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CULMINATING PATHS

MIREILLE BOUSQUET-MÉLOU AND YANN PONTY

Abstract. Let a and b be two positive integers. A culminating path is a path of Z
2 that

starts from (0, 0), consists of steps (1, a) and (1,−b), stays above the x-axis and ends at the
highest ordinate it ever reaches. These paths were first encountered in bioinformatics, in the
analysis of similarity search algorithms. They are also related to certain models of Lorentzian
gravity in theoretical physics.

We first show that the language on a two letter alphabet that naturally encodes culminating
paths is not context-free.

Then, we focus on the enumeration of culminating paths. A step by step approach, com-
bined with the kernel method, provides a closed form expression for the generating function
of culminating paths ending at a (generic) height k. In the case a = b, we derive from this
expression the asymptotic behaviour of the number of culminating paths of length n. When
a > b, we obtain the asymptotic behaviour by a simpler argument. When a < b, we only
determine the exponential growth of the number of culminating paths.

Finally, we study the uniform random generation of culminating paths via various methods.
The rejection approach, coupled with a symmetry argument, gives an algorithm that is linear
when a ≥ b, with no precomputation stage nor non-linear storage required. The choice of the
best algorithm is not as clear when a < b. An elementary recursive approach yields a linear
algorithm after a precomputation stage involving O(n3) arithmetic operations, but we also
present some alternatives that may be more efficient in practice.

1. Introduction

One-dimensional lattice walks on Z have been extensively studied over the past 50 years.
These walks usually start from the point 0, and take their steps in a prescribed finite set S ⊂ Z. A
large number of results are now known on the enumeration of sub-families of these walks, and can
be obtained in a systematic way once the set S is given. This includes the enumeration of bridges
(walks ending at 0), meanders (walks that always remain at a non-negative level), excursions
(meanders ending at level 0), excursions of bounded height, and so on. In particular, the nature
of the associated generating functions is well understood: these series are always algebraic, and
even rational for bounded walks [2, 5, 10, 8, 19, 26, 31, 32, 37]. These algebraicity properties
actually reflect the fact that the languages on the alphabet S that naturally encode these families
of walks are context-free, and even regular in the bounded case. In many papers, these one-
dimensional walks are actually described as directed two-dimensional (2D) walks, upon replacing
the starting point 0 by (0, 0) and every step s by (1, s). This explains why excursions are often
called generalized Dyck paths (the authentic Dyck paths correspond to the case S = {1,−1}).
This two-dimensional setting allows for a further generalisation, with steps of the form (i, j),
with i > 0 and j ∈ Z, but this does not affect the nature of the associated languages and
generating functions. The uniform random generation of these walks has also been investigated,
through a recursive approach [39, 24, 20] or using an anticipated rejection [6, 33].

This paper deals with a new class of walks which has recently occurred in two independent
contexts, and seems to have a more complicated structure than the above mentioned classes:
culminating walks. A 2D directed walk is said to be culminating if each step ends at a positive
level, and the final step ends at the highest level ever reached by the walk (Figure 1). We focus
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Figure 1. A culminating path (for a = 5 and b = 3) and the corresponding word.

here on the case where the steps are (1, a) and (1,−b), with a and b positive, hoping that this
encapsulates all the possible typical behaviours.

In the case a = b = 1, culminating walks have recently been shown to be in bijection with
certain Lorentzian triangulations [18], a class of combinatorial objects studied in theoretical
physics as a model of discrete two-dimensional Lorentzian gravity. Using a transfer matrix
approach, the authors derived the generating function for this case. We give two shorter proofs
of their result. Also, while it is not clear how the method used in [18] could be extended to the
general (a, b)-case, one of our approaches works for arbitrary values of a and b.

The general (a, b)-case appears in bioinformatics in the study of the sensitivity of heuristic
homology search algorithms, such as BLAST, FASTA or FLASH [1, 34, 11]. These algorithms
aim at finding the most conserved regions (similarities ) between two genomic sequences (DNA,
RNA, proteins...) while allowing certain alterations in the entries of the sequences. In order
to avoid the supposedly intrinsic quadratic complexity of the deterministic algorithms, these
heuristic algorithms first consider identical regions of bounded size and extend them in both
directions, updating the score with a bonus for a match or a penalty for an alteration, until the
score drops below a certain threshold. The evolution of the score all the way through the final
alignment turns out to be encoded by a culminating walk.

In [30], we first studied the probability of a culminating walk to contain certain patterns
called seeds, as some recent algorithms make use of them to relax the mandatory conservation of
small anchoring portions. Then, we proposed a variant of the recursive approach for the random
generation of these walks. Finally, we observed that the naive rejection-based algorithm, which
consists in drawing uniformly at random up and down steps and rejecting the resulting walk if
is not culminating, seemed to be linear (resp. exponential) when a > b (resp. a < b). This
observation, which is closely related to the asymptotic enumeration of culminating walks, is
confirmed below in Section 6.2.

To conclude this introduction, let us fix the notation and summarize the contents of this paper.
Let a and b be two positive integers. A walk (or path) of length n is a sequence (0, η0), . . . , (n, ηn)
such that η0 = 0 and ηi+1 − ηi ∈ {a,−b} for all i. The height of the walk is the largest of the
ηi’s, while the final height is ηn. The walk is culminating if the two following conditions hold:

∀i ∈ [1, n], ηi > 0 (Positivity),

∀i ∈ [0, n− 1], ηi < ηn (Final record).

See Figures 1 and 2 for examples and counter-examples. We encode every walk by a word on
the alphabet {m, m} in a standard way: each ascending step (1, a) is replaced by a letter m
and each descending step (1,−b) is replaced by a letter m. We denote by {m, m}∗ the set of
words on the alphabet {m, m}. From now on, we identify a path and the corresponding word.
Since these objects are essentially one-dimensional, we will often use a 1D vocabulary, saying,
for instance, that our paths take steps +a and −b (rather than (1, a) and (1,−b)). We hope that
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Figure 2. Two walks that are not culminating, violating the final record con-
dition (left) or the positivity condition (right).

this will not cause any confusion. Without loss of generality, we restrict our study to the case
where a and b are coprime.

For any word w, we denote by |w|m (resp. |w|m) the number of occurrences of the letter m
(resp. m) that it contains. We denote by |w| the length of w. The function φa,b : {m, m}∗ → N

maps a word to the final height of the corresponding walk. That is, φa,b(w) = a|w|m − b|w|m.
The culmination properties can be translated into the following language-theoretic definition:

Definition 1.1. The language of culminating words is the set Ca,b ⊂ {m, m}∗ of words w such
that, for every non-empty prefix w′ of w:

φa,b(w
′) > 0 (Positivity),

and, for every proper prefix w′ of w:

φa,b(w
′) < φa,b(w) (Final record).

The main result of Section 2 is that the language Ca,b is not context-free. In Section 3,
we obtain a closed form expression for the generating function of culminating walks. This
expression is complicated, but we believe this only reflects the complexity of this class of walks.
This enumerative section is closely related to the recent work [10], devoted to a general study
of excursions confined in a strip. In particular, symmetric functions play a slightly surprising
role in the proof and statement of our results. We then derive in Section 4 the asymptotic
number of culminating walks, in the case a ≥ b. Our result implies that, asymptotically, a
positive fraction of (general) (a, b)-walks are culminating if a > b. We prove that this fraction
tends to 0 exponentially fast if a < b. More precisely, we determine the exponential growth
of the number of culminating walks. This asymptotic section uses the results obtained in [5]
on the exact and asymptotic enumeration of excursions and meanders. Finally, in Section 6,
we present several algorithms for generating uniformly at random culminating walks of a given
length. Our best algorithms are linear when a ≥ b. When a < b, the choice of the best algorithm
is not obvious. An elementary recursive approach yields a quasi-linear generating stage but
requires the precomputation and storage of O(n3) numbers. We exploit in this section several
generation schemes, like the recursive method [39, 24], the rejection method [14] and Boltzmann
samplers [20]. Moreover, we address in Section 5 the random generation of positive walks,
which is a preliminary step in some of our algorithms generating culminating walks. We have
implemented our algorithms in Java, and we invite the reader to generate his/her own paths at
the address http://www.lri.fr/∼ponty/walks. Figure 3 shows random culminating paths of
length 1000 generated with our software, for various values of a and b.

