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Two-Variable Logic on Data Trees and
XML Reasoning

Mikotaj Bojahczyk Claire David Anca Muscholl Thomas SchwentickLuc Segoufin
Warsaw University  LIAFA, Paris VII  LIAFA, Paris VII Dortmund University  INRIA, Paris Xl

Abstract— Motivated by reasoning tasks in the behavior of XPath, and it can express many inter-
context of XML languages, the satisfiability problem  esting integrity constraints.
of logics on data trees is investigated. The nodes of
a data tree have a label from a finite set and a
data value from a possibly infinite set. It is shown Before we describe the technical contributions

that satisfiability for two-variable first-order logic is of the paper, we first discuss the connections with
decidable if the tree structure can be accessed only XML processing in more detalil

through the child and the next sibling predicates and
the access to data values is restricted to equality tests.

From this main result decidability of satisfiability and Core-XPath, the fragment of XPath capturing
containment for a data-aware fragment of XPath s nayigational behavior introduced by Gottlob et
and of the implication problem for unary key and . .
inclusion constraints is concluded. al. [13], is by now well understood. In partic-
ular, it corresponds td&0?(<, +1) on unranked
I. INTRODUCTION ordered trees [18]. HerfO?(<, +1) is the two-

Most theoretical work on XML and its query lan-variable fragment of first-order logic that uses the
guages models XML documents by labeled orderedfder < and successo#-1 relations, along with
unranked trees, where the labels are from a finitée labels of the nodes. The labels are encoded
set. Attribute values are usually ignored. This hay unary relations, one for each of the (finitely
basically two reasons, which are not independerihany) possible labels. The symbok™ refers
First, the modeling allows to apply automata basé@ two binary predicates: one for comparing the
techniques, as automata operate on trees of tiigscendant/ancestor relationship of two nodes and
kind. Second, extending the model by attributéne for the preceding/following relationship of two
values (data values) quickly leads to languages wiiblings. Similarly, +-1" also refers to two binary
undecidable static analysis (see, for instance [ljredicates: one for comparing the parent/child re-
[3], [12], [20]). lationship of two nodes and one for comparing the

Nevertheless, there are examples of decidabigxt/previous sibling relationship of two siblings.
static reasoning tasks involving attribute values [2[zore-XPath is decidable even in the presence of

[6]. The motivation for our work was to find a DTDs and the complexity of many of its fragments
logical approach for such tasks. has been studied in the literature. We refer to [3],

It is immediately clear that full first-order logic [12] and the references therein for a comprehensive

is far too powerful for this purpose. Satisfiabil-Survey.
ity for first-order logic with a predicate for data

values equality is undecidable already on strings |n the presence of data values a simple extension
[4]. There are several possible candidates for mogg Core-XPath is to allow equalities of the form
appropriate logics, including temporal logics oy, /@A = ¢/@RB inside qualifiers, meaning that the
fragments of first-order logic. In this work, weyalue of the4 attribute of some node accessible by
concentrate on a (classical) fragment of first-orde{ path matching equals theB attribute value of
logic, two-variable logic. There are several goodome node accessible by a path matching/e de-
reasons to consider this fragment. It is knowppote this fragment by Core-Data-XPath. As shown
that on many kinds of structures this fragmenfiy [12], Core-Data-XPath is undecidable and both
is decidable [14]. On ordered, unranked trees, [8] [12] studied fragments of Core-Data-XPath.
corresponds in a natural way to the navigationalo be able to reason about Core-Data-XPath, it is

natural to consider the logiEO?(~ 1), the
Work supported by the French-German cooperation pro- gie0 ( < )

gramme PROCOPE, the EU-TMR network GAMES, the Foun€Xtension ofFO (<v ‘H) with a bmary predicate
dation for Polish Science and KBN Grant 4 T11C 042 25. ~ that checks data value equality of two nodes.



It is easy to verify that FO?(~,<,+1) is

strictly contained in Core-Data-XPath and there-

fore it is natural to wonder wheth&0? (~, <, +1)
is decidable.
We do not solve the question whethEO?(~

,<,+1) is decidable, here. Nevertheless, we show

that the decidability oFO?(~, <, +1) is a difficult

problem as it would imply deciding multicounter
automata on trees and the linear logic MELL,
which are known as open issues in their respective

fields (see [9] and the references therein).
However, we show that the logiEO?(~, +1)

is decidable. It turns out that this implies the de-
cidability of several reasoning problems for XML
which involve data values. We give some examples

of applications next.

« Common reasoning tasks for XML are the

key constraints) is decidable also relative to a
schema given by a regular tree language. This
result was already known from [2], who shows
that the satisfiability problem is in NRWE.
Furthermore, tree automata can be used to
assign types to nodes of a document. In-
tegrity constraints can refer to such types.
Therefore, as these types can also be ex-
pressed byEMSO?(~, +1) formulas, the im-
plication problem for more involved integrity
constraints is still decidable.

