SGW Subtropical gyre 
in winter 

DV chl a DV chl b 
Chlor a Chlor b  

Prochlorococcus ↑ chlorophytes ↓ 
prasinophytes ↓ 

#NAWSp Early north 
Atlantic bloom 

Chlor a Fuco 
 DV chl a Zea 

Phycoer 

diatoms ↑ Prochlorococcus ↓ 
Synechococcus ↓ 
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Table 4 : Range of marine properties for the pigments-based clusters (in each cell, from top to 
bottom : first quartile, median, and third quartile) 

 
cluster all #UM #SGS #EU #SEC #SG #NA 

WSu 
#UO #SB 

SEC 
#SGW #NA 

WSp 

TChla  
(µg L-1) 

0.092 
0.154 
0.284 

0.087 
0.196 
0.382 

0.038 
0.048 
0.062 

0.174 
0.222 
0.274 

0.139 
0.191 
0.255 

0.070 
0.088 
0.129 

0.261 
0.332 
0.731 

0.098 
0.111 
0.131 

0.112 
0.132 
0.148 

0.079 
0.089 
0.098 

0.253 
0.672 
0.872 

Picoeu 
caryotes 
(cells/mL) 

810 
2485 
6086 

562 
1084 
3718 

427  
711 
1057 

2572 
4875 
7337 

2463 
4640 
8305 

810  
2213 
6863 

2505 
4431 
10444 

562  
807  
1224 

3084 
4067 
5736 

502  
739  
1096 

3288 
5382 
14722 

Synecho 
coccus 
(cells/mL) 

1805 
6659 
14188 

3357 
6557 
20698 

355  
873  
1959 

4943 
9314 
22032

6432 
9954 
17184 

343  
1644 
4353 

4982 
10838 
28781 

1345 
3006 
8356 

6551 
7756 
10022

460  
782  
3967 

7485 
12171 
31456 

Prochlo 
rococcus 
(103 
cells/mL) 

30    
77    
115 

20    
33     
78 

55    
84   
117 

34    
63   
84 

81   
109  
146 

67  
104 
126 

5      
16    
48 

76  
114 
140 

76   
96 
127 

64  97  
120 

3       
4       
8 

Heterotr. 
Bacteria 
(103 
cells/mL) 

311  
429  
645 

231  
379  
765 

330  
408  
492 

472  
643  
805 

409  
590  
716 

379  
433  
517 

295  
484  
727 

238  
353  
447 

385  
516  
642 

191  
302  
387 

348  
427  
662 

Nitrate 
(µM) 

0.07 
0.50 
3.90 

0.06 
0.19 
1.31 

0.04 
0.06 
0.11 

2.29 
5.79 
7.85 

0.15 
1.31 
6.20 

0.05 
0.11 
0.17 

0.25 
2.44 
5.02 

0.03 
0.06 
0.20 

3.47 
4.97 
6.48 

0.02 
0.09 
0.27 

1.29 
2.73 
4.77 

Phosphate 
(µM) 

0.030 
0.124 
0.185 

0.018 
0.060 
0.140 

0.030 
0.070 
0.130 

0.230 
0.452 
0.590 

0.080 
0.230 
0.440 

0.030 
0.060 
0.150 

0.080 
0.160 
0.270 

0.000 
0.010 
0.034 

0.360 
0.440 
0.550 

0.015 
0.079 
0.140 

0.095 
0.160 
0.230 

Silicate 
(µM) 

0.75 
1.24 
2.17 

0.77 
1.21 
1.91 

0.47 
0.60 
1.11 

1.32 
2.36 
3.85 

0.88 
1.28 
2.64 

0.64 
0.92 
1.35 

0.78 
1.61 
2.67 

0.76 
0.89 
1.38 

1.57 
2.17 
2.53 

0.56 
0.81 
1.19 

1.00 
1.78 
2.33 

Tempera- 
ture (°C) 

20.04 
24.61 
27.29 

20.44 
25.50 
27.87 

22.90 
24.61 
27.43 

23.05 
24.78 
26.68 

24.23 
25.98 
27.11 

23.45 
26.52 
28.04 

14.57 
16.91 
19.02 

22.32 
25.86 
27.87 

26.12 
27.03 
27.68 

23.59 
26.55 
28.17 

13.74 
16.53 
18.33 

Salinity  
35.09 
35.57 
35.96 

34.74 
35.65 
36.28 

35.39 
35.49 
35.63 

34.80 
34.98 
35.21 

34.96 
35.28 
35.83 

35.38 
35.66 
36.02 

34.80 
35.64 
35.92 

35.43 
35.69 
36.15 

35.24 
35.51 
35.76 

35.52 
35.90 
36.21 

35.40 
35.84 
36.15 
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FIGURE CAPTIONS 

 

Figure 1 : Geographical and seasonal distribution of the ten clusters resulting from the 

classification of the normalized GeP&CO pigment concentration data. 

 

Figure 2 : Dendrogram of the GeP&CO observations. Space and time attributes in clusters 

names have been given according to Figure 1. 

 

Figure 3 : Comparison of the normalized properties of #NAWSu and #NAWSp (north 

Atlantic bloom, winter to summer and winter to spring). Squares and plain characters: average 

values of pigments used for the classification. Plus signs and italics: ancillary data. 

 

Figure 4 : Comparison of the normalized properties of #SGS and #SGW (South Pacific 

Subtropical Gyre, in summer and winter). Squares and plain characters: average values of 

pigments used for the classification. Plus signs and italics: ancillary data. 

  

Figure 5 : Comparison of the normalized properties of #EU and #SBSEC (equatorial 

upwelling and southern branch of South Equatorial Current). Squares and plain characters: 

average values of pigments used for the classification. Plus signs and italics: ancillary data. 
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Figure 1 : Geographical and seasonal distribution of the ten clusters resulting from the 
classification of the normalized GeP&CO pigments concentrations data. 
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Figure 2 : Dendrogram of the GeP&CO observations. Space and time attributes in clusters 

names have been given according to Figure 1. 
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Figure 3 : Comparison of the normalized properties of #NAWSu and #NAWSp (north 
Atlantic bloom, winter to summer and winter to spring). Squares and plain characters: average 
values of pigments used for the classification. Plus signs and italics: ancillary data. 
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Figure 4 : Comparison of the normalized properties of #SGS and #SGW (south Pacific 
subtropical gyre, in summer and winter). Squares and plain characters: average values of 
pigments used for the classification. Plus signs and italics: ancillary data. 
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Figure 5 : Comparison of the normalized properties of #EU and #SBSEC (equatorial 
upwelling and southern branch of South Equatorial Current). Squares and plain characters: 
average values of pigments used for the classification. Plus signs and italics: ancillary data. 
 


