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Abstract— Motivated by reasoning tasks in the
context of XML languages, the satisfiability problem
of logics on data trees is investigated. The nodes of
a data tree have a label from a finite set and a
data value from a possibly infinite set. It is shown
that satisfiability for two-variable first-order logic is
decidable if the tree structure can be accessed only
through the child and the next sibling predicates and
the access to data values is restricted to equality tests.
From this main result decidability of satisfiability and
containment for a data-aware fragment of XPath
and of the implication problem for unary key and
inclusion constraints is concluded.

I. I NTRODUCTION

Most theoretical work on XML and its query lan-
guages models XML documents by labeled ordered
unranked trees, where the labels are from a finite
set. Attribute values are usually ignored. This has
basically two reasons, which are not independent.
First, the modeling allows to apply automata based
techniques, as automata operate on trees of this
kind. Second, extending the model by attribute
values (data values) quickly leads to languages with
undecidable static analysis (see, for instance [1],
[3], [12], [20]).

Nevertheless, there are examples of decidable
static reasoning tasks involving attribute values [2],
[6]. The motivation for our work was to find a
logical approach for such tasks.

It is immediately clear that full first-order logic
is far too powerful for this purpose. Satisfiabil-
ity for first-order logic with a predicate for data
values equality is undecidable already on strings
[4]. There are several possible candidates for more
appropriate logics, including temporal logics or
fragments of first-order logic. In this work, we
concentrate on a (classical) fragment of first-order
logic, two-variable logic. There are several good
reasons to consider this fragment. It is known
that on many kinds of structures this fragment
is decidable [14]. On ordered, unranked trees, it
corresponds in a natural way to the navigational
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behavior of XPath, and it can express many inter-
esting integrity constraints.

Before we describe the technical contributions
of the paper, we first discuss the connections with
XML processing in more detail.

Core-XPath, the fragment of XPath capturing
its navigational behavior introduced by Gottlob et
al. [13], is by now well understood. In partic-
ular, it corresponds toFO2(<, +1) on unranked
ordered trees [18]. Here,FO2(<, +1) is the two-
variable fragment of first-order logic that uses the
order < and successor+1 relations, along with
the labels of the nodes. The labels are encoded
by unary relations, one for each of the (finitely
many) possible labels. The symbol “<” refers
to two binary predicates: one for comparing the
descendant/ancestor relationship of two nodes and
one for the preceding/following relationship of two
siblings. Similarly, “+1” also refers to two binary
predicates: one for comparing the parent/child re-
lationship of two nodes and one for comparing the
next/previous sibling relationship of two siblings.
Core-XPath is decidable even in the presence of
DTDs and the complexity of many of its fragments
has been studied in the literature. We refer to [3],
[12] and the references therein for a comprehensive
survey.

In the presence of data values a simple extension
of Core-XPath is to allow equalities of the form
p/@A = q/@B inside qualifiers, meaning that the
value of theA attribute of some node accessible by
a path matchingp equals theB attribute value of
some node accessible by a path matchingq. We de-
note this fragment by Core-Data-XPath. As shown
in [12], Core-Data-XPath is undecidable and both
[3], [12] studied fragments of Core-Data-XPath.
To be able to reason about Core-Data-XPath, it is
natural to consider the logicFO2(∼, <, +1), the
extension ofFO2(<, +1) with a binary predicate
∼ that checks data value equality of two nodes.



It is easy to verify1 that FO2(∼, <, +1) is
strictly contained in Core-Data-XPath and there-
fore it is natural to wonder whetherFO2(∼, <, +1)
is decidable.

We do not solve the question whetherFO2(∼
, <, +1) is decidable, here. Nevertheless, we show
that the decidability ofFO2(∼, <, +1) is a difficult
problem as it would imply deciding multicounter
automata on trees and the linear logic MELL,
which are known as open issues in their respective
fields (see [9] and the references therein).

However, we show that the logicFO2(∼, +1)
is decidable. It turns out that this implies the de-
cidability of several reasoning problems for XML
which involve data values. We give some examples
of applications next.

• Common reasoning tasks for XML are the
consistency and the implication problems for
integrity constraints. Given a finite setS of
constraints and a further constraintϕ, one
asks whether each document satisfying all
constraints inS also satisfiesϕ. This boils
down to testing if there is a document that
satisfies all constraints inS but notϕ, a sat-
isfiability question. The most common family
of integrity constraints are key and inclusion
constraints. Many of them involve only one
attribute. It is easy to see that such constraints
can be expressed inFO2(∼, +1). Our main
result implies the decidability of the implica-
tion problem for such constraints. This was
already known from [6], which shows that the
complexity of implication, without schemas,
is polynomial.

• An advantage of the logical approach is that
reasoning problems can be relativized to doc-
uments satisfying schemas. Schemas are usu-
ally captured by regular tree languages (where
only the labels and not the data values are
used). It is known that regular tree languages
can be characterized byEMSO2(+1) formu-
las, i.e., formulas where anFO2(+1) formula
is preceded by a block of existential quanti-
fiers ranging over sets of nodes. When satisfi-
ability is concerned, it is straightforward that
decidability ofFO2(∼, +1) implies decidabil-
ity of EMSO2(∼, +1). Thus, by combining
formulas in a suitable way, it follows easily
that the implication problem for unary key and
inclusion constraints (and thus also for foreign

1The inclusion ofFO2(∼, <, +1) into XPath is done as
in the translation ofFO2(<, +1) into unary-TL over words
[11]. It is strict becauseFO2(∼, <, +1) cannot express the
testSelf/@A = Self//b//c/@A

key constraints) is decidable also relative to a
schema given by a regular tree language. This
result was already known from [2], who shows
that the satisfiability problem is in NPTIME.