2. Language theoretic properties

We denote by Ca,b⇒k the subset of Ca,b that consists of the walks (words) ending at height k.
It will be easily seen that this language (for a fixed k) is regular. However, we shall prove that
the full language Ca,b is not context-free. We refer to [27] for definitions on languages.
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Figure 3. Random culminating paths of size 1000, when (a, b) = (1, 1), (a, b) =
(2, 1), (a, b) = (1, 2). In the first two cases, four paths are displayed, while for
the sake of clarity, only one path is shown in the third case.

2.1. Culminating walks of bounded height

Proposition 2.1. For all a, b, k ∈ N, the language Ca,b⇒k of culminating words ending at height
k is regular.

Proof. The culminating paths of final height k move inside a bounded space. This allows us to
construct a (deterministic) finite-state automaton that recognizes these paths. The states of this
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automaton are the accessible heights (that is, 0, 1, . . . , k), plus a garbage state ⊥. The initial
state is 0, the final state is k, and the transition function δ is given, for 0 ≤ q < k, by:

δ(q, m) =

{

q + a if q ≤ k − a,
⊥ otherwise

, δ(q, m) =

{

q − b if q > b,
⊥ otherwise

,

while
δ(k, ·) = δ(⊥, ·) =⊥ .

Clearly, this automaton sends any word attempting to walk below 0 (resp. above k) in the
garbage ⊥, where it will stay forever and therefore be rejected. Moreover, it only accepts those
words ending in the state k. Hence this automaton recognizes exactly Ca,b⇒k. Since the state
space is finite, Ca,b⇒k is a regular language.

2.2. Unbounded culminating walks

Proposition 2.2. For all a, b ∈ N, the language Ca,b of culminating walks is not context-free.

Proof. Recall that the intersection of a context-free language and a regular language is context-
free [27]. Let L be the following regular language: L = m∗.m∗.m∗. It can be seen as the language
of “zig-zag” paths. Let K = Ca,b ∩ L. It is easy to see that

K = {mi.mj .mk| i > 0, bj < ai and bj < ak}.
Assume that Ca,b is context-free. Then so is K, and, by the pumping lemma for context-free
languages [27, Theorem 4.7], there exists n ∈ N such that any word w ∈ K of length at least n
admits a factorisation w = x.u.y.v.z satisfying the following properties:

(i) |u.v| ≥ 1,
(ii) |u.y.v| ≤ n,

(iii) ∀ℓ ≥ 0, wℓ := x.uℓ.y.vℓ.z ∈ K.

Since a and b are coprime, there exist i > n and j > n such that ia − jb = 1 (this is the
Bachet-Bezout theorem). Hence the word w = mimjmi belongs to K. In the rest of the proof,
we will refer to the first sequence of ascending steps of w as A, to the descending sequence as B
and to the second ascending sequence as C.

Where is the factor u.y.v? ℓ wℓ Failing condition
A 0 mi−h.mj .mi Pos.: φ(mi−h.mj) = 1− ah ≤ 0

B 2 mi.mj+h.mi Pos.: φ(mi.mj+h) = 1− bh ≤ 0
C 0 mi.mj .mi−h Fin. rec.: φ(wℓ) = φ(mi)− ah ≤ φ(mi)

A ∪B

|u|m.|u|m + |v|m.|v|m 6= 0 2 mp.mk.mk′

.mp′

.mi wℓ /∈ L (Too many peaks)

u = mk, v = mk′

2 mi+k.mk′+j .mi Final record:
φ(wℓ) = φ(mi+k) + 1− bk′ ≤ φ(mi+k)

B ∪ C

|u|m.|u|m + |v|m.|v|m 6= 0 2 mi.mp.mk.mk′

.mp′

wℓ /∈ L (Too many valleys)

u = mk, v = mk′

2 mi.mj+k.mk′+i Pos.: φ(mi.mj+k) = 1− kb ≤ 0

Table 1. Why the pumping lemma is not satisfied.

In Table 1, we consider all eligible factorisations of w of the form w = x.u.y.v.z. Five cases
arise, depending on which part of w contains the factor u.y.v. Condition (ii) implies that this
factor cannot overlap simultaneously with the parts A and C. Each of the cases A∪B and B∪C
is further subdivided into two cases, depending on whether u and v are monotone or not.
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For each factorisation, the table gives a value of ℓ for which the word wℓ does not belong to
K. This is justified in the rightmost column: either wℓ does not belong to the set L of zig-zag
paths, or the positivity condition does not hold, or the last step of the walk is not a record.

Once all the possible factorisations have been investigated and found not to satisfy the pump-
ing lemma, we conclude that the languages K and Ca,b are not context-free.

3. Exact enumerative results

In this section, we give a closed form expression for the generating function of (a, b)-
culminating walks. More precisely, we give an expression for the series counting culminating
walks of height k, and then sum over k. This summation makes the series a bit difficult to han-
dle, for instance to extract the asymptotic behaviour of the coefficients (Section 4). We believe
that this complexity is inherent to the problem. In particular, we prove that the generating
function of (1, 1)-culminating walks is not only transcendental, but also not D-finite. That is, it
does not satisfy any linear differential equation with polynomial coefficients [37, Ch. 6].

3.1. Statement of the results and discussion

Let us first state our results in the (1,1)-case and then explain what form they take in the
general (a, b)-case.

Proposition 3.1. Let a = b = 1 and k ≥ 1. The length generating function of culminating
paths of height k is

Ck(t) =
tk

Fk−1
= t

U1 − U2

Uk
1 − Uk

2

=
1− U2

1 + U2

Uk

1− U2k
,

where

• Fk is the kth Fibonacci polynomial, defined by F0 = F1 = 1 and Fk = Fk−1− t2Fk−2 for
k ≥ 2,

• U1 and U2 are the two roots of the polynomial u− t(1 + u2):

U1,2 =
1∓
√

1− 4t2

2t
,

• U stands for any of the Ui’s.

The generating function of culminating walks,

C(t) =
1− U2

1 + U2

∑

k≥1

Uk

1− U2k
, (1)

is not D-finite.

The above expression of C(t) is equivalent to the case x = y = 1 of [18, Eq.(2.26)].

The first expression of Ck, in terms of the Fibonacci polynomials, is clearly rational. As
explained in Section 2.1, the language of culminating walks of height k is regular for all a and b,
so that the series Ck will always be rational. Of course, Ck is simply 0 when k < a. When k = a,
there is only one culminating path, reduced to one up step, so that Ck = t. More generally, the
following property, illustrated in Figure 4 and proved in Section 3.2.1, holds.

Property 3.2. For k ≤ a + b, there is at most one culminating path of height k.

As soon as k > a, culminating walks of height k have at least two steps. Deleting the first
and last ones gives Ck = t2Wk, where Wk counts walks (with steps +a,−b) going from a to k−a
on the segment J1, k− 1K. General (and basic) results on the enumeration of walks on a digraph
provide [36, Ch. 4]:

Ck = t2Wk = t2
(

(1− tAk)−1
)

a,k−a
= t2

Nk

Dk
, (2)
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Figure 4. When a = 5 and b = 3, there is no culminating walk of height k, for
k ∈ J1, 8K \ {5, 7, 8}. For k = 5, 7, 8, there is exactly one culminating walk.

where Ak = (Ai,j)1≤i,j≤k−1 is the adjacency matrix of our segment graph:

Ai,j =

{

1 if j = i + a or j = i− b,
0 otherwise,

(3)

Dk is the determinant of (1− tAk) and Nk/Dk is the entry (a, k − a) of (1− tAk)−1.
We note from Proposition 3.1 that, in the (1, 1)-case, both Nk and Dk are especially simple.