Another application of the logical result con-
siders the containment problem for XPatfth
attribute equalitiesWe present a fragment of
XPath which allows equalities and inequalities
on attribute values for which the containment
problem can be reduced to satisfiability of

FO?(~,+1). By combining techniques, we
obtain decidability of the containment for this
XPath fragment even relative to a schema
asks whether each document satisfying all ~ consisting of a regular tree language and unary
constraints inS also satisfiesp. This boils constraints.
down to testing if there is a document that In the following we give an overview of the
satisfies all constraints i but noty, a sat- structure of the paper together with the main
isfiability question. The most common familycontributions. After the introduction and a section
of integrity constraints are key and inclusiorwhich fixes some notation, Section Il contains the
constraints. Many of them involve only onemain technical result of the paper, tH®?(~, 41)
attribute. It is easy to see that such constraintand thereforeEMSO?(~, +1)) is decidable. In
can be expressed iRO*(~,+1). Our main Section IV, we show that satisfiability and impli-
result implies the decidability of the implica-cation for unary key and inclusion constraints is
tion problem for such constraints. This wasglecidable. Section V establishes decidability of the
already known from [6], which shows that thecontainment problem for an XPath fragment with
complexity of implication, without schemas,attribute equalities. In Section VI we give strong
is polynomial. evidence that decidability oFO?(~, <, +1) on
An advantage of the logical approach is thatnranked trees is a difficult problem by reducing
reasoning problems can be relativized to dodhe non-emptiness problem for vector addition tree
uments satisfying schemas. Schemas are uswtomata to it. Most of the proofs will be found in
ally captured by regular tree languages (wherdae full version of the paper.
only the labels and not the data values are An additional contribution of this work is a uni-
used). It is known that regular tree languagefied framework for several decidability questions
can be characterized ByMSO?(+1) formu- that were studied separately in the past: consistency
las, i.e., formulas where afO?(+1) formula of integrity constraints and satisfiability of queries
is preceded by a block of existential quantiinvolving data.
fiers ranging over sets of nodes. When satisfi- Related work Closely related to our work are
ability is concerned, it is straightforward thatthe papers [3], [12] and the references therein.
decidability of FO?(~, +1) implies decidabil- Most of the fragments they consider are inside
ity of EMSO?(~,+1). Thus, by combining Core-XPath (i.e., without data values). However
formulas in a suitable way, it follows easilyseveral of the fragments are in Core-Data-XPath.
that the implication problem for unary key andin [3] the decidable fragments of Core-Data-XPath
inclusion constraints (and thus also for foreigiihat have data equality tests either don’'t have
negation or don’t have recursion. They also don't

consistency and the implication problems for
integrity constraints. Given a finite sét of
constraints and a further constraigt one

o ) . . . Ve T ,
The inclusion of FO*(~, <, +1) into XPath is done as haye horizontal navigation and therefore miss an

in the translation ofFO2(<, +1) into unary-TL over words
[11]. It is strict becaus&O?(~, <,+1) cannot express the

testSelf/@A = Self//b//c/QA

important aspect of XML navigation features. The
paper [12] extends the results of [3] by including



the horizontal axis but the only decidable fragmemnwhether a set of unary keys and foreign keys is
presented in this paper does not have negation. Tbensistent with a DTD. The decidability #10%(~
logic FO*(~, +1) does have negation and it can +1) implies that it is decidable whether any set
investigate nodes that are arbitrarily deep in thef integrity constraints definable IHO?(~, +1) is
input tree. Finally the focus of [3], [12] was to haveconsistent with an extended DTD. In particular,
the precise complexity for the decision proceduras (absolute) unary keys and foreign keys are
of the fragment considered while the precise condefinable inFO?(~, +1) this extends one of the
plexity of FO?(~,+1) is still an open issue: An the results of [2].
inspection of the current proof of Theorem 1 gives Another related line of research is to consider
an upper bound of 3NETIME, and the best lower logics and automata on words with data values. In
bound we currently have is N TIME-hardness. [5], [15], [22] automata and logics over words with
The logic considered in [1] in order to solvedata values were considered. The automata of [5]
the type inference problem is also incomparable tead very limited expressive power, while the logics
FO?(~, +1). It uses patterns with variables for theand automata of [15], [22] were undecidable. In
data values together with equality and inequalitj4] it is shown thatFO?(~, <,+1) is decidable
constraints on the variables in order to extract then words with data values. In [10] an extension of
relevant pieces of data. It can use arbitrarily manyTL was given which can manipulate data values
variables in the patterns, somethii?(~,+1) using afreezeoperator. Their decidable fragment
cannot do, but there is no recursion in the patterris incomparable t&#0?(~, <, +1) as it can only
and therefore it can only inspect the tree up to process the word from left-to-right, but can express
given constant depth. properties thaFO?(~, <, +1) cannot. In any case
As we have already mentioned, restricting FO tthose references considered only the case of words,
its two-variable fragment is a classical idea whewhich turns out to be considerably easier.
looking for decidability [14]. Over graphs or over
any relational structures, FO is undecidable, while [I. NOTATIONS AND PRELIMINARIES
its two-variable fragment is decidable [19]. This , )
does not imply anything on the decidability of In this paper we consider unranked, ordered,
FO%(~, +1), since the equivalence relation and thiabeled trees with data values. diata tree ¢ over
fwo tree successor relations cannot be axiomatizey 12 @ set ohodes where every node has a
in FO?. A recent paper generalized the result ofPel v-/ € X and adata value? v.datac N. _
[19] in the presence of one or two equivalence rela- A data tree can be seen as a model for a logical
tions [16]. Again this does not apply to our contexformula. The universe of this structure is the set. of
as we also have two successor relations. Howevapdes of the tree, moreover, there are the following
[16] also showed that the two-variable fragmerferedicates available:
of FO with three equivalence relations, without « Foreach possible labelc X, there is a unary
any other structure, is undecidable. This implies predicates(z), which is true for all nodes that
that FO?(~1, ~2, ~3,+1) is undecidable and that have the labet.
manipulating more than two different attributes at « The binary predicatezr ~ y holds for two
the same time quickly leads to undecidability. Note  nodes if they have the same data value.
that this does not imply anything on XPath, as « The binary predicaté_, (z,y) holds for two
already in the presence of two equivalence relations nodes ifx andy have the same parent node
the logic FO?(~1, ~2,+1) is no longer included andy is the immediate successor ofin the
in XPath. For instance, XPath cannot check that a order of children of that node.
node, represented hiy has the following property: « The binary predicaté”| (x, y) holds if y is a
Jyy#£xAx~1yAx -~y expressing that there child of x.
exists another node with the same two attribute « The binary predicate’—. and E| are the
values asr. transitive closures ofE_, and E|, respec-
Results on consistency of integrity constraints in  tively.