• Furthermore, tree automata can be used to
assign types to nodes of a document. In-
tegrity constraints can refer to such types.
Therefore, as these types can also be ex-
pressed byEMSO2(∼, +1) formulas, the im-
plication problem for more involved integrity
constraints is still decidable.

• Another application of the logical result con-
siders the containment problem for XPathwith
attribute equalities. We present a fragment of
XPath which allows equalities and inequalities
on attribute values for which the containment
problem can be reduced to satisfiability of
FO2(∼, +1). By combining techniques, we
obtain decidability of the containment for this
XPath fragment even relative to a schema
consisting of a regular tree language and unary
constraints.

In the following we give an overview of the
structure of the paper together with the main
contributions. After the introduction and a section
which fixes some notation, Section III contains the
main technical result of the paper, thatFO2(∼, +1)
(and thereforeEMSO2(∼, +1)) is decidable. In
Section IV, we show that satisfiability and impli-
cation for unary key and inclusion constraints is
decidable. Section V establishes decidability of the
containment problem for an XPath fragment with
attribute equalities. In Section VI we give strong
evidence that decidability ofFO2(∼, <, +1) on
unranked trees is a difficult problem by reducing
the non-emptiness problem for vector addition tree
automata to it. Most of the proofs will be found in
the full version of the paper.

An additional contribution of this work is a uni-
fied framework for several decidability questions
that were studied separately in the past: consistency
of integrity constraints and satisfiability of queries
involving data.

Related work Closely related to our work are
the papers [3], [12] and the references therein.
Most of the fragments they consider are inside
Core-XPath (i.e., without data values). However
several of the fragments are in Core-Data-XPath.
In [3] the decidable fragments of Core-Data-XPath
that have data equality tests either don’t have
negation or don’t have recursion. They also don’t
have horizontal navigation and therefore miss an
important aspect of XML navigation features. The
paper [12] extends the results of [3] by including
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the horizontal axis but the only decidable fragment
presented in this paper does not have negation. The
logic FO2(∼, +1) does have negation and it can
investigate nodes that are arbitrarily deep in the
input tree. Finally the focus of [3], [12] was to have
the precise complexity for the decision procedure
of the fragment considered while the precise com-
plexity of FO2(∼, +1) is still an open issue: An
inspection of the current proof of Theorem 1 gives
an upper bound of 3NEXPTIME, and the best lower
bound we currently have is NEXPTIME-hardness.

The logic considered in [1] in order to solve
the type inference problem is also incomparable to
FO2(∼, +1). It uses patterns with variables for the
data values together with equality and inequality
constraints on the variables in order to extract the
relevant pieces of data. It can use arbitrarily many
variables in the patterns, somethingFO2(∼, +1)
cannot do, but there is no recursion in the patterns
and therefore it can only inspect the tree up to a
given constant depth.

As we have already mentioned, restricting FO to
its two-variable fragment is a classical idea when
looking for decidability [14]. Over graphs or over
any relational structures, FO is undecidable, while
its two-variable fragment is decidable [19]. This
does not imply anything on the decidability of
FO2(∼, +1), since the equivalence relation and the
two tree successor relations cannot be axiomatized
in FO2. A recent paper generalized the result of
[19] in the presence of one or two equivalence rela-
tions [16]. Again this does not apply to our context
as we also have two successor relations. However
[16] also showed that the two-variable fragment
of FO with three equivalence relations, without
any other structure, is undecidable. This implies
that FO2(∼1,∼2,∼3, +1) is undecidable and that
manipulating more than two different attributes at
the same time quickly leads to undecidability. Note
that this does not imply anything on XPath, as
already in the presence of two equivalence relations
the logic FO2(∼1,∼2, +1) is no longer included
in XPath. For instance, XPath cannot check that a
node, represented byx has the following property:
∃y y 6= x ∧ x ∼1 y ∧ x ∼2 y expressing that there
exists another node with the same two attribute
values asx.

Results on consistency of integrity constraints in
the presence of DTDs were surveyed in [2]. All of
the results were obtained for DTDs where the tag
names and the types are coupled (all tag name have
the same type), and the extension to decoupled
DTDs (also known asextended DTDs) was left
open. In particular [2] showed that it is decidable

whether a set of unary keys and foreign keys is
consistent with a DTD. The decidability ofFO2(∼
, +1) implies that it is decidable whether any set
of integrity constraints definable inFO2(∼, +1) is
consistent with an extended DTD. In particular,
as (absolute) unary keys and foreign keys are
definable inFO2(∼, +1) this extends one of the
the results of [2].

Another related line of research is to consider
logics and automata on words with data values. In
[5], [15], [22] automata and logics over words with
data values were considered. The automata of [5]
had very limited expressive power, while the logics
and automata of [15], [22] were undecidable. In
[4] it is shown thatFO2(∼, <, +1) is decidable
on words with data values. In [10] an extension of
LTL was given which can manipulate data values
using a freezeoperator. Their decidable fragment
is incomparable toFO2(∼, <, +1) as it can only
process the word from left-to-right, but can express
properties thatFO2(∼, <, +1) cannot. In any case
those references considered only the case of words,
which turns out to be considerably easier.

II. NOTATIONS AND PRELIMINARIES

In this paper we consider unranked, ordered,
labeled trees with data values. Adata tree t over
Σ has a set ofnodes, where every nodev has a
label v.l ∈ Σ and adata value2 v.data∈ N.

