Culminating paths

Abstract : Let a and b be two positive integers. A culminating path is a path of Z^2 that starts from (0,0), consists of steps (1,a) and (1,-b), stays above the x-axis and ends at the highest ordinate it ever reaches. These paths were first encountered in bioinformatics, in the analysis of similarity search algorithms. They are also related to certain models of Lorentzian gravity in theoretical physics. We first show that the language on a two letter alphabet that naturally encodes culminating paths is not context-free. Then, we focus on the enumeration of culminating paths. A step by step approach, combined with the kernel method, provides a closed form expression for the generating fucntion of culminating paths ending at a (generic) height k. In the case a=b, we derive from this expression the asymptotic behaviour of the number of culminating paths of length n. When a>b, we obtain the asymptotic behaviour by a simpler argument. When a= b, with no precomputation stage nor non-linear storage required. The choice of the best algorithm is not as clear when a
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2008, 10 (2), pp.125--152
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger
Contributeur : Mireille Bousquet-Mélou <>
Soumis le : mercredi 30 avril 2008 - 16:36:14
Dernière modification le : mardi 24 avril 2018 - 13:54:23
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 21:15:52


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00151979, version 2
  • ARXIV : 0706.0694



Mireille Bousquet-Mélou, Yann Ponty. Culminating paths. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2008, 10 (2), pp.125--152. 〈hal-00151979v2〉



Consultations de la notice


Téléchargements de fichiers