the presence of DTDs were surveyed in [2]. All of \we write FO?(~, <, +1) for two-variable logic
the results were obtained for DTDs where the tagjih all these predicates anfO?(~, +1) for the

names and the types are coupled (all tag name ha}%gic without £ and Ey. By FO*(<, +1) and
the same type), and the extension to decouple

DTDs (also I_(nown asxtended DT%WE‘S _Ieft 2We could choose any other infinite set instead Nof as
open. In particular [2] showed that it is decidabl@ormulas can compare values only with respect to equality.



FO?(+1) we denote the respective logics without We next define automata and puzzles. There are
~. several possible equivalent definitions of automata
Abusing the notation, we allow ourselves to usever unranked trees. We use the one of [7], [17]
these predicates outside of logical formulas, e.galso known as hedge automata), which is easier to
we write v ~ w for two nodesv, w that have the translate intoaEMSO?(+1).
same data value. We also write~ d if the data A nondeterministic automaton over unranked
value of the node is d. treeshas a set) of states, along with relations
For a data tree, theunderlying graph G(t) of
t is the graph induced by, and E| . A set of 0ny 0 S QX U X Q,

nodes of a data treeis called connectedif the which are called théorizontal andvertical tran-
induced subgraph is connected. sition relations respectively. Aun of such an
For a data valudl, the d-classof ¢ is the set of automaton over &-treet is a labelingp : V — Q
all nodes with data valué. A classis ad-class, of the tree’'s nodes with states such that for every
for somed. A zoneis a maximal connected setpnodewv with label « we have:
of nodes with the same data value. Two zones are
adjacent if they are connected by an edge (in the
underlying graph). Zones are illustrated in Figure
1.
We associate with every nodein a data tree a
node profile, which contains the information which

of the right neighbor, the left neighbor and the  ejongs to the vertical transition relatian.
parent ofv have the same data valuewad et Pro : : ) .
A run is accepting when: a) every leaf without

denote the set of the eight possible node prOfIIeﬁ'orizontal predecessors is labeled with one of the

For a data tree over Y, the prqﬁled tree Of.t IS designatednitial states I C Q; and b) the state

the data tree oveE x Pro obtained by adding to .

each node its profile. and Iapel of the root belong t'o the des!gpated
acceptingset F' C @ x 3. A tree isacceptedif it

For a data tree over Y, the data erasureof ¢ ; : .
. i ; . admits an accepting run. A set of unlabeled trees is
is the tree ovel obtained from¢ by ignoring the S .
calledregular if it is recognized by an automaton.

data valuev.data of each node.

« If v has a horizontal successar, then the
triple
(p(v), a, p(w)) belongs to the horizontal tran-
sition relationd;,.

« If v has no horizontal successor and its parent
is w, then the triple (p(v),a, p(w)) € 6,

lIl. DECIDABILITY OF FO?(~, +1)
ON TREES

In this section, we present the main result of th
paper.

Theorem 1 The logicFO?(~, +1) is decidable on
unranked data trees.

The proof is a bit involved and can be found in A zone
the full version of the paper.
It consists of three main parts:

« First, the satisfiability problem folrO?(~
,+1) on unranked data trees is reduced to a Q @
puzzleproblem which asks for the existence
of a data tree with certain properties.
« Next, it is shown that, every solvable puzzl o @ ° o
problem P even has a solution with certain
size constraints which only depend on the size A run
of P. Fig. 1. [lllustration of zones (each node is represented itsth
o Finally, it is proved that whether a solutiondata value) and runs (each node is represented with the state
fulfilling these size constraints exists can b&Vven by the run).
tested by a certain kind of (extended) tree au-
tomaton which has decidable non-emptiness.

4



Fact 1 For every regular tree language there is aror their negations. A formula is imlata normal

equivalent formula of the formR;,..., R,p and form if it is a disjunction of formulas:
vice versa, wheré, ..., R,, are set variables and
¢ € FO?(+1). ElRl"'Rm/\Gi,

el

Note that Fact 1 talks about trees without datgdhere each formuld, is simple.
values.

A puzzle over X is a pair (L, F'), where L is
a regular language ovet x Pro and F' is a set
of accepting pairsof the form (D, S) € 2% x 2%
where D and S are disjoint. A data tree over X

Lemma 1 For every formulay in data normal
form we one calculate a puzzle that has a solution
if and only if ¢ is satisfiable.

is asolution to (L, F') if Proof: [Idea] Basically, formulas of the forms
. the data erasure of the profiled tree of (b), (c) and (d) can be turned into dog and sheep
belongs tol, and pairs. Conditions of the forms (a) and (e) are

« for each class in there is some accepting paircovered by the regular language of the puzzim.
(D, S) € F such that all nodes in that class The following lemma completes our reduction of
have labels fromD U S and every label inD  two-variable logic to puzzles from Proposition 1.

occurs exactly once. A similar result for data strings is shown in [4].
We call D the dog letters of the pair and> the
sheepletters. Lemma 2 Every formula ofFO?*(~,+1) can be
. effectively transformed into an equivalent formula
A. Reduction to puzzles in data normal form with at most doubly exponen-

In this subsection we sketch how satisfiability ofially many disjuncts, each of at most exponential
FO?(~,+1) can be reduced to solving puzzles. size.