Indeed, Nk = tk−2, while Dk = Fk−1 satisfies a linear recurrence relation (with constant coeffi-
cients) of order 2. We will prove that, for all a and b, both sequences Nk and Dk satisfy such a
recurrence relation (of a larger order in general). The monomial form of Nk will hold as soon as
a = 1.

The second expression of Ck given in Proposition 3.1 appears as a rational function of the
roots of the polynomial u − t(1 + u2). Even though both series U1 and U2 are algebraic (and
irrational), the fact that Ck is symmetric in U1 and U2 explains why Ck itself is rational. In
general, we will write Ck as a symmetric rational function of the a + b roots of the polynomial
ub − t(1 + ua+b), denoted U1, . . . , Ua+b.

The third expression of Ck follows from the fact that U1U2 = 1. In general, t = U b/(1+Ua+b)
for U = Ui, so that it will always be possible to write Ck as a rational function of U . However,
this expression will not be always as simple as above. The equivalence of the three expressions
of Proposition 3.1 follows easily from the fact that

Fk =
1− U2k+2

(1− U2)(1 + U2)k
.

This can be proved by solving the recurrence relation satisfied by the Fk’s — or can be checked
by induction on k.

Let us now state our generalisation of Proposition 3.1 to (a, b)-culminating walks. Our first
expression of Ck, namely the rational form (2), involves the evaluation of two determinants
of size (approximately) k. Our second expression of Ck will be a fixed rational function of
U1, . . . , Ua+b, U

k
1 , . . . , Uk

a+b, symmetric in the Ui, which involves two determinants of constant
size a + b. The existence of such smaller determinantal forms for walks confined in a strip
has already been recognized in [3, Ch. 1]. More recently, the case of excursions confined in a
strip has been simplified and worked out in greater detail [10]. As in [10], our results will be
expressed in terms of the Schur functions sλ, which form one of the most important bases of
symmetric functions in n variables x1, . . . , xn: for any integer partition λ with at most n parts,
λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

sλ(X ) =
aδ+λ

aδ
, (4)

with X = (x1, . . . , xn), δ = (n − 1, n − 2, . . . , 1, 0) and aµ = det
(

x
µj

i

)

1≤i,j≤n
. We refer to [37,

Ch. 7] for generalities on symmetric functions.
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Proposition 3.3. Let k > a. With the above notation, the length generating function of (a, b)-
culminating paths of height k admits the following expressions:

Ck(t) = t2
(

(1 − tAk)−1
)

a,k−a
= t2

Nk

Dk
= t

sµ(U)

sλ(U)
,

where Ak is given by (3), the (a + b)-tuple U = (U1, . . . , Ua+b) is the collection of roots of
the polynomial ub − t(1 + ua+b), and the partitions λ and µ are given by λ = (k − 1)a and
µ = ((k − 1)a−1, a− 1).

The determinant Dk of (1 − tAk) and the relevant cofactor Nk are respectively given by

Dk = (−1)(a−1)(k−1)tk−1sλ(U) and Nk = (−1)(a−1)(k−1)tk−2sµ(U). (5)

Both sequences Nk and Dk satisfy a linear recurrence relation with coefficients in Q[t], respec-

tively of order
(

a+b
a

)

and
(

a+b
a−1

)

. These orders are optimal.

Note that the expression of Ck in terms of Schur functions still holds for k = a. Examples will
be given below. For the moment, let us underline that the case a = 1 of this proposition takes
a remarkably simple form, which will be given a combinatorial explanation in Section 3.2.3.

Corollary 3.4. When a = 1, the generating function of culminating walks of height k ≥ 1 reads

Ck(t) =
tk

Dk
=

t

hk−1(U)
,

where hi is the complete homogeneous symmetric function of degree i, Dk = 1 for 1 ≤ k ≤ b + 1
and Dk = Dk−1 − tb+1Dk−b−1 for k > b + 1.

Examples. Let us illustrate Proposition 3.3 by writing down explicitly the expression of Ck for
a few values of a and b. We use the determinantal form (4) of Schur functions.

Case a = b = 1. Here U1 and U2 are the two roots of the polynomial u−t(1+u2). The partition
µ is empty, so that sµ = 1, while λ = (k − 1). This gives

Ck = t

∣

∣

∣

∣

U1 1
U2 1

∣

∣

∣

∣

∣

∣

∣

∣

Uk
1 1

Uk
2 1

∣

∣

∣

∣

= t
U1 − U2

Uk
1 − Uk

2

,

as in Proposition 3.1. The recurrence relations satisfied by the polynomials Nk and Dk can
always be worked out from their expressions (5), as will be explained in Section 3.2.2. In the
case a = b = 1, one finds

Ck = t2Nk/Dk with Nk = tk−2 and Dk = Dk−1 − t2Dk−2,

with initial conditions D1 = D2 = 1.

Case a = 1, b = 2. Here U1, U2, U3 are the three roots of the polynomial u2 − t(1 + u3). Again,
µ is empty and λ = (k − 1) (this holds as soon as a = 1). One obtains

Ck = t

∣

∣

∣

∣

∣

∣

U2
1 U1 1

U2
2 U2 1

U2
3 U3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Uk+1
1 U1 1

Uk+1
2 U2 1

Uk+1
3 U3 1

∣

∣

∣

∣

∣

∣

.

The rational expression of Ck reads

Ck = t2Nk/Dk with Nk = tk−2 and Dk = Dk−1 − t3Dk−3,

with initial conditions D1 = D2 = D3 = 1. Note that this expression allows us to compute in a
few seconds the number cn of culminating walks for n up to 500.
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Case a = 2, b = 1. Here U1, U2, U3 are the three roots of the polynomial u− t(1 + u3). One has
µ = (k − 1, 1) and λ = (k − 1)2, which gives:

Ck = t

∣

∣

∣

∣

∣

∣

Uk+1
1 U2

1 1

Uk+1
2 U2

2 1

Uk+1
3 U2

3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Uk+1
1 Uk

1 1

Uk+1
2 Uk

2 1

Uk+1
3 Uk

3 1

∣

∣

∣

∣

∣

∣

= t

∣

∣

∣

∣

∣

∣

Ūk+1
1 Ūk−1

1 1

Ūk+1
2 Ūk−1

2 1

Ūk+1
3 Ūk−1

3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ūk+1
1 Ū1 1

Ūk+1
2 Ū2 1

Ūk+1
3 Ū3 1

∣

∣

∣

∣

∣

∣

,

where Ūi := 1/Ui. Note that the series Ūi are the roots of the polynomial u2 − t(1 + u3), which
occurs in the (symmetric) case a = 1, b = 2. It is actually clear from (2) that the denominator
Dk is unchanged when exchanging a and b.

The rational expression of Ck reads

Ck = t2Nk/Dk with Nk = tNk−2 + t3Nk−3 and Dk = Dk−1 − t3Dk−3,

with initial conditions N1 = 0, N2 = 1/t, N3 = t and D1 = D2 = D3 = 1.

3.2. Proofs

3.2.1. Proof of Property 3.2. Let us say that a path is positive if every step ends at a positive
level. For instance, culminating walks are positive. For n ≥ 0 there exists a unique positive walk
of length n and height at most a + b, denoted wn. Indeed, given h ∈ J0, a + bK, exactly one of
the values h + a, h− b lies in the interval J1, a + bK. For the same reason, wi is a prefix of wj for
i ≤ j. Let k ≤ a + b, and assume that there exist two distinct culminating walks of height k.
These walks must be wi and wj , for some i and j, with, say, i < j. But then wi is a prefix of
wj , and ends at height k, which prevents wj from being culminating.

3.2.2. Proof of Proposition 3.3. The expression of Ck in terms of the adjacency matrix
Ak has been justified in Section 3.1. Let us now derive the Schur function expression of this
series. We will give actually two proofs of this expression: the first one is based on the kernel
method [8, 4, 3], and the second one on the Jacobi-Trudi identity. The first proof is completely
elementary. The second one allows us to relate the polynomials Nk and Dk to the Schur functions
sλ and sµ. This derivation is very close to what was done in [10] for excursions confined in a
strip. Some of the results of [10] will actually be used to shorten some arguments.