A data tree can be seen as a model for a logical
formula. The universe of this structure is the set of
nodes of the tree, moreover, there are the following
predicates available:

• For each possible labela ∈ Σ, there is a unary
predicatea(x), which is true for all nodes that
have the labela.

• The binary predicatex ∼ y holds for two
nodes if they have the same data value.

• The binary predicateE→(x, y) holds for two
nodes ifx and y have the same parent node
andy is the immediate successor ofx in the
order of children of that node.

• The binary predicateE↓(x, y) holds if y is a
child of x.

• The binary predicatesE⇒ and E⇓ are the
transitive closures ofE→ and E↓, respec-
tively.

We write FO2(∼, <, +1) for two-variable logic
with all these predicates andFO2(∼, +1) for the
logic without E⇒ and E⇓. By FO2(<, +1) and

2We could choose any other infinite set instead ofN, as
formulas can compare values only with respect to equality.
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FO2(+1) we denote the respective logics without
∼.

Abusing the notation, we allow ourselves to use
these predicates outside of logical formulas, e.g.,
we write v ∼ w for two nodesv, w that have the
same data value. We also writev ∼ d if the data
value of the nodev is d.

For a data treet, theunderlying graph G(t) of
t is the graph induced byE→ and E↓ . A set of
nodes of a data treet is called connected if the
induced subgraph is connected.

For a data valued, thed-classof t is the set of
all nodes with data valued. A class is a d-class,
for somed. A zone is a maximal connected set
of nodes with the same data value. Two zones are
adjacent if they are connected by an edge (in the
underlying graph). Zones are illustrated in Figure
1.

We associate with every nodev in a data tree a
node profile, which contains the information which
of the right neighbor, the left neighbor and the
parent ofv have the same data value asv. Let Pro
denote the set of the eight possible node profiles.
For a data treet over Σ, the profiled tree of t is
the data tree overΣ × Pro obtained by adding to
each node its profile.

For a data treet over Σ, the data erasureof t
is the tree overΣ obtained fromt by ignoring the
data valuev.data of each node.

III. DECIDABILITY OF FO
2(∼, +1)

ON TREES

In this section, we present the main result of the
paper.

Theorem 1 The logicFO2(∼, +1) is decidable on
unranked data trees.

The proof is a bit involved and can be found in
the full version of the paper.

It consists of three main parts:

• First, the satisfiability problem forFO2(∼
, +1) on unranked data trees is reduced to a
puzzleproblem which asks for the existence
of a data tree with certain properties.

• Next, it is shown that, every solvable puzzle
problem P even has a solution with certain
size constraints which only depend on the size
of P .

• Finally, it is proved that whether a solution
fulfilling these size constraints exists can be
tested by a certain kind of (extended) tree au-
tomaton which has decidable non-emptiness.

We next define automata and puzzles. There are
several possible equivalent definitions of automata
over unranked trees. We use the one of [7], [17]
(also known as hedge automata), which is easier to
translate intoEMSO2(+1).

A nondeterministic automaton over unranked
trees has a setQ of states, along with relations

δh, δv ⊆ Q × Σ × Q ,

which are called thehorizontal andvertical tran-
sition relations respectively. Arun of such an
automaton over aΣ-treet is a labelingρ : V → Q
of the tree’s nodes with states such that for every
nodev with label a we have:

• If v has a horizontal successorw, then the
triple
(ρ(v), a, ρ(w)) belongs to the horizontal tran-
sition relationδh.

• If v has no horizontal successor and its parent
is w, then the triple(ρ(v), a, ρ(w)) ∈ δv

belongs to the vertical transition relationδv.

A run is accepting when: a) every leaf without
horizontal predecessors is labeled with one of the
designatedinitial states I ⊆ Q; and b) the state
and label of the root belong to the designated
acceptingsetF ⊆ Q×Σ. A tree isacceptedif it
admits an accepting run. A set of unlabeled trees is
calledregular if it is recognized by an automaton.

A zone

A run

Fig. 1. Illustration of zones (each node is represented withits
data value) and runs (each node is represented with the state
given by the run).
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Fact 1 For every regular tree language there is an
equivalent formula of the form∃R1, . . . , Rnϕ and
vice versa, whereR1, . . . , Rn are set variables and
ϕ ∈ FO2(+1).

Note that Fact 1 talks about trees without data
values.

A puzzle over Σ is a pair (L, F ), whereL is
a regular language overΣ × Pro and F is a set
of accepting pairsof the form (D, S) ∈ 2Σ × 2Σ

whereD andS are disjoint. A data treet over Σ
is a solution to (L, F ) if

• the data erasure of the profiled tree oft
belongs toL, and

• for each class int there is some accepting pair
(D, S) ∈ F such that all nodes in that class
have labels fromD ∪ S and every label inD
occurs exactly once.

We call D the dog letters of the pair andS the
sheepletters.

A. Reduction to puzzles

In this subsection we sketch how satisfiability of
FO2(∼, +1) can be reduced to solving puzzles.

Proposition 1 For every formula ϕ of FO2(∼
, +1) one can calculate a puzzle that has a solution
if and only if ϕ is satisfiable.

Note that the opposite reduction does not hold as
a puzzle can express any regular property on trees.
However it is easy to see that being a solution of
a puzzle can be expressed inEMSO2(∼, +1). In
this sense, puzzles can be seen as a normal form
for EMSO2(∼, +1).

The proof is by rewriting the formulaϕ into a
normal form, called “data normal form”. We begin
by defining this normal form and showing how it
can be converted into a puzzle.