To give the flavor of the proof of this lemma, let
Hs consider the following property, which is not in
data normal form: “every class contains either zero
or at least two occurrences of the lak&l This can
Note that the opposite reduction does not hold d& transformed into data normal form as follows:

a puzzle can express any regular property on trees. There exists a unary predica@ such
However it is easy to see that being a solution of  that each class with at least onealso

Proposition 1 For every formulay of FO?(~
,+1) one can calculate a puzzle that has a solutio
if and only if ¢ is satisfiable.

a puzzle can be expressed iMSO?(~, +1). In has ana A R and ana A —R.
this sense, puzzles can be seen as a normal form
for EMSO?(~, +1). B. A Small Model Property

The proof is by rewriting the formulg into a e fix a puzzleP = (L, F) for the rest of this
normal form, called “data normal form”. We beginsubsection. We assume th&thas a solution. Our
by defining this normal form and showing how itgoal is Proposition 2, which says that this solution
can be converted into a puzzle. can be transformed into a solution where “few”

The idea behind data normal form is that, byones are “large”.
introducing existential quantification over predi- \We also fix a nondeterministic automatof
cates, allFO*(~, +1) formulas can be expressedover unranked, profiled trees without data that
using boolean combinations of very simple buildrecognizes the regular languafend an accepting
ing blocks. These building blocks are callsithple  run p of this automaton which associates a state of
formulas. There are five kinds of simple formulasg) to each node of. For simplicity, we assume that
(a) A data-blind property, i.e. one that does notthe state of a node implies its profile — that is two

use~. nodes with the same state have the same profile.
(b) “Each class contains at most one node with Any automatonA can be easily transformed into
(c) “Each class with at least onte has nog.” one that satisfies this assumption.
(d) “Each class with at least one also has &.” We need some more terminology which we
(e) “Each position withwe has profilep € Pro” define next.
The last kind is parameterized by a profileand o The set of all children of some node is called
the four latter kinds are parameterized bypes a siblinghood. Any contiguous sequence of

«, B, which are conjunctions of unary predicates  siblings is called arnnterval.



o A twin-pair p = (v,v’) is a pair of two properties:
consecutive siblings, i.ey’ is the horizontal (1) At mostA; complete pure intervals have more

successor ob. than IV, nodes.

Theleft interface of an intervall is the twin-  (2) At most M, siblinghoods contain more than
pair (v, v’) consisting of the left-most nodg N, complete pure intervals.

of I'and its left neighbop. If there is no such (3) There is a seP of at mostM; zones such that
left neighbor then we set = L. Correspond-  aJ| data paths disjoint with J P have at most

ingly, we define theight interface. N3 nodes.

An interface, in which the two data values aréy|| the constants used above depend only on the

different is called eborder interface. size of the puzzle?, see Table | for their asymp-
o A node with data valuel is also called ad-

. - totic values.
node An interval consisting solely af-nodes
is calledd-pure. If the exact value ofl does Const. [ Value Const. | Value
not matter, we simply call ipure. An interval M IFHQ\ZEJSB N1 O(\QP\EJ)
is called complete if both its interfaces are %2 IgHg}O(‘Q‘) %2 ggg”gigg
border interfaces. g 8
TABLE |

« If the parent of an interval (node, siblinghood)
has valued we call it a d-parent interval
(node, siblinghood).

o For a data valuel, a d-path is a set ofd-

THE CONSTANTS USED FOR PRUNING

valued nodes connected by thertical suc- Once we have such a solution, one can easily
cessor relation. Adata path is a d-path for S€€ that at most
somed. M = M + M + Ms

Figure 2 illustrates some of these terms. )
zones contain more than

complete interval N = (Nl . N2)N3+1

complete pure interval

. nodes, thereby proving Proposition 2.
di|dy |da |d2|dz|da| da| d3|dy |ds|ds|ds| ds| de|d7|d7| ~ The proof of the items mentioned above is done
S — sequentially. We first prove (1) by reducing the size
of most intervals. Then we take care of (2) and
siblinghood reduce the size of most siblinghoods. This second
step is achieved without increasing the size of any
interval, thus (1) remains true. Finally we prove
(3) reducing the depth of most zones. Again this is
done without violating steps (1) and (2).

Each step is rather technical but follows the same
pattern. We distinguish two cases. In the first case
we assume that the number pfoblematic data
values yielding a long interval, or a big sibling-
hood, or a deep zone is “huge”, where “huge”
is a constant that we can compute frofh In
this case, we show that we can transfer part of

The proof of Proposition 2 consists of a longhe big interval/siblinghood/zone while changing
sequence of steps combining cut-and-paste aitgl data value in a way that it decreases the number
counting arguments; in each step we modify aaf problematic data values. The “huge” number
existing solution into one which is closer to beinguarantees that it is always possible to find a
(M, N)-reduced. These steps form the most tecmew data value which satisfies all the conditions
nical part of the paper. The precise statement of thequired for being able to do such a transfer without
propositions together with their proofs will appeawiolating the conditions ofP.
in the full version of this paper. We only give some In the second case, when the number of problem-
intuition here. atic data values is small, we prove (1), (2) and (3)

More precisely, we show that if there is aindependently for each data value. In other words
solution for P there is one with the following we prove alocal variant of (1), (2) and (3) where

pure interval interval

Fig. 2. Different types of intervals

Given M, N € N, a data tree is said to be
(M, N)-reducedif it has at most)M data zones
of size more thanV and at mostM siblinghoods
with more thanN complete pure intervals.