First proof via the kernel method. Consider a culminating walk of height k > a. Such a
walk has length at least 2. Delete its first and last steps: this gives a walk starting from level
a, ending at level k − a, and confined between levels 1 and k − 1. Shifting this walk one step
down, we obtain a non-negative walk starting from level a− 1 and ending at level k − 1− a, of
height at most k − 2. Let G(t, u) ≡ G(u) denote the generating function of non-negative walks
starting from a−1, of height at most k−2. In this series, the variable t keeps track of the length

while the variable u records the final height. Write G(u) =
∑k−2

h=0 uhGh, where Gh counts walks
ending at height h. The above argument implies that the generating function of culminating
walks of height k is

Ck = t2Gk−a−1. (6)

We can construct the walks counted by G(u) step by step, starting from height a−1, and adding
at each time a step +a (unless the current height is k− a− 1 or more) or −b (unless the current
height is b− 1 or less). In terms of generating functions, this gives:

G(u) = ua−1 + t(ua + u−b)G(u)− tu−b
b−1
∑

h=0

uhGh − tua
k−2
∑

h=k−a−1

uhGh,
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that is,

(

ub − t(1 + ua+b)
)

G(u) = ua+b−1 − t

b−1
∑

h=0

uhGh − tua+b
k−2
∑

h=k−a−1

uhGh.

The kernel of this equation, that is, the polynomial ub − t(1 + ua+b), has a + b distinct roots,
which are Puiseux series in t. We denote them U1, . . . , Ua+b. Recall that G(u) is a polynomial in
u (of degree k−2). Replacing u by each of the Ui gives a system of a+b linear equations relating
the unknown series G0, . . . , Gb−1 and Gk−a−1, . . . , Gk−2. For U = Ui, with 1 ≤ i ≤ a + b,

b−1
∑

h=0

UhGh + Ua+b
k−2
∑

h=k−a−1

UhGh = Ua+b−1/t.

In matrix form, we haveMG = C/t, where M is the square matrix of size a + b given by

M =











Ua+b+k−2
1 Ua+b+k−3

1 · · · U b+k−1
1 U b−1

1 U b−2
1 · · · 1

Ua+b+k−2
2 · · · · · · 1

...
...

Ua+b+k−2
a+b Ua+b+k−3

a+b · · · U b+k−1
a+b U b−1

a+b U b−2
a+b · · · 1











, (7)

G is the column vector (Gk−2, . . . , Gk−a−1, Gb−1, . . . , G0), and C is the column vector

(Ua+b−1
1 , . . . , Ua+b−1

a+b ). In view of the definition (4) of Schur functions,

det(M) = sλ(U),

with λ = (k − 1)a. It has been shown in [10] that the generating function of excursions (walks
starting and ending at 0) confined in the strip of height k − 2 is

(−1)a+1

t

s(k−2)a(U)

s(k−1)a(U)
,

and that, in particular, sλ(U) 6= 0. Hence M is invertible, and applying Cramer’s rule to the
above system gives

Gk−a−1 =
1

t

sµ(U)

sλ(U)
,

with λ and µ defined as in the statement of the proposition. Combining this with (6) gives the
desired Schur function form of Ck.

A second proof via symmetric functions. Let us now give an alternative proof of the Schur
function expression of Ck. It will be based on the dual Jacobi-Trudi identity, which expresses
Schur functions as a determinant in the elementary symmetric functions ei [37, Cor. 7.16.2]: for
any partition ν,

sν = det
(

eν′

j
+i−j

)

1≤i,j≤ν1

, (8)

where ν′ is the conjugate partition of ν.
Let us consider the identity (2), with Dk = det(1− tAk). It turns out that this determinant

is of the form (8). Indeed, let us define Vi = −Ui, for 1 ≤ i ≤ a + b. Then the only elementary
symmetric functions of the Vi that do not vanish are e0(V) = 1, ea(V) = −1/t and ea+b(V) = 1
(with V = (V1, . . . , Va+b)). Let us apply (8) to ν = λ = (k − 1)a, with variables V1, . . . , Va+b.
Then ν′ = ak−1 and one obtains

sλ(V) = (−t)−(k−1)Dk = (−1)a(k−1)sλ(U),

since sλ is homogeneous of degree a(k − 1). This gives the Schur function expression of Dk.
Now, by the general inversion formula for matrices, Nk = (−1)k det((1 − tAk)k−a,a), where

(1− tAk)k−a,a is obtained by deleting row k− a and column a from (1− tAk). Let us apply (8)

to ν = µ = ((k− 1)a−1, a− 1). Then ν′ = aa−1(a− 1)k−a. The matrix
(

eν′

j
+i−j

)

has size k− 1,
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and its last column contains only one non-zero entry (equal to e0(V) = 1), in row k − a. After
deleting this row and the last column, one obtains:

sµ(V) = (−1)a−1(−t)−(k−2) det((1 − tAk)k−a,a) = (−1)a−1t−(k−2)Nk = (−1)k(a−1)sµ(U),

as sµ is homogeneous of degree k(a− 1). This gives the desired expression of Nk.

Linear recursions. Finally, let us prove that the sequences of polynomials Nk and Dk satisfy
a linear recurrence relation with coefficients in Q[t], the ring of polynomials in t. Equivalently,
we prove that each of the generating functions

N(z, t) :=
∑

k≥a

Nkzk and D(z, t) :=
∑

k≥a

Dkzk

is actually a rational function in z and t. The existence of a linear recursion then easily follows
by the general theory of rational series [36, Ch. 4].

Given the expression (5) of Nk, what we have to do is to evaluate

N ′(z; u1, . . . , ua+b) :=
∑

k≥a

s(k−1)a−1,a−1z
k

where the symmetric functions involve the a + b indeterminates u1, . . . , un, with n = a + b.
We use the definition (4) of Schur functions to write s(k−1)a−1,a−1 as a ratio of determinants of
size n. The determinant occurring at the denominator is the Vandermonde Vn in the ui’s, and
is independent of k. The determinant at the numerator is obtained from (7) by replacing the

column containing U b+k−1
i by a column of Ua+b−1

i (and then each Ui by the indeterminate ui).
We expand it as a sum over permutations of length n, and obtain:

N ′(z; u) =
1

Vn

∑

k≥a

zk
∑

σ∈Sn

ε(σ) σ
(

un+k−2
1 · · ·ub+k

a−1u
a+b−1
a ub−1

a+1 · · ·u1
n−1u

0
n

)

=
1

Vn

∑

σ∈Sn

ε(σ) σ

(

un+a−2
1 · · ·ua+b

a−1u
a+b−1
a ub−1

a+1 · · ·u1
n−1u

0
n

1− zu1 · · ·ua−1

)

,

where σ acts on functions of u1, . . . , un by permuting the variables:

σF (u1, . . . , un) = F (uσ(1), . . . , uσ(n)).

Equivalently,

N ′(z; u) =
P (z; u)

Q(z; u)

where

Q(z; u) =
∑

I⊂JnK, |I|=a−1

(

1− z
∏

i∈I

ui

)

and P (z; u) is another polynomial in z and the ui, symmetric in the ui’s. This symmetry property
shows that replacing ui by Ui transforms N ′(z; u) into a rational series in z and t. The link
between Nk and s(k−1)a−1,a−1 then gives

N(z, t) =
(−1)a−1P ((−1)a−1tz; U)

t2 Q((−1)a−1tz; U)
,

another rational function of z and t. A similar argument, given explicitly in [10], yields

D(z, t) =
(−1)a−1P̃ ((−1)a−1tz; U)

t Q̃((−1)a−1tz; U)
,

for two polynomials P̃ and Q̃ in z and u1, . . . , un. More precisely,

Q̃(z; u) =
∑

I⊂JnK, |I|=a

(

1− z
∏

i∈I

ui

)

.
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By looking at the degree of Q̃ and Q, this establishes the existence of recurrence relations of
order

(

a+b
a−1

)

for Nk, and
(

a+b
a

)

for Dk. If there were recursions of a smaller order, the polynomials

Q(z; U) or Q̃(z; U) would factor. It has been shown in [10, Section 6] that Q̃(z; U) is irreducible,
and the same argument implies that Q(z; U) is irreducible as well.