The idea behind data normal form is that, by
introducing existential quantification over predi-
cates, allFO2(∼, +1) formulas can be expressed
using boolean combinations of very simple build-
ing blocks. These building blocks are calledsimple
formulas. There are five kinds of simple formulas:

(a) A data-blind property, i.e. one that does not
use∼.

(b) “Each class contains at most one node withα.”
(c) “Each class with at least oneα has noβ.”
(d) “Each class with at least oneα also has aβ.”
(e) “Each position withα has profilep ∈ Pro”

The last kind is parameterized by a profilep, and
the four latter kinds are parameterized bytypes
α, β, which are conjunctions of unary predicates

or their negations. A formula is indata normal
form if it is a disjunction of formulas:

∃R1 · · ·Rm

∧

i∈I

θi,

where each formulaθi is simple.

Lemma 1 For every formulaϕ in data normal
form we one calculate a puzzle that has a solution
if and only if ϕ is satisfiable.

Proof: [Idea] Basically, formulas of the forms
(b), (c) and (d) can be turned into dog and sheep
pairs. Conditions of the forms (a) and (e) are
covered by the regular language of the puzzle.

The following lemma completes our reduction of
two-variable logic to puzzles from Proposition 1.
A similar result for data strings is shown in [4].

Lemma 2 Every formula ofFO2(∼, +1) can be
effectively transformed into an equivalent formula
in data normal form with at most doubly exponen-
tially many disjuncts, each of at most exponential
size.

To give the flavor of the proof of this lemma, let
us consider the following property, which is not in
data normal form: “every class contains either zero
or at least two occurrences of the labela”. This can
be transformed into data normal form as follows:

There exists a unary predicateR such
that each class with at least onea also
has ana ∧ R and ana ∧ ¬R.

B. A Small Model Property

We fix a puzzleP = (L, F ) for the rest of this
subsection. We assume thatP has a solution. Our
goal is Proposition 2, which says that this solution
can be transformed into a solution where “few”
zones are “large”.

We also fix a nondeterministic automatonA
over unranked, profiled trees without data that
recognizes the regular languageL and an accepting
run ρ of this automaton which associates a state of
Q to each node oft. For simplicity, we assume that
the state of a node implies its profile – that is two
nodes with the same state have the same profile.
Any automatonA can be easily transformed into
one that satisfies this assumption.

We need some more terminology which we
define next.

• The set of all children of some node is called
a siblinghood. Any contiguous sequence of
siblings is called aninterval .
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• A twin-pair p = (v, v′) is a pair of two
consecutive siblings, i.e.,v′ is the horizontal
successor ofv.
The left interface of an intervalI is the twin-
pair (v, v′) consisting of the left-most nodev′

of I and its left neighborv. If there is no such
left neighbor then we setv = ⊥. Correspond-
ingly, we define theright interface .
An interface, in which the two data values are
different is called aborder interface.

• A node with data valued is also called ad-
node. An interval consisting solely ofd-nodes
is calledd-pure. If the exact value ofd does
not matter, we simply call itpure. An interval
is called complete if both its interfaces are
border interfaces.

• If the parent of an interval (node, siblinghood)
has valued we call it a d-parent interval
(node, siblinghood).

• For a data valued, a d-path is a set ofd-
valued nodes connected by thevertical suc-
cessor relation. Adata path is a d-path for
somed.

Figure 2 illustrates some of these terms.

d1|d1

complete interval
︷ ︸︸ ︷

complete pure interval
︷ ︸︸ ︷

|d2 |d2|d2|d2|
︸ ︷︷ ︸

pure interval

d2| d3|d4 |d4|d5|d5|
︸ ︷︷ ︸

interval

d5| d6|d7|d7|

︸ ︷︷ ︸

siblinghood

Fig. 2. Different types of intervals

Given M, N ∈ N, a data tree is said to be
(M, N)-reduced if it has at mostM data zones
of size more thanN and at mostM siblinghoods
with more thanN complete pure intervals.

Proposition 2 From each puzzleP , numbers
M, N can be computed such thatP has a solution
if and only if it has an(M, N)-reduced solution.

The proof of Proposition 2 consists of a long
sequence of steps combining cut-and-paste and
counting arguments; in each step we modify an
existing solution into one which is closer to being
(M, N)-reduced. These steps form the most tech-
nical part of the paper. The precise statement of the
propositions together with their proofs will appear
in the full version of this paper. We only give some
intuition here.

More precisely, we show that if there is a
solution for P there is one with the following

properties:

(1) At mostM1 complete pure intervals have more
thanN1 nodes.

(2) At most M2 siblinghoods contain more than
N2 complete pure intervals.

(3) There is a setP of at mostM3 zones such that
all data paths disjoint with

⋃
P have at most

N3 nodes.

All the constants used above depend only on the
size of the puzzleP , see Table I for their asymp-
totic values.

Const. Value Const. Value
M1 |F ||Q|O(|Q|) N1 O(|Q|2|Σ|)

M2 |F ||Q|O(|Q|) N2 O(|Σ||Q|3)
M3 |F ||Q|O(|Q|) N3 O(|Σ||Q|2)

TABLE I

THE CONSTANTS USED FOR PRUNING.

Once we have such a solution, one can easily
see that at most

M = M1 + M2 + M3

zones contain more than

N = (N1 · N2)
N3+1

nodes, thereby proving Proposition 2.
The proof of the items mentioned above is done

sequentially. We first prove (1) by reducing the size
of most intervals. Then we take care of (2) and
reduce the size of most siblinghoods. This second
step is achieved without increasing the size of any
interval, thus (1) remains true. Finally we prove
(3) reducing the depth of most zones. Again this is
done without violating steps (1) and (2).