Proposition 2 From each puzzle P, numbers
M, N can be computed such th&thas a solution
if and only if it has an(M, N)-reduced solution.



each statement is relativized to a data valuel- Theorem 2 Emptiness of LCTA is iNPTIME.

pure intervalsd-parent siblinghoodsi-paths. This

can be done by moving parts of the tree from one Note that it is important here that the linear

place to another without changing any data valugonstraints speak of states and not of letters of
The details will be found in the full version of the input. Even over words, an automaton with

the paper. linear constraints over letters in the input cannot
o recognize the language™a™b™ | m,n € N}.
C. Satisfiability for Small Models The following proposition shows that when re-
The final step of the proof of 1 consists of thestricted to (M, N)-reduced solutions, LCTA can
following proposition: recognize the data erasure of puzzle solutions:

Proposition 3 Given a puzzleP and numbers pronasition 4 Given a puzzle® overs and num-
M, N, itis decidable whetheP” has an(M, N)-  pers 7, N, one can compute an LCTA that recog-
reduced solution. nizes the data erasure M, N)-reduced solutions

The proof is by reduction to the emptiness on P.
linear constraint tree automata. We first defme Let the puzzleP — (L, F) be given, withL a
these automata and show that their non-emptmerses Ular lanauage of unranked trees oveK P
problem is decidable. Afterwards we present the 9 guag . . 5 rEO

: andF' the set of accepting paifD, S) € 2> x 2*.
reduction. .

. . Recall that for each accepting paiD,.S) each

A linear constraint automaton over unranked )

: ; o dog-letter of D must appear exactly once in each

trees is obtained from a (nondeterministic) tree au-

N ; class of a solution ofP which fulfills (D,S).
tomaton by adding linear constraints on the numbef.\; : o ;
. . ecall also that each class is partitioned into zones.
of times states appear in a run.

. . . . : Each zone of a class may contain some of the dog-
A linear inequality over variable setX is an -
. letters. The set of zones containing a dog letter
expression of the form . " X .
induces a partition ofD. For each accepting pair
Z ky-x > 0 ky €7 . (D, S) and each partitiom of D, we call the triple
seX (D,S, ) a class type A class is of class type
(D, S, ) if it fulfills (D, S) and the zones of the
class partitionD according tor.
We fix a tree automatotd with state space)
that acceptd.. We also fix the following constant.

A linear constraint over X is a boolean combi-
nation of linear inequalities. Aolution of a linear
constraint is a valuatiow : X — N satisfying it
in the usual way.

A linear constraint tree automaton (LCTA) is K=2M+(N+1?2%+2.
a nondeterministic unranked tree automatbwith
state spac€), together with a linear constraintover | ot ;, pe a function that assigns to every class
Q. The LCTA accepts a tree if the tree admits &pe a number from{0, ..., K'}. We defineL, to
run p 1 V. — Q of A ont, which accepts in the e the set of tree such that’ is the data erasure
usual sense, and which moreover satisfies the "”e&\*some(M, N)-reduced profiled data treesuch

constraint wrt. its Parikh imagép~'(¢))scq-  that A has an accepting runovert and, for every
It is not hard to see that emptiness of LCTA ig|ass typer:

decidable, since context-free languages have semi- It % th h " |
linear Parikh images, and semilinear sets are closed® v(r) < K, thent has exactly/(r) classes

. : : f type 7.
under intersection. The following result shows that 0
the complexity of deciding emptiness is NRIE, ¢ :I: Z(g? t;pfe(, then there are at leasf classes
T.

by a similar proof as [21]. The latter paper shows
how to compute in linear time an existential Pres-
burger formula for the Parikh image of a contexttemma 3 For every functiorv, there is an LCTA
free language described by a grammar. The progf, that recognized.,. The size of4, is exponen-
in [21] can be directly adapted to extended contextial in the size ofP.

free grammars, i.e., grammars with rulds— L 4,

where L4 C ¥* is a regular language giving the Proposition 4 follows immediately from this
possible right-hand sides of the rule with left-handemma, by taking a disjunction of automata over
side A. all possible functions.



IV. INTEGRITY CONSTRAINTS combination of attribute values there is at most one

XML documents usually come with a specifica-nOde .Of typer having the;e values. .
An inclusion constraint is an expression of the

tion, often stated in XML Schema, which tells Wha} rm 7[X] C ~'[¥] wherer and+' are two node

to expect in the document. It contains a structur X
o ) .~ types andX andY are sequences of attributes of
part which includes a mechanism for assignin N
e same cardinality. It says that for each nede

types to nodes of the tree and a set of integritgf type r there is a node of type ' such that the

nstraint h ndinclusion constrain ; .
constraints such aeeysandinclusion constraints X-attributes ofu have the same (corresponding)

It IS natural to ask Whether_a sp.eC|f|cat|on.|s¥alues as thé& -attributes ofv. Key and inclusion
consistent and whether a set of integrity constraints

is minimal or not {mplication problem. One of constraints are said to heary if [ X| = Y| =1
X ' .. Th ist lemf ki
the advantages of a logic-based approach to demdj- e consistency problemfor unary keys and

bility is th moositionality of logic. This hold hary inclusion constraints relative to a regular tree
abiiity Is the co 2pos onality ot fogic. This ho SIanguage is as follows. Given an (unambiguous)
especially forFO“(~, +1), which is closed under

all boolean operations and, as far as satisfiabilit Itree automato and a seti’ of unary key and
concerned e\?en under exis'tential set uantificat)ilo”%dusion constrainfs it asks whether there is a
q flee ¢ which is accepted byd and fulfills the

I.? ths tsle(;tlon,T\;]ve will f?he ttg?t I fqllt:ws constraints. Themplication problem asks, given
qu:jethlre.c yl_ro?j eorkt)alm f atthe COIPS'S €NCY and setd(;, K5 of constraints, whether each tree
and the implication problem for unary Keys ang,...ieq pya which fulfills &, also fulfills K».
inclusion constraints are decidable, even relative

to structural constraints given by a regular treproposition 5 The consistency and implication

Ianguage. . problems for unary keys and unary inclusion con-
We first deal with regular tree languages andyraints relative to a regular tree language are
types. decidable.