3.2.3. Two proofs of Corollary 3.4. Let us specialize Proposition 3.3 to the case a = 1. We
observe that µ is the empty partition, so that sµ = 1, while λ = (k− 1), so that sλ = hk−1. The
expressions (5) of Nk and Dk in terms of Schur functions give Nk = tk−2 and Dk = tk−1hk−1(U).
Observe that e1(U) = 1/t and eb+1(U) = (−1)b+1. The classical relation between elementary
and complete symmetric functions [37, Eq. (7.13)] gives, for k ≥ 1,

hk(U) =
1

t
hk−1(U)− hk−b−1(U),

with initial conditions h0 = 1 and hi = 0 for i < 0. This gives the desired recursion for Dk.

Let us now justify combinatorially the simplicity of Nk and Dk. Recall that, for k ≥ 2, one
has Ck = t2Wk, where Wk counts walks (with steps +1, −b) going from 1 to k−1 on the segment
graph J1, k−1K. The adjacency matrix of this graph is Ak. The combinatorial description1 of the
inverse of the matrix (1− tAk) tells us that Dk counts non-intersecting collections of elementary
cycles on the segment J1, k − 1K, while Nk counts configurations formed of a self-avoiding path
w going from 1 to k− 1 together with a non-intersecting collection of elementary cycles that do
not meet w. In the polynomials Nk and Dk, each cycle of length ℓ is given a weight (−tℓ) while
the path w is simply weighted tℓ if it has length ℓ. This gives directly Nk = tk−2, as the only
possible path w is formed of k − 2 up steps, and leaves no place to co-existing cycles. Now the
only elementary cycles are formed of b up steps and one down step −b. The recursion satisfied
by Dk is then obtained by discussing whether the point k − 1 is contained in one such cycle.

Note that this proof can be rephrased in terms of heaps of cycles using Viennot’s correspon-
dence between walks on a graph and certain heaps [38]. The expression Nk/Dk then appears as
a specialisation of the inversion lemma (also found in [38]). In particular, Dk is the (alternating)
generating function of trivial heaps of cycles.

Remark. For general values of a and b, the description of Dk and Nk in terms of cycles and
paths on the graph J1, k−1K remains perfectly valid. But the structure of elementary cycles and
self-avoiding paths becomes more complicated. See an example in Figure 5.

Figure 5. Two non-intersecting elementary cycles (for a = 4 and b = 3).

3.2.4. Proof of Proposition 3.1. The expression of Ck is just a specialisation of Corollary 3.4
to the case b = 1. It remains to prove that the series C(t) is not D-finite.

Let us first observe that C(t) is D-finite if and only if the power series (in u) B(u) :=
∑

k uk/(1−u2k) is D-finite. Indeed, one goes from C(t) to B(u), and vice-versa, by an algebraic
substitution of the variable, as U is an algebraic function of t and t = U/(1 + U2). It is known
that D-finite series are preserved by algebraic substitutions [37, Thm. 6.4.10], so that we can
now focus on the series B(u).

This series has integer coefficients, and radius of convergence 1. Hence it is either rational,
or admits the unit circle as a natural boundary [12]. As will be recalled later (10), the singular
behaviour of B(u) as u approaches 1 involves a logarithm, which rules out the possibility of

1This description seems to have been around since, at least, the 80’s [25, 38]. See [9, Thm. 2.1] for a modern
formulation.
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B(u) being rational. Thus B(u) has a natural boundary, and, in particular, infinitely many
singularities. But D-finite series have only finitely many singularities, so that B(u) is not D-
finite.

4. Asymptotic enumerative results

In this section we present some results on the asymptotic enumeration of culminating walks.
Intuitively, three cases arise, depending on the drift of the walks, defined as the difference a− b.
Indeed, an n-step random walk of positive drift is known to end at level O(n) and is, intuitively,
quite likely to be culminating. On the contrary, walks with a negative drift have a very small
probability of staying positive. We first work out the intermediate case of a zero drift.

4.1. Walks with a null drift (a = b = 1)

When the drift is zero, the number of positive walks (walks in which every step ends at a

positive level) of length n is known to be asymptotically equivalent to 2n/
√

2πn. The average
height, and the average final level of these walks both scale like

√
n. Hence we can expect the

number of culminating walks to be of the order of 2n/n. This is confirmed by the following
result.

Proposition 4.1. As n→∞, the number of (1, 1)-culminating paths of length n is asymptoti-
cally equivalent to 2n/(4n).

Proof. We start from the expression (1) of C(t), with U = U1 = O(t), and apply the singularity
analysis of [23]. Note that U(t) is an odd function of t. Let us first study the even part of C(t),
which counts culminating paths of even length:

Ce(t) =
1− U2

1 + U2

∑

k≥1

U2k

1− U4k
.

Let Z ≡ Z(x) be such that U(t)2 = Z(t2). That is,

Z ≡ Z(x) =
1− 2x−

√
1− 4x

2x
.

The equation U = t(1 + U2) gives Z = x(1 + Z)2. Moreover, we have Ce(t) = D(t2) where

D(x) =
1− Z

1 + Z

∑

k≥1

Zk

1− Z2k
.

We thus need to study the asymptotic behaviour of the coefficients of D(x). We write

D(x) = S(Z(x)), with S(z) =
1− z

1 + z

∑

k≥1

zk

1− z2k
.

The series Z(x) has radius of convergence 1/4. It is analytic in the domain D = C\[1/4, +∞),
with exactly one singularity, at x = 1/4. One has Z(0) = 0, and |Z(x)| < 1 for all x in D. Indeed,
assume |Z(x)| ≥ 1 for some x in D. By continuity, Z(x) = eiθ for some x in D. From the equation
x(1 + Z)2 = Z, we conclude that θ ∈ (−π, π) (for θ = ±π, we would have Z = −1 = 0), and
that x = 1/(4 cos2(θ/2)). But this contradicts the fact that x ∈ D.

The series S(z) has radius of convergence 1. Given that |Z(x)| < 1 in D, this implies that
D(x) = S(Z(x))) is analytic in the domain D. It remains to understand how D(x) behaves as x
approaches 1/4 in D.

Take x = (1− reiθ)/4, with 0 < r < 1 and |θ| < π. Then

Z(x) = 1− 2
√

1− 4x + O(1 − 4x) = 1− 2
√

reiθ/2 + O(r).

In particular,

arg(1− Z(x)) = θ/2 + O(
√

r).
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Choose α ∈ (π/4, π/2). The above identity shows that there exists η > 0 and π/2 < φ < π such
that, in the indented disk

I = {x : |1− 4x| < η and | arg(1 − 4x)| < φ},
one has

| arg(1 − Z(x))| < α. (9)

Now when z → 1 in such a way that | arg(1− z)| < α,

∑

k≥1

zk

1− z2k
∼ 1

2(1− z)
log

1

1− z
, so that S(z) ∼ 1

4
log

1

1− z
. (10)

This can be obtained using a Mellin transform or some already known results on the generating
function of divisor sums [22].

Combining (9) and (10) shows that, as x tends to 1/4 in the indented disk I,

D(x) = S(Z(x)) ∼ 1

8
log

1

1− 4x
. (11)

This allows us to apply the transfer theorems of [23]. Indeed, the series D(x) is analytic in the
following domain:

∆ = {x 6= 1/4 : |4x| < 1 + η and | arg(1− 4x)| < φ},
with singular behaviour near x = 1/4 given by (11). From this we conclude that the coefficient
of xn in D(x) is asymptotically equivalent to 4n/(8n). Going back to the series Ce(t), this means
that the number of culminating paths of (even) length N = 2n is asymptotically equivalent to
2N/(4N).

The study of the odd part of C(t) is similar.