Each step is rather technical but follows the same
pattern. We distinguish two cases. In the first case
we assume that the number ofproblematic data
values yielding a long interval, or a big sibling-
hood, or a deep zone is “huge”, where “huge”
is a constant that we can compute fromP . In
this case, we show that we can transfer part of
the big interval/siblinghood/zone while changing
its data value in a way that it decreases the number
of problematic data values. The “huge” number
guarantees that it is always possible to find a
new data value which satisfies all the conditions
required for being able to do such a transfer without
violating the conditions ofP .

In the second case, when the number of problem-
atic data values is small, we prove (1), (2) and (3)
independently for each data value. In other words
we prove alocal variant of (1), (2) and (3) where
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each statement is relativized to a data valued: d-
pure intervals,d-parent siblinghoods,d-paths. This
can be done by moving parts of the tree from one
place to another without changing any data value.

The details will be found in the full version of
the paper.

C. Satisfiability for Small Models

The final step of the proof of 1 consists of the
following proposition:

Proposition 3 Given a puzzleP and numbers
M, N , it is decidable whetherP has an(M, N)-
reduced solution.

The proof is by reduction to the emptiness of
linear constraint tree automata. We first define
these automata and show that their non-emptiness
problem is decidable. Afterwards we present the
reduction.

A linear constraint automaton over unranked
trees is obtained from a (nondeterministic) tree au-
tomaton by adding linear constraints on the number
of times states appear in a run.

A linear inequality over variable setX is an
expression of the form

∑

x∈X

kx · x ≥ 0 kx ∈ Z .

A linear constraint over X is a boolean combi-
nation of linear inequalities. Asolution of a linear
constraint is a valuationν : X → N satisfying it
in the usual way.

A linear constraint tree automaton (LCTA) is
a nondeterministic unranked tree automatonA with
state spaceQ, together with a linear constraint over
Q. The LCTA accepts a tree if the tree admits a
run ρ : V → Q of A on t, which accepts in the
usual sense, and which moreover satisfies the linear
constraint wrt. its Parikh image(|ρ−1(q)|)q∈Q.

It is not hard to see that emptiness of LCTA is
decidable, since context-free languages have semi-
linear Parikh images, and semilinear sets are closed
under intersection. The following result shows that
the complexity of deciding emptiness is NPTIME,
by a similar proof as [21]. The latter paper shows
how to compute in linear time an existential Pres-
burger formula for the Parikh image of a context-
free language described by a grammar. The proof
in [21] can be directly adapted to extended context-
free grammars, i.e., grammars with rulesA → LA,
whereLA ⊆ Σ∗ is a regular language giving the
possible right-hand sides of the rule with left-hand
sideA.

Theorem 2 Emptiness of LCTA is inNPTIME.

Note that it is important here that the linear
constraints speak of states and not of letters of
the input. Even over words, an automaton with
linear constraints over letters in the input cannot
recognize the language{bmanbn | m, n ∈ N}.

The following proposition shows that when re-
stricted to (M, N)-reduced solutions, LCTA can
recognize the data erasure of puzzle solutions:

Proposition 4 Given a puzzleP overΣ and num-
bersM, N , one can compute an LCTA that recog-
nizes the data erasure of(M, N)-reduced solutions
of P .

Let the puzzleP = (L, F ) be given, withL a
regular language of unranked trees overΣ × Pro
andF the set of accepting pairs(D, S) ∈ 2Σ×2Σ.
Recall that for each accepting pair(D, S) each
dog-letter ofD must appear exactly once in each
class of a solution ofP which fulfills (D, S).
Recall also that each class is partitioned into zones.
Each zone of a class may contain some of the dog-
letters. The set of zones containing a dog letter
induces a partition ofD. For each accepting pair
(D, S) and each partitionπ of D, we call the triple
(D, S, π) a class type. A class is of class type
(D, S, π) if it fulfills (D, S) and the zones of the
class partitionD according toπ.

We fix a tree automatonA with state spaceQ
that acceptsL. We also fix the following constant.

K = 2M + (N + 1)2|Σ| + 2 .

Let ν be a function that assigns to every class
type a number from{0, . . . , K}. We defineLν to
be the set of treest′ such thatt′ is the data erasure
of some(M, N)-reduced profiled data treet such
thatA has an accepting runρ over t and, for every
class typeτ :

• If ν(τ) < K, thent has exactlyν(τ) classes
of type τ .

• If ν(τ) = K, then there are at leastK classes
in t of type τ .

Lemma 3 For every functionν, there is an LCTA
Aν that recognizesLν . The size ofAν is exponen-
tial in the size ofP .

Proposition 4 follows immediately from this
lemma, by taking a disjunction of automata over
all possible functionsν.
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IV. I NTEGRITY CONSTRAINTS

XML documents usually come with a specifica-
tion, often stated in XML Schema, which tells what
to expect in the document. It contains a structural
part which includes a mechanism for assigning
types to nodes of the tree and a set of integrity
constraints such askeysand inclusion constraints.

It is natural to ask whether a specification is
consistent and whether a set of integrity constraints
is minimal or not (implication problem). One of
the advantages of a logic-based approach to decid-
ability is the compositionality of logic. This holds
especially forFO2(∼, +1), which is closed under
all boolean operations and, as far as satisfiability is
concerned even under existential set quantification.

In this section, we will see that it follows
quite directly from Theorem 1 that the consistency
and the implication problem for unary keys and
inclusion constraints are decidable, even relative
to structural constraints given by a regular tree
language.

We first deal with regular tree languages and
types.