Let EMSO?(~, +1) be the extension dfO?(~
,+1) consisting of all formulas starting with a ~ Proof: We only consider the more general,
sequence of existential quantifiers over unary preéinplication problem. We encode XML documents
icates (i.e., set variables) followed by &(?(~ as trees in a way which_ closely corresponds to the
,+1) formula. For satisfiability, it does not matterXPath data model [23], i.e., the attributes of a node
whether unary predicates are part of the signatuteare represented by attribute nodes (labelled by the
or existentially quantified in the prefix of a formula.attribute name) which are children of I.e., theB-

Therefore, from Theorem 1 we immediately get thattribute value of a node is given by the value of
following corollary. its (unique) child labelled with B. An example of

this encoding is presented in Figure 3.

Let A and K1, K> be given, where the states of
A induce the types in the constraints. By Fact 1,
from A we can derive alEMSO?(~, +1) formula

Basically, the two standard XML schema lan®f the form3R,, ..., R,pa which (1) holds in a
guages, DTD and XML Schema, are able to defifée€? if and only if £ € L(A) and (2) such that, for
only sets of documents that are regular tree lagach state of A, a position satisfies the predicate
guages (but not all regular tree languages!). In thé- if and only if the position has type (uses the
following, we thus assume that the allowed set gftater in the unique accepting run). Thus, a unary
documents is described by a tree automatofthe ey constraint : 7[B] — 7 can be expressed by
type of a nodev is the state ofd onv in an ac- the FO”(~, +1) formulapy =

Corollary 1 The logic EMSO?(~, +1) over un-
ranked data trees is decidable.

cepting run® Recall from Fact 1 that every regular (B(z) A yR-(y) A E(y,z))A
tree language is expressible BEMSO?(+1). VaVy (By) NBzR-(x) NE|(z,y))\N | mz=y
A key constraint is an expression of the form T~y

7[X] — 7 where T is a type of a node and
X a set of attributes of that node. It says th
the X-attributes of a node of type uniquely

determine the node. Stated in other terms, for eacivz (Bi(z) A 3y(R-, (y) A E|(y,z))) —
Jy (x ~ y A Ba(y) A 3z(Rry (7) A Ei(2,9))).

,El\n inclusion constrainlU : 71[B;] C 72[B2] can
e expressed by tHEO?(~, +1) formula gy =

3In XML Schema it is basically required that has a
unique accepting run, thus the type of each node is uniquely “Recall that the types used in these constraints are states of
determined. A.



<schedul e> . . .
<Courge | D="5"> the location paths has to be absolute (i.e., starting

<lecturer faculty="12"> </Iecturer3rom the root), or both (relative) location paths are
<buil ding nr="1"> </ buil di ng> strongly limited.

</ cour se> In LocalDataXPath only the following axes are
</ schedul e> allowed:

schedule
/ Axis := Child | Parent | NextSibling |
PreviousSibling | Self | ElseWhere

course
/ \ Every axis corresponds to a binary relation on
D lecturer building tree nodes. For instance, theild axis is true for
(s) | | node pair§v, w) wherew is a vertical successor of
faculty nr w. The other axes are defined analogously. The new
(12) (1) ElseWhere axis corresponds to the relation of pairs

Fig. 3. An XML document and its data tree encoding. In(v’w) of nodes, where # w. It is added in order

the encoding, data values are in parentheses. Data values @ &llow at least some kind of global navigation.
non-attribute nodes are not used. We define the syntax of LocalDataXPath next.

For the purpose of this paper it is given in a

o . simplified form as to compared with XPath.
Thus, the implication problem reduces to satisfia-

bility of the following formula of EMSO?(~, +1):

LocPath := RelLocPath| AbsLocPath
3Ri,.. Raloah N\ eun= /\ ¢v).  absLocPath = '/'RelLocPath
vt ek RelLocPath := Step |RelLocPath’/' Step
Note, that by combining key and inclusion :on- Step = Axis: NameTest Predicate’
straints also foreign key constraints can be covered.NameTest := Name | 7
In [2] a special case of Proposition 5 was proved:Predicate := '['PredExpr'|’
the consistency problem for unary keys and foreign predexpr := LocPath |

keys is_ NP-complete reIatiYe to .DTD types. The LocPath’/ Attr EqOp AbsLocPath’/’ Attr |
extension to XML Schema’s typing system (and o o
to any regular tree language) was left as an open Self :: NameTest'/’ Attr EqOp Step’/’ Attr |
question. Note also that we do not know yet the PredExpr and PredExpr |
precise complexity of the implication problem, we PredExpr or PredExpr | not PredExpr
only have the upper-bound given by the analysis P
of the proof of Theorem 1: 3NETIME. Avtr = /@ f\Iame
Eq0p = '= | 1<

An expression derived fromocPath defines a

In this section we define a fragment of XPathbinary relation on tree nodes (a set of paths), while
which we callLocalDataXPathwhich is captured an expression derived frorAredExpr defines a
by FO?(~, +1), for the purpose of static analysis.unary relation (a set of tree nodes). These are
More precisely, satisfiability and containment tesflefined using mutual recursion.
for unary queries expressed in these fragments,To  obtain  decidability, =~ we  restrict
possibly in the presence of integrity constraintéin-)equalites of the form Self
and schemas, can be reduced to satisfiability WhmeTest’//Attr EqOp Step’//Attr, which
FO?(~, +1). we call relative equalities, a bit further. We say