4.2. Walks with positive drift (a > b)

When the drift is positive, it is known that, asymptotically, a positive fraction of walks with
steps +a, −b is actually positive (every step ends at a positive level). More precisely, as n→∞,
the number pa,b

n of positive walks of length n satisfies

pa,b
n ∼ κa,b.2

n (12)

for some positive constant κa,b. We will show that the culmination and final record conditions
play similar filtering roles in the paths of {m, m}∗, and prove the following result.

Proposition 4.2. For a > b, the number ca,b
n of culminating walks of length n satisfies

ca,b
n = κ2

a,b.2
n + O(ρn),

where ρ < 2 and κa,b is the constant involved in the asymptotics of positive walks.

Proof. In what follows, we consider two families of paths that are close to the meanders and
excursions defined in the introduction: the (already defined) positive walks, and certain quasi-
excursions. The exact and asymptotic enumeration of meanders and excursions has been com-
pletely worked out in [5], and we will rely heavily on this paper. For instance, the estimate (12)
follows from the results of [5] by noticing that a meander factors into an excursion followed by a
positive walk. Let us call quasi-excursion a walk in which every step, except the final one, ends
at a positive level. For instance, if a = 3 and b = 2, the word mmm is a quasi-excursion. By
removing the last step of such a walk, we see that quasi-excursions are in bijection with positive
walks of final height 1, 2, . . . , or b. We denote the number of quasi-excursions of length n by
ea,b

n . Using the results of [5], it is easy to see that, when the drift is positive, quasi-excursions
are exponentially rare among general walks. That is, there exists µ < 2 such that for n large
enough,

ea,b
n < µn. (13)
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From now on, we drop the superscripts a and b, writing for instance cn rather than ca,b
n . For

any word w = w1 · · ·wk, denote by
←
w the mirror image of w, that is,

←
w = wk · · ·w1. Let u be a

culminating word of length n, and write u = vw, where the word v (resp. w) has length ⌊n/2⌋
(resp. ⌈n/2⌉). Then both v and

←
w are positive walks, and this proves that

cn ≤ p⌊n/2⌋p⌈n/2⌉. (14)

Conversely, let us bound the number of pairs (v, w), where v and w are positive walks of respective

lengths ⌊n/2⌋ and ⌈n/2⌉, such that the word u = v
←
w is not culminating. This means that

• either u factors as v1w1, where v1 is a quasi-excursion of length i > ⌊n/2⌋,
• or, symmetrically, u factors as v2

←
w2 where w2 is a quasi-excursion of length j > ⌈n/2⌉.

This implies that

p⌊n/2⌋p⌈n/2⌉ − cn ≤ 2

n
∑

i=⌊n/2⌋
ei2

n−i.

In view of (13), we have, for n large enough:

p⌊n/2⌋p⌈n/2⌉ − cn ≤ 2

n
∑

i=⌊n/2⌋
µi2n−i ≤ 2

1− µ/2
2n(µ/2)⌊n/2⌋ ≤ 4

1− µ/2
(2µ)⌊n/2⌋.

Combining this with (14) and the known asymptotics for the numbers pn gives the expected
result.

4.3. Walks with negative drift (a < b): exponential decay

When the drift is negative, it is known that positive walks are exponentially rare among
general walks. Indeed, there exist constants κa,b > 0 and αa,b ∈ (1, 2), such that

pa,b
n ∼ κa,b

αn
a,b

n3/2
.

More precisely,

αa,b =
a + b

a+b
√

aabb
=

1 + q
1+q
√

qq
≡ α(q), (15)

where q = a/b < 1. We show below that the constant αa,b also governs the number of culminating
walks of size n.

Proposition 4.3. For a < b, the number ca,b
n of culminating walks of length n satisfies

ca,b
n = O

(

αn
a,b

n3

)

, (16)

where αa,b is given above. Moreover,

lim
n→∞

(

ca,b
n

)1/n
= αa,b.

Proof. The inequality (14) still holds, and gives the upper bound (16) on the number of culmi-
nating paths.

Let us now prove that the growth constant of culminating walks is still αa,b by constructing a
large class of such walks. Let En be the set of excursions of length n (from now on, we drop the
superscripts a and b). Such excursions only exist when n is a multiple of a + b, and the number
en of such walks then satisfies

en ∼ καn
a,bn

−3/2

for some positive constant κ. It is known that random (a, b)-excursions of length n converge
in law to the Brownian excursion, after normalising the length by n and the height by κ′

√
n,

for some constant κ′ depending on a and b [29]. This implies that the (normalized) height of
a discrete excursion converges in law to the height of the Brownian excursion (described by a
theta distribution). In particular, the probability pn that an excursion of En has height larger
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than
√

n tends to a limit p < 1 as n goes to infinity. Take an excursion of Ek of height less than√
n, with

k = (a + b)

⌊

n− 1−√n

a + b

⌋

and append one up step at its left, and n− k − 1 up steps at its right: this gives a culminating
walk of length n, which proves that

cn ≥ ek(1− pk).

Taking nth roots gives the required lower bound on the growth of cn.

Hence there are exponentially few walks of size n with steps +a,−b that are culminating. It
is likely that cn behaves like αn

a,bn
−3−γ , for some γ ≥ 0 that remains to be determined. Note

that the final height of an n-step meander is known to have a discrete limit law as n→∞ [5].

5. Random generation of positive walks

The random generation of positive walks will be a preliminary step in some of the algorithms
we present in the next section for the generation of culminating walks. The main ideas underlying
the generation are the same for both classes of walks, but the class of positive walks is simpler. We
apply three different approaches to their random generation: recursive methods (two versions),
anticipated rejection, and Boltzmann sampling. The choice of the best algorithm depends on the
drift, as summarized in the top part of Table 2. We denote by Pa,b the language of positive
walks, but the superscript a, b will often be dropped.

5.1. Recursive step-by-step approach

The first approach we present is elementary: we construct positive walks step-by-step, choos-
ing at each time an up or down step with the right probability. This is the basis of the recursive
approach introduced in [39]. Here are the three ideas underlying the algorithm:

• Let W be a language, and let Wp denote the language of the prefixes of words of W .
Assume that for all w ∈ Wp such that |w| ≤ n, we know the number Nw(n) of words of
W of length n beginning with w (we call these word extensions of w). Then it is possible
to draw uniformly words of length n in W as follows. One starts from the empty word,
and adds steps incrementally. If at some point the prefix that is built is w, one adds the
letter x to w with probability Nwx(n)/Nw(n).
• When W = Pa,b, the number of extensions of length n of a prefix w ∈ Wp depends only

on two parameters:
– the length difference i = n− |w|,
– the final height of w, j = φa,b(w),

• Let pi,j be the number of extensions of length n of such a prefix w. The numbers pi,j

obey the following recurrence:

pi,j = pi−1,j+a + 1j>b pi−1,j−b for i ≥ 1,
p0,j = 1.

As the two parameters i and j are bounded by n and an respectively, the precomputation of the
numbers pi,j takes O(n2) arithmetic operations and requires to store O(n2) numbers. Then, the
generation of a random word of length n can be performed in linear time. However, one should
take into account the cost due to the size of the numbers in the precomputation stage. Indeed,
the numbers pi,j are exponential in n, so that the actual time-space complexity for this stage
may grow to O(n3). However, using a floating-point technique adapted from [16], it should be
possible to take advantage of the numerical stability of the algorithm to reduce the space needed
to O(n2+ε).

This naive recursive approach is less efficient than the one presented below, which is based
on context-free grammars. But it will be easily adapted to the generation of culminating walks,
which cannot be generated via a grammar, as was proved in Section 2.
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5.2. Recursive approach via context-free grammars

It is easy to see that the language Pa,b ≡ P is recognized by a non-deterministic push-down
automaton. This implies that P is context-free. The same holds for the language Da,b ≡ D
of excursions. A non-ambiguous context-free grammar generating excursions is given explicitly
in [19]. It suffices to add one equation to obtain a non-ambiguous grammar generating positive
walks:

D = ε +
∑a

k=1 LkRk, Li = 1i=am D +
∑a

k=i+1 LkRk−i,

P = ε +
∑a

i=1 LiP , Rj = 1j=bm D +
∑b

k=j+1 Lk−jRk.
(17)

In this system, ε is the empty word, D (resp. P) is the language of excursions (resp. positive
walks) while Li, 1 ≤ i ≤ a and Rj , 1 ≤ j ≤ b, are a + b auxiliary languages defined in [19]. As
above, m and m are the up and down letters in our alphabet.