Let EMSO2(∼, +1) be the extension ofFO2(∼
, +1) consisting of all formulas starting with a
sequence of existential quantifiers over unary pred-
icates (i.e., set variables) followed by anFO2(∼
, +1) formula. For satisfiability, it does not matter
whether unary predicates are part of the signature
or existentially quantified in the prefix of a formula.
Therefore, from Theorem 1 we immediately get the
following corollary.

Corollary 1 The logic EMSO2(∼, +1) over un-
ranked data trees is decidable.

Basically, the two standard XML schema lan-
guages, DTD and XML Schema, are able to define
only sets of documents that are regular tree lan-
guages (but not all regular tree languages!). In the
following, we thus assume that the allowed set of
documents is described by a tree automatonA. The
type of a nodev is the state ofA on v in an ac-
cepting run.3 Recall from Fact 1 that every regular
tree language is expressible inEMSO2(+1).

A key constraint is an expression of the form
τ [X ] → τ where τ is a type of a node and
X a set of attributes of that node. It says that
the X-attributes of a node of typeτ uniquely
determine the node. Stated in other terms, for each

3In XML Schema it is basically required thatA has a
unique accepting run, thus the type of each node is uniquely
determined.

combination of attribute values there is at most one
node of typeτ having these values.

An inclusion constraint is an expression of the
form τ [X ] ⊆ τ ′[Y ] whereτ and τ ′ are two node
types andX andY are sequences of attributes of
the same cardinality. It says that for each nodeu
of type τ there is a nodev of type τ ′ such that the
X-attributes ofu have the same (corresponding)
values as theY -attributes ofv. Key and inclusion
constraints are said to beunary if |X | = |Y | = 1.

The consistency problem for unary keys and
unary inclusion constraints relative to a regular tree
language is as follows. Given an (unambiguous)
tree automatonA and a setK of unary key and
inclusion constraints4, it asks whether there is a
tree t which is accepted byA and fulfills the
constraints. Theimplication problem asks, given
A and setsK1, K2 of constraints, whether each tree
accepted byA which fulfills K1 also fulfills K2.

Proposition 5 The consistency and implication
problems for unary keys and unary inclusion con-
straints relative to a regular tree language are
decidable.

Proof: We only consider the more general,
implication problem. We encode XML documents
as trees in a way which closely corresponds to the
XPath data model [23], i.e., the attributes of a node
v are represented by attribute nodes (labelled by the
attribute name) which are children ofv. I.e., theB-
attribute value of a nodev is given by the value of
its (unique) child labelled with B. An example of
this encoding is presented in Figure 3.

Let A andK1, K2 be given, where the states of
A induce the types in the constraints. By Fact 1,
from A we can derive anEMSO2(∼, +1) formula
of the form∃R1, . . . , RnϕA which (1) holds in a
treet if and only if t ∈ L(A) and (2) such that, for
each stateτ of A, a position satisfies the predicate
Rτ if and only if the position has typeτ (uses the
stateτ in the unique accepting run). Thus, a unary
key constraintU : τ [B] → τ can be expressed by
the FO2(∼, +1) formula ϕU =

∀x∀y





(B(x) ∧ ∃yRτ (y) ∧ E↓(y, x))∧
(B(y) ∧ ∃xRτ (x) ∧ E↓(x, y))∧

x ∼ y



 → x = y .

An inclusion constraintU : τ1[B1] ⊆ τ2[B2] can
be expressed by theFO2(∼, +1) formula ϕU =

∀x (B1(x) ∧ ∃y(Rτ1
(y) ∧ E↓(y, x))) →

∃y (x ∼ y ∧ B2(y) ∧ ∃x(Rτ2
(x) ∧ E↓(x, y))).

4Recall that the types used in these constraints are states of
A.
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<schedule>
<course ID="5">

<lecturer faculty="12"> </lecturer>
<building nr="1"> </building>

</course>
</schedule>

schedule

course

ID

(5)

lecturer

faculty

(12)

building

nr

(1)

Fig. 3. An XML document and its data tree encoding. In
the encoding, data values are in parentheses. Data values for
non-attribute nodes are not used.

Thus, the implication problem reduces to satisfia-
bility of the following formula ofEMSO2(∼, +1):

∃R1, . . . , Rn(ϕA ∧
∧

U∈K1

ϕU ∧ ¬
∧

U∈K2

ϕU ).

Note, that by combining key and inclusion con-
straints also foreign key constraints can be covered.
In [2] a special case of Proposition 5 was proved:
the consistency problem for unary keys and foreign
keys is NP-complete relative to DTD types. The
extension to XML Schema’s typing system (and
to any regular tree language) was left as an open
question. Note also that we do not know yet the
precise complexity of the implication problem, we
only have the upper-bound given by the analysis
of the proof of Theorem 1: 3NEXPTIME.

V. XPATH CONTAINMENT

In this section we define a fragment of XPath,
which we callLocalDataXPath,which is captured
by FO2(∼, +1), for the purpose of static analysis.
More precisely, satisfiability and containment test
for unary queries expressed in these fragments,
possibly in the presence of integrity constraints
and schemas, can be reduced to satisfiability of
FO2(∼, +1).

Most fragments of XPath for which the contain-
ment problem has been studied and established to
be decidable, do not allow reference to attribute
values. The language LocalDataXPath allows the
comparison of attribute values, but compared with
Core-Data-XPath it has two restrictions: (1) nav-
igation is not allowed along the “transitive” axes
as Descendant and FollowingSibling and (2)
in an equality on attribute values either one of

the location paths has to be absolute (i.e., starting
from the root), or both (relative) location paths are
strongly limited.