Most fragments of XPath for which the containthat an attribute namé is associatedto a label
ment problem has been studied and establisheddoin an XPath expression if the pair (a, @B)
be decidable, do not allow reference to attributer (x, B) occurs as NameTest, Attr) pair in a
values. The language LocalDataXPath allows thelative (in-)equality ofe.
comparison of attribute values, but compared with A set of expressions isafeif the set of induced
Core-Data-XPath it has two restrictions: (1) navassociations is a function from labels to attribute
igation is not allowed along the “transitive” axesnames. In particular if the wildcard is present,
asDescendant andFollowingSibling and (2) there is a unique attribute name occurring in all
in an equality on attribute values either one ofelative sub-expressions.

V. XPATH CONTAINMENT



Example 1 The following (safe) expressions sefor our purpose. Note, that the safety restriction on

lects a nodev if all of its children with labelb relative (in-)equalities ensures that for each element

have the same data value as only one attribute is used in relative (in-)equalities.
Therefore, we use data trees in which this attribute

~(Child::b/Q@B ! = Self :: +/QB). value (if any) is stored. Note, that an additional
The following expression is also safe: FO?(~, +1) formula can check that the data values
in element nodes are consistent with those in the
Child :: b/@B; = Self : a/QB,. attribute nodes.
- , As an example, if
Theorem 3 Satisfiability and Containment for (Child :: b/@B, = Self :: a/@B,) is a

(unary or binary) LocalDataXPath safe eXpre55i°n§ubexpression of our XPath expression at hand,
is decidable. This holds even relative to a scheMgen we consider data trees in which the data
consisting of a regular tree language and unary keys|ye of 4-nodes is interpreted as the,-attribute
and inclusion constraints. and the data value df-nodes as the3; -attribute.
Thus, the expression is equivalent to the formula

Proof: (sketch) The proof is, of course, by
a(z) ANYE (2, y) Nb(y) Az~ y.

translating the expressions ini®O?(~, +1) for- , : _
mulas. We encode XML documents as in the proof 't IS now straightforward to combine the tech-

of Proposition 5 (using the XPath data modelﬁ‘iq“es described so far with those of Section IV to

with a small extension that we will introduce laterOPt@in the second statement of the theorem.

As long as expressions do not compare attribute COntainment for binary queries can be handled
values, there is no need to restrict the locatioRY having two distinguished nodes in each tree
paths: We can just use the standard inclusion $fich correspond to a pair in the query resul
Core-XPath intoFO?(<, +1) of [18]. . It should be noted that gat|sf|ab|llty of a sim-
This easily extends to equality expressions withar fragment of XPath with all axes besides
at most one relative location path by, intuitivelyFollowing and Preceding can be reduced to

first simulating the relative path, then jumping tosatisfiability of FO?(~, <, +1). Unfortunately, we

a node with the same data value and checking tHfs@ ot know if satisfiability ofFO?(~, <, +1) is

this node satisfies its absolute path constraint gcidable.

simulating the path backwards to the root. Note 9

that it seems crucial here that the second path isVl' A LOWER BOUND FORFO (N’ < +1)

absolute and thus does not start at the current nodejn this section we show that satisfiability of

as the two variables are needed for the navigati&tO?(~, <, +1) on (even binary) trees is at least as

and thus the current node can not be rememberdrhrd as checking non-emptiness for vector addition

As an example the expression tree automata. The decidability of the latter has

Child : a/Child :b/@QB, — been an open problem for_many years and is,.in
] o turn, equivalent to a notorious open problem in

/Child:: ¢/NextSibling :: d/Gffaqr ogic, the decidability of MELL (Multiplica-
is translated into the following equivalent formuldive Exponential Linear Logic) (see [9] and the

o(z): references therein). Therefore proving decidability
of FO*(~,<,+1) on trees seems to be quite
WE (z,y) Aa(y)A challenging.
FzE| (y,z) Ab(z)A A vector addition tree automaton over binary
E | (x,y) A Bi(y)A trees is a kind of bottom-up automaton which
Tz~ y A Ba(2)A assigns to every node, besides a state, a vector

BB, (y, 2) A d(y)A overN. A transition has three vectors 5,8, three
Y, T Y statesqo, ¢1, ¢ and a label as parameters. It can
JwE_(z,y) A c(z)A be applied to a node with childrenvg, vy if

E| (y,x) N —3zE|(z,y). « v has label

It only remains to explain how we can deal with ¢ vo has state andv;_has statey,
relative (in-)equalities. To this end, we exploit the * £ —d = 0 andy —b > 0, whereZ and i/
fact that the encoding of XML documents used denote the vector aty and vy, respectively.
so far only needs data values in attribute nodeK.the transition is applied then gets state; and

-,

Thus, we can use the data values of element nodés vector(Z — @) + (¥ — b) + C.

10



More formally avector addition automaton A |
is a tuple I

(3,k,Q, F,d0,0) whereX is a finite alphabetk I|1

is the arity of the vectors of the automatap,is a I

finite set of statesl” C @ a set of accepting states, Iy

§ C ¥ x (QxNF)2 x Q x N is a finite (!) set of

transitions anddy C ¥ x @Q x N is a finite set of D/ \D

initial transitions. A
A run of the automaton assigns to each node a Dy Ds

state and &-ary vector. For a leaf of label, the D|3 q|2

stateq and the vectori have to fulfill 6o (a, ¢, ) |

holds. For inner nodes, some transition has to be a1

applicable, as described above. Fig. 4. Coding a transition: An example with

A tree is accepted if the root carries an acceptinga, ¢1, (2,0,1), g2, (0,1, 1), ¢, (2, 1,0))
state and the vectdr.