From this grammar, we can apply the recursive approach of [24] for the uniform generation of
decomposable objects, implemented in the combstruct package of Maple or in the stand-alone
software GenRGenS [35]. The generation of positive walks of size n begins with the precompu-
tation of O(n) large numbers. These numbers count words of length r, for all r ≤ n, in each of
the languages involved in the grammar. The fastest way to get them is to convert the algebraic
system (17) into a system of linear differential equations, which, in turn, yields a system of
linear recurrence relations (with polynomial coefficients) defining the requested numbers. This
step requires a linear number of arithmetic operations. But one has to multiply numbers whose
size (number of digits) is O(n), which may result, in practice, in a quadratic time-complexity for
the precomputation stage. Then, the generation of a random positive walk can be performed in
time O(n log n).

Note that a careful implementation [15] of the floating point approach of [16] using an
arbitrary-precision floating-point computation library yields a O(n1+ε) complexity after a
O(n1+ε) precomputation.

5.3. Anticipated rejection

The principle of this approach is to start with an empty walk, and then add successive up
and down steps by flipping an unbiased coin until the walk reaches the desired length n, or
a non-positive ordinate. In this case, the walk is rejected and the procedure starts from the
beginning. Of course, no precomputation nor non-linear storage is required. This principle was
applied to meanders, in the case a = b = 1, in [6], as a first step towards the uniform random
generation of directed animals. The analysis of this algorithm yielded a linear time-complexity,
later generalized in [7] to the case of coloured walks, in which up, down, and level steps come
respectively in p, q and r different colours. There, it was shown that the time-complexity is
linear when p ≥ q, but exponential when p < q.

Unsurprisingly, we obtain similar results for the general (a, b)-case.

Proposition 5.1. The anticipated rejection scheme applied to the uniform random generation
of (a, b)-positive walks has a linear time-complexity when a ≥ b and an exponential complexity
in Θ((2/αa,b)

nn
√

n) when a < b, with αa,b = a+b
a+b
√

aabb
< 2.

Proof. We first note that the language P of positive walks is a left-factor language. That is, it
is stable by taking prefixes, and every word of P is the proper prefix of another word of P . It
has been proved in [14] that the average complexity fL(n) of the anticipated rejection scheme
for a left-factor language L on a k-letter alphabet is

fL(n) =
[zn] z

1−z L(z/k)

[zn]L(z/k)

where L(z) is the length generating function of the words of L.
We now exploit the results of [5], giving the singular behaviour of the series M(z) and E(z)

that count respectively meanders and excursions. As a meander factors uniquely as an excursion
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followed by a positive walk, we can derive from [5] the singular behaviour of the series P (z) =
∑

pnzn that counts positive walks. This series is always algebraic, so that singularity analysis
applies.

– For a ≥ b, the series P (z/2) has an algebraic singularity at z = 1 in (1 − z)−ν (with
ν = 1 if a > b, and ν = 1/2 if a = b). Thus P (z/2)/(1− z) has a singular behaviour in
(1− z)−ν−1. A singularity analysis gives fP(n) ∼ n/ν.

– For a < b, the series P (z/2) has a square-root singularity at 2/αa,b > 1, but P (z/2)/(1−
z) has a smaller radius of convergence zc = 1, with a simple pole at this point. This
gives

fP(n) ∼ 2n P (1/2)

pn
∼ κ

(

2

αa,b

)n

n
√

n

for some constant κ.

5.4. Boltzmann sampling

A Boltzmann generator [20] generates every object in the class C with a probability propor-
tional to xn, where n is the size of the object. More precisely, for every object w (a walk, in our
context):

P(w) =
x|w|

C(x)

where C(x) is the generating function of the objects of C. Of course, this results in a relaxation
of the size constraint, since objects of all sizes can be generated. But, by tuning carefully the
parameter x (which has to be smaller than or equal to the radius of convergence of C(x)), and
rejecting the too large and too small objects, one can often achieve an approximate-size random
sampling, with a tolerance ε, in linear time. This means that after a linear number of real-
arithmetic operations, and a number of attempts that is constant on average, the algorithm will
produce an object of size |w| ∈ [(1 − ε)n, (1 + ε)n], which is uniform among the objects of the
same size.

In particular, the grammar (17) shows that the class of positive walks is specifiable in the
sense of [20]. The analysis of the generating functions of meanders and excursions performed
in [5] shows that the series P (z) counting positive walks is always analytic in a ∆-domain, with
a dominant singularity in (1 − µt)−ν , where ν = 1 if a > b, ν = 1/2 if a = b and ν = −1/2
if a < b. In the first two cases, Theorem 6.3 of [20] gives an approximate sampling in linear
time (and an exact sampling in quadratic time). In the third case, the standard deviation of
the objects produced by a standard Boltzmann sampler is much larger than their mean, which
makes rejection costly. However, we can generate instead pointed positive walks, that is, positive
walks with a distinguished step, and forget the pointing: as guaranteed by Theorem 6.5 of [20],
this gives again an approximate sampling in linear time.

To conclude, the uniform random generation of (a, b)-positive walks of size n can be performed
in linear time when a ≥ b by an anticipated rejection, and this strategy does not require any
precomputations nor storage. When a < b, our best algorithm for exact sampling remains the
recursive approach based on the grammar (17). It runs in O(n1+ε) after a O(n1+ε) precompu-
tation. However, one can achieve, in linear time and space, an approximate-size sampling using
a Boltzmann generator.

6. Random generation of culminating walks

6.1. Recursive step-by-step approach

This elementary procedure, introduced in [30], generates culminating walks step by step,
choosing every new step with the right probability. This is again an instance of Wilf’s recursive
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method. The arguments given in Section 5.1 for positive walks should now be replaced by the
following ones:

• For W = Ca,b, the number of extensions of length n of a prefix w ∈ Wp depends only on
three parameters:

– the length difference i = n− |w|,
– the final height j = φa,b(w),
– the maximal height h reached by w.

• Let ci,j,h be the number of extensions of length n of such a prefix w. The numbers ci,j,h

obey the following recurrence:

ci,j,h = ci−1,j+a,max(h,j+a) + 1j>b ci−1,j−b,h for i > 1,
c1,j,h = 1j+a>h.

As the parameters i, j and h are bounded by n, an and an respectively, the precomputation of
the numbers c(i, j, h) takes O(n3) arithmetic operations and requires to store O(n3) numbers.
Then, the generation of a random word of length n can be performed in linear time. But
again, the numbers ci,j,h are exponential in n, so that the actual time-space complexity of the
precomputation stage may grow to O(n4).

The above procedure is easily adapted to generate culminating walks ending at a prescribed

height k. The number c
(k)
i,j of i-step extensions of a prefix ending at height j is given by

c
(k)
i,j = 1j+a<k c

(k)
i−1,j+a + 1j>b c

(k)
i−1,j−b for i > 1,

c
(k)
1,j = 1j+a=k.

Now j is bounded by k, so that we only have to compute a table of O(kn) numbers, in O(kn)
arithmetic operations. The actual time-space complexity is likely to grow to O(kn2) due to the
handling of large numbers.

However, whether the height of the walk is fixed or not, one should be able to limit the com-
putational overhead due to the size of these numbers to O(nε), using a floating-point technique
adapted from [16].

6.2. Rejection methods

We presented in Section 5.3 an example of the anticipated rejection approach. The more
general rejection principle has been applied successfully to various problems [17, 6, 20]. The
principle of a rejection algorithm for words in W is to draw objects uniformly in a superset
V ⊃ W until an object ofW is found. The average-case complexity of a such a technique is then
ζ(n)vn/wn, where ζ(n) is the cost for the generation of a word of size n in V , and wn and vn

respectively denote the number of words of length n in W and V .
The aim is to find a superset V satisfying the following (sometimes conflicting) requirements:
– the words of V can be generated quickly, so that ζ(n) is small,
– the set V is not too large, so that the ratio vn/wn is small.