In LocalDataXPath only the following axes are
allowed:

Axis := Child | Parent | NextSibling |
PreviousSibling | Self | ElseWhere

Every axis corresponds to a binary relation on
tree nodes. For instance, theChild axis is true for
node pairs(v, w) wherew is a vertical successor of
w. The other axes are defined analogously. The new
ElseWhere axis corresponds to the relation of pairs
(v, w) of nodes, wherev 6= w. It is added in order
to allow at least some kind of global navigation.

We define the syntax of LocalDataXPath next.
For the purpose of this paper it is given in a
simplified form as to compared with XPath.

LocPath := RelLocPath | AbsLocPath

AbsLocPath := ′/′ RelLocPath

RelLocPath := Step | RelLocPath ′/′ Step

Step := Axis :: NameTest Predicate∗

NameTest := Name | ′ ∗′

Predicate := ′[′PredExpr′]′

PredExpr := LocPath |

LocPath ′/′ Attr EqOp AbsLocPath ′/′ Attr |

Self :: NameTest ′/′ Attr EqOp Step ′/′ Attr |

PredExpr and PredExpr |

PredExpr or PredExpr | not PredExpr

Attr := ′@′Name

EqOp := ′ =′ | ′! =′

An expression derived fromLocPath defines a
binary relation on tree nodes (a set of paths), while
an expression derived fromPredExpr defines a
unary relation (a set of tree nodes). These are
defined using mutual recursion.

To obtain decidability, we restrict
(in-)equalities of the form Self ::
NameTest ′/′ Attr EqOp Step ′/′ Attr, which
we call relative equalities, a bit further. We say
that an attribute nameB is associatedto a label
a in an XPath expressione if the pair (a, @B)
or (∗, B) occurs as (NameTest, Attr) pair in a
relative (in-)equality ofe.

A set of expressions issafe if the set of induced
associations is a function from labels to attribute
names. In particular if the wildcard∗ is present,
there is a unique attribute name occurring in all
relative sub-expressions.
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Example 1 The following (safe) expressions se-
lects a nodev if all of its children with labelb
have the same data value asv:

¬(Child :: b/@B ! = Self :: ∗/@B).

The following expression is also safe:

Child :: b/@B1 = Self :: a/@B2.

Theorem 3 Satisfiability and Containment for
(unary or binary) LocalDataXPath safe expressions
is decidable. This holds even relative to a schema
consisting of a regular tree language and unary key
and inclusion constraints.

Proof: (sketch) The proof is, of course, by
translating the expressions intoFO2(∼, +1) for-
mulas. We encode XML documents as in the proof
of Proposition 5 (using the XPath data model)
with a small extension that we will introduce later.
As long as expressions do not compare attribute
values, there is no need to restrict the location
paths: We can just use the standard inclusion of
Core-XPath intoFO2(<, +1) of [18].

This easily extends to equality expressions with
at most one relative location path by, intuitively,
first simulating the relative path, then jumping to
a node with the same data value and checking that
this node satisfies its absolute path constraint by
simulating the path backwards to the root. Note
that it seems crucial here that the second path is
absolute and thus does not start at the current node,
as the two variables are needed for the navigation
and thus the current node can not be remembered.
As an example the expression

Child :: a/Child ::b/@B1 =

/Child :: c/NextSibling :: d/@B2.

is translated into the following equivalent formula
ϕ(x):

∃yE↓(x, y) ∧ a(y)∧

∃xE↓(y, x) ∧ b(x)∧

∃yE↓(x, y) ∧ B1(y)∧

∃x x ∼ y ∧ B2(x)∧

∃yE↓(y, x) ∧ d(y)∧

∃xE→(x, y) ∧ c(x)∧

∃yE↓(y, x) ∧ ¬∃xE↓(x, y).

It only remains to explain how we can deal with
relative (in-)equalities. To this end, we exploit the
fact that the encoding of XML documents used
so far only needs data values in attribute nodes.
Thus, we can use the data values of element nodes

for our purpose. Note, that the safety restriction on
relative (in-)equalities ensures that for each element
only one attribute is used in relative (in-)equalities.
Therefore, we use data trees in which this attribute
value (if any) is stored. Note, that an additional
FO2(∼, +1) formula can check that the data values
in element nodes are consistent with those in the
attribute nodes.

As an example, if
(Child :: b/@B1 = Self :: a/@B2) is a
subexpression of our XPath expression at hand,
then we consider data trees in which the data
value ofa-nodes is interpreted as theB2-attribute
and the data value ofb-nodes as theB1-attribute.
Thus, the expression is equivalent to the formula
a(x) ∧ ∃yE↓(x, y) ∧ b(y) ∧ x ∼ y.

It is now straightforward to combine the tech-
niques described so far with those of Section IV to
obtain the second statement of the theorem.

Containment for binary queries can be handled
by having two distinguished nodes in each tree
which correspond to a pair in the query result.

It should be noted that satisfiability of a sim-
ilar fragment of XPath with all axes besides
Following and Preceding can be reduced to
satisfiability ofFO2(∼, <, +1). Unfortunately, we
do not know if satisfiability ofFO2(∼, <, +1) is
decidable.

VI. A LOWER BOUND FORFO
2(∼, <, +1)

In this section we show that satisfiability of
FO2(∼, <, +1) on (even binary) trees is at least as
hard as checking non-emptiness for vector addition
tree automata. The decidability of the latter has
been an open problem for many years and is, in
turn, equivalent to a notorious open problem in
linear logic, the decidability of MELL (Multiplica-
tive Exponential Linear Logic) (see [9] and the
references therein). Therefore proving decidability
of FO2(∼, <, +1) on trees seems to be quite
challenging.