Note that the automataannottest whether a
component of a vector is equal to zero (otherwise4) for each node labele®; there is a descendant
the model would be immediately undecidable) an@beled/; with the same data value.
that vectors never assume negative values. It is easy to express (1) - (4) IHO*(~, <,+1).

A different view of vector addition automataFurther, it is easy to see that (1) - (4) imply that
considers the Components of the vectors as COLﬁI‘iIE overall number of decrements of each counter

ters. In the following proof we will adapt this view is equal to the number of increments, therefore all
to improve intuition. counters have value zero at the root. Moreover each

decrement is preceded by an increment (below),
therefore the value of each counter is always non-
negative. (The reader should convince her- or him-
self thatFO?(~, <, +1) does not seem to be able
to check whether at an inner node a counter has
value zero.) [ ]

Theorem 4 For any vector addition tree automa-
ton A, a formulags € FO*(~,<,+1) can be
computed such that(A) # 0 iff ¢4 has a model.

Proof: (sketch) Letk be the number of coun-
ters of A and @ be its set of states. VIl. CONCLUSION
The formulayp4 uses one unary predicate,
for eachq € @ and two unary predicates, D;
for eachi € [1, k]. The intended meaning df; is
that counter; is increased by one whil®; means
that counteri is decreased by 1. The modelsof
are going to be trees coding possible runsdofin

such a tree a transition

An interesting aspect of this work is to present
in a unified framework decidability results that
were studied separately in the past: consistency of
integrity constraints and satisfiability of queries. In
the future we hope to be able to also include related
problems into the picture like the type inference
problem [1].

Our main technical result is the decidability of
FO?(~,+1), which can be seen as a non trivial
of A is represented by a subtree which has, fatecidable fragment of XPath. A close inspection
eachi, in its top branche; symbolsi;, in the left of the proof of Theorem 1 gives a upper bound
brancha; symbolsD; and, in the right brancth; of 3NExPTIME for the decision procedure. A
symbols D;, as depicted in Figure 4. The leaveNExpPTIME-hardness lower bound is easy to ob-
conditions are handled in the same fashion. Thadin. It would be interesting to know the precise
a tree consists of such patterns can be easitpmplexity of the problem.
described inFO?(+1). Another obvious open question is to know

To check that all counters always have nornwhether this can be extended by allowing more
negative values and the value zero at the root, ddatures in the language. We have already men-
values are employed. To this end, checking for atloned the open and challenging problem of the
i € [1, k] that (1) all nodes labelefj have different decidability of FO*(~, <, +1).
data values, (2) all nodes labeléd have different ~ Maybe more doable would be to know whether
data values, (3) for each node labelgdthere is FO?(~,+w) is decidable. This logic can use pred-
an ancestor labele®; with the same data value,icates of the formEf and E* testing whether

5(a‘aQ17(a‘17"' ,ak),QQ,(bl,"' 7bk)7Q7 (Clv"' ack))
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two nodes are at distance exact#ty(downwards [14] E. Gradel and M. Otto. On Logics with Two Variables.
or rightwards). This is a proper extension, sincE1 Theor. Comp. S¢i.224:73-113 (1999).

2 .. [15] M. Kaminski and N. Francez. Finite memory automata.
FO”(~,+1) cannot express the fact that a position ™ tpeq;. comp. Sci134(2):329-363 (1994).

x has the same data value as its grandfathers] E. Kierofski and M. Otto. Small Substructures and De-
However this feature would be useful in practice cidability Issues for First-Order Logic with Two Variables

. der to b ble t t tt . In LICS’05 2005.
In Oraer 1o be able 1o express tree patiern que”?lsi] W. Martens, J. Niehren. Minimizing Tree Automata for

which do not only depend on the labels of the uUnranked Trees. InlOth International Symposium on
nodes but also how their data values compare. |t Database Programming LanguagdsNCS 3774, 2005.

. .n[18] M. Marx. First order paths in ordered trees. IIBDT’05,
would also be useful in order to express more in- " 5595

tegrity constraints, in particular some of tredative  [19] M. Mortimer. On languages with two variableZeitschr.

keysand relative inclusion constraintsvhich are __f math. Logik u. Grundiagen d. Maft@1: 135-140 (1975).
d lati ¢ . text. Such inteari 20] F. Neven and T. Schwentick. XPath Containment in the
stated relative to a given context. Such integri Presence of Disjunction, DTDs, and Variablesl@DT’'03,

constraints were investigated in [2] in the presence 2003.

of DTDs. We leave the decidability (FfOz(N,—i—w) [21] K. Neeraj Verma, H. Seidl, T. Schwentick. On the

Complexity of Equational Horn Clauses. BADE’'05
as an open problem. 2005.

Another interesting issue would be to find ari22] F. Neven, T. Schwentick, and V. Vianu. Finite state
algebraic form of the considered logics. In partic- machines for strings over infinite alphabetdCM Trans.

. . . Comput. Log. 15(3): 403-435 (2004).
ular, we would like to find a decidable model ofj23] xmL Path Language (XPath), W3C Recommendation 16

tree automata that can manipulate data values and November 1999. Available &bt t p: // www. w3. or g/
express at least all dfO?(~, +1). Unfortunately TR/ xpath.

two-way automata using registers or pebbles for

comparing data values are undecidable even when

using only one such register or pebble [8].
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