Moreover, testing whether a word of V actually belongs to W should be doable in linear time.
This is obviously the case when W = Ca,b.

We investigate below two possibilities for the superset V , while fixing W = Ca,b.

6.2.1. Drawing from positive walks. Here, we take for V the set of positive walks. Their
random generation has been discussed in Section 5, and we refer to the last lines of this section
for our conclusions on this question.

– When a < b, the number vn of positive walks of length n grows like αn
a,bn

−3/2 (up to a

multiplicative constant). If ca,b
n grows like αn

a,bn
−3−γ for γ ≥ 0 (see Proposition 4.3), the

cost will be O(nγ+5/2+ε), with a preprocessing stage of O(n1+ε). However, approximate-
size sampling can be performed in time O(nγ+5/2), with no preprocessing stage. It
suffices to reject among the set of positive walks generated by a Boltzmann algorithm.
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– If a = b, then vn grows like 2nn−1/2, while cn ∼ 2n/n (Proposition 4.1). Hence the cost
here is O(n3/2).

– Finally, for a > b, the number of culminating walks grows like 2n (Proposition 4.2). This
shows that the algorithm is linear.

Remark. For a > b, culminating walks are so numerous that we can even perform the rejec-
tion in the set of general (a, b)-walks, and still obtain a linear complexity, as discussed in the
introduction. However, it seems natural to perform an anticipated rejection, rejecting walks as
soon as they stop being positive: but this amounts to performing rejection in the set of positive
walks, obtained themselves via an anticipated rejection from general walks.

6.2.2. Drawing from hybrid walks. We begin with a simple, yet crucial, observation:

Let
←
w denote the mirror image of the word w. Then if w ∈ Ca,b, so is

←
w.

Graphically, taking the mirror image amounts to a central symmetry on walks. This remark
implies that, on average, the mid-point of a culminating walk lies at a height which is half the
final height. This suggests another possible superset of Ca,b from which we may draw, namely
the language Ha,b of hybrid walks, defined by

H ≡ Ha,b :=
⋃

n≥0

P⌊n/2⌋
←−−−−P⌈n/2⌉,

where P is the language of positive walks, and
←−P the language of mirror images of positive

walks. As already observed in Section 4, Ca,b ⊂ Ha,b.
The intuition behind the choice of the superset Ha,b is that a path that violates the positivity

(resp. final record) condition is likely to do so at its beginning (resp. ending). Thus, ensuring
positivity on the first half of the walk, and the final record condition on the second half, should
yield a lower rejection probability than ensuring positivity everywhere, as we did when drawing
from positive walks.

How can one generate hybrid walks uniformly at random? As a hybrid walk of length n is
the (non-ambiguous) concatenation of a positive walk of size ⌊n/2⌋ and of the mirror image of
another positive walk, of size ⌈n/2⌉, it is sufficient to draw positive walks uniformly at random.
The cost of the generation of a hybrid walk of length n will be twice the cost of the generation
of a positive walk of length (approximately) n/2. We refer again to the end of Section 5 for
our conclusions on this cost. We do not use below the Boltzmann sampling for positive walks,
since gluing two positive walks of approximate size n/2 does not give the same probability to all
hybrid walks of a given size.
Let us now discuss the efficiency of the rejection approach based on the language H.

– When a < b, we have |Hn| = Θ(αn
a,b/n3), while mn = Θ(αn

a,b/n3/2), so that we gain an

order O(n3/2) in complexity (comparing with the rejection of positive walks). This leads
to a cost O(nγ+1+ε) if cn scales like αn

a,bn
−3−γ , with a O(n1+ε) precomputation.

– When a = b = 1, |Hn| = Θ(2n/n), while mn = Θ(2n/
√

n), so that the gain is of order√
n. Consequently, the complexity of the rejection algorithm based on H is linear. No

precomputation nor storage is required.
– For a > b, we have |Hn| = Θ(2n), and similarly mn = Θ(2n). So the complexity gain

(compared with the approach that generates positive walks) can only be Θ(1). The
algorithm is still linear.

7. Conclusion and perspectives

We have studied culminating paths, from the point of view of formal languages, enumerative
combinatorics and random generation. Our best results in terms of random generation are
summarized in Table 2.

An important question that is left open is to determine the asymptotic growth of the number of
culminating walks when the drift is negative (a < b). One possible approach would be to exploit
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Paths Method ♯ Attempts Precomp. Cost

Pa,b

Recursive method, Section 5.2:
standard implementation O(n2) O(n log n)

or floating-point implementation. O(n1+ε) O(n1+ε)
a < b Approximate-size Boltzmann,

Section 5.4 O(1) ∅ O(n)
a ≥ b Anticipated rejection, O(

√
n) (a = b) ∅ O(n)

Section 5.3 O(1) (a > b)

Ca,b⇒k Recursive method, O(kn1+ε) O(n)
Section 6.1

Ca,b

Recursive method, [30] and Section 6.1 O(n3+ε) O(n)
a < b or rejection from hybrid walks,

Section 6.2.2 O(nγ) O(n1+ε) O(n1+γ+ε)
a = b Rejection from O(1) ∅ O(n)

hybrid walks, Section 6.2.2
a > b Rejection from positive walks or O(1) ∅ O(n)

hybrid walks, Sections 6.2.1 and 6.2.2

Table 2. The complexity of random generation of positive and culminating
paths. The cost is that of one random drawing, once the precomputations have
been performed. It is assumed that cn ∼ αn

a,bn
−3−γ if a < b.

the closed form expression of Proposition 3.3, in the spirit of Proposition 4.1 and [5]. The result
might have interesting consequences regarding the random generation of culminating walks. In

particular, if ca,b
n = Θ((ma,b

n/2)
2 n−γ) = Θ(αn

a,bn
−3−γ), with γ < 2, the generation algorithm

based on hybrid walks would be faster than the recursive algorithm, at least for generating few

paths. However, our numerical data suggest that the ratio ca,b
n /(ma,b

n/2)
2 decreases at least as fast

as n−2.
It would also be interesting to study how the height is distributed on random culminating

walks of length n. Such a study may provide better algorithms for random generation, especially
in the a < b case, where the height is expected to be small. How does the average height
scale with n? Is there a limiting distribution for some normalized height? This is related
to a more ambitious question: is there a limiting process for culminating walks, in the same
way discrete excursions converge to the Brownian excursion [29], or discrete meanders to the
Brownian meander [28]? In the case a = b = 1, a candidate for the limit process could be
the meander conditioned (with care) to reach its maximum at time 1. Note that the joint law
of the maximum and final position of a meander is known [21], and related to the law of the
maximum and minimum of a Brownian bridge, both in the continuous and discrete cases [13].
The case where the maximum coincides with the final position (an event of zero probability in
the continuous case) is closely related to our culminating walks.

Future extensions of the present work may also include the study of culminating walks with
more than two types of steps, in order to model different kinds of matches and mismatches,
and thus capture the whole scoring scheme of the FLASH algorithm. For instance, it is usually
considered less drastic to replace a purine base by another purine base (A↔G) rather than a
pyrimidine one in DNA. It is thus natural to penalize differently different mismatches. This
could be modelled by introducing down steps of different heights.

Lastly, a natural, biologically relevant perspective would be to address the non-uniform gen-
eration of culminating paths. Indeed, the matches and mismatches may not be uniform over
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a biological sequence, and be subject to local correlations. This is classically modelled by a
Markov chain (further conditioned to yield culminating paths). Our algorithms could in prin-
ciple be adapted to this more general context, but their analysis would need to be carefully
worked out. In particular, the drift of random walks would depend on the chain and differ in
general from a− b. We naturally expect the efficiency of our algorithms to depend of the model,
culminating walks with positive drift being much easier to generate than those with a negative
drift.
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[7] E. Barcucci, R. Pinzani, and R. Sprugnoli. The random generation of directed animals. Theoret. Comput.
Sci., 127(2):333–350, 1994.
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