A vector addition tree automaton over binary
trees is a kind of bottom-up automaton which
assigns to every node, besides a state, a vector
over N. A transition has three vectors~a,~b,~c, three
statesq0, q1, q and a labell as parameters. It can
be applied to a nodev with childrenv0, v1 if

• v has labell
• v0 has stateq0 andv1 has stateq1

• ~x − ~a ≥ ~0 and ~y − ~b ≥ ~0, where~x and ~y
denote the vector atv0 andv1, respectively.

If the transition is applied thenv gets stateq and
the vector(~x − ~a) + (~y −~b) + ~c.
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More formally avector addition automaton A
is a tuple
(Σ, k, Q, F, δ0, δ) whereΣ is a finite alphabet,k
is the arity of the vectors of the automaton,Q is a
finite set of states,F ⊆ Q a set of accepting states,
δ ⊂ Σ× (Q×N

k)2 × Q×N
k is a finite (!) set of

transitions andδ0 ⊂ Σ × Q × N is a finite set of
initial transitions.

A run of the automaton assigns to each node a
state and ak-ary vector. For a leaf of labela, the
stateq and the vector~n have to fulfill δ0(a, q, ~n)
holds. For inner nodes, some transition has to be
applicable, as described above.

A tree is accepted if the root carries an accepting
state and the vector~0.

Note that the automatacannot test whether a
component of a vector is equal to zero (otherwise
the model would be immediately undecidable) and
that vectors never assume negative values.

A different view of vector addition automata
considers the components of the vectors as coun-
ters. In the following proof we will adapt this view
to improve intuition.

Theorem 4 For any vector addition tree automa-
ton A, a formula ϕA ∈ FO2(∼, <, +1) can be
computed such thatL(A) 6= ∅ iff ϕA has a model.

Proof: (sketch) Letk be the number of coun-
ters ofA andQ be its set of states.

The formulaϕA uses one unary predicatePq

for eachq ∈ Q and two unary predicatesIi, Di

for eachi ∈ [1, k]. The intended meaning ofIi is
that counteri is increased by one whileDi means
that counteri is decreased by 1. The models ofϕA

are going to be trees coding possible runs ofA. In
such a tree a transition

δ(a, q1, (a1, · · · , ak), q2, (b1, · · · , bk), q, (c1, · · · , ck))

of A is represented by a subtree which has, for
eachi, in its top branchci symbolsIi, in the left
branchai symbolsDi and, in the right branchbi

symbolsDi, as depicted in Figure 4. The leave
conditions are handled in the same fashion. That
a tree consists of such patterns can be easily
described inFO2(+1).

To check that all counters always have non-
negative values and the value zero at the root, data
values are employed. To this end, checking for all
i ∈ [1, k] that (1) all nodes labeledIi have different
data values, (2) all nodes labeledDi have different
data values, (3) for each node labeledIi there is
an ancestor labeledDi with the same data value,

q

I1

I1

I2

a

D1

D1

D3

q1

D2

D3

q2

Fig. 4. Coding a transition: An example with
δ(a, q1, (2, 0, 1), q2, (0, 1, 1), q, (2, 1, 0))

(4) for each node labeledDi there is a descendant
labeledIi with the same data value.

It is easy to express (1) - (4) inFO2(∼, <, +1).
Further, it is easy to see that (1) - (4) imply that
the overall number of decrements of each counter
is equal to the number of increments, therefore all
counters have value zero at the root. Moreover each
decrement is preceded by an increment (below),
therefore the value of each counter is always non-
negative. (The reader should convince her- or him-
self thatFO2(∼, <, +1) does not seem to be able
to check whether at an inner node a counter has
value zero.)

VII. CONCLUSION

An interesting aspect of this work is to present
in a unified framework decidability results that
were studied separately in the past: consistency of
integrity constraints and satisfiability of queries. In
the future we hope to be able to also include related
problems into the picture like the type inference
problem [1].

Our main technical result is the decidability of
FO2(∼, +1), which can be seen as a non trivial
decidable fragment of XPath. A close inspection
of the proof of Theorem 1 gives a upper bound
of 3NEXPTIME for the decision procedure. A
NEXPTIME-hardness lower bound is easy to ob-
tain. It would be interesting to know the precise
complexity of the problem.

Another obvious open question is to know
whether this can be extended by allowing more
features in the language. We have already men-
tioned the open and challenging problem of the
decidability ofFO2(∼, <, +1).

Maybe more doable would be to know whether
FO2(∼, +ω) is decidable. This logic can use pred-
icates of the formEk

↓ and Ek
→ testing whether
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two nodes are at distance exactlyk (downwards
or rightwards). This is a proper extension, since
FO2(∼, +1) cannot express the fact that a position
x has the same data value as its grandfather.
However this feature would be useful in practice
in order to be able to express tree pattern queries
which do not only depend on the labels of the
nodes but also how their data values compare. It
would also be useful in order to express more in-
tegrity constraints, in particular some of therelative
keysand relative inclusion constraintswhich are
stated relative to a given context. Such integrity
constraints were investigated in [2] in the presence
of DTDs. We leave the decidability ofFO2(∼, +ω)
as an open problem.

Another interesting issue would be to find an
algebraic form of the considered logics. In partic-
ular, we would like to find a decidable model of
tree automata that can manipulate data values and
express at least all ofFO2(∼, +1). Unfortunately
two-way automata using registers or pebbles for
comparing data values are undecidable even when
using only one such register or pebble [8].
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