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CNRS, BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France, {hugues.garnier,
marion.gilson}@cran.uhp-nancy.fr

† Centre for Research on Environmental Systems and Statistics, Lancaster University, Lancaster
LA1 4YQ, U.K., p.young@lancaster.ac.uk

∗ Centre for Resource and Environmental Studies, Australian National University, Canberra,
Australia.

1Corresponding author

1



1 Introduction

System identification is an established field in the area of systems analysis and control. It aims at
determining mathematical models for dynamical systems based on observed inputs and outputs.
Although dynamical systems in the physical world are normally formulated in the continuous-time
(CT) domain, as differential equations, most system identification schemes have been based in the
past on discrete-time (DT) models without concern for the merits of the more natural continuous-
time models. The development of CT model identification techniques originated in the last century
(see e.g. (Young 1970) which adumbrates the methodology described in the present paper) but was
overshadowed by the overwhelming developments of DT model identification methods. This was
mainly due to the ‘go completely digital’ trend that was spurred by parallel developments in digital
computers. Interest in CT approaches to system identification has however been growing in the
recent years (Garnier et al. 2003), (Li et al. 2003), (Wang et al. 2004), (Garnier and Young 2004),
(Moussaoui et al. 2005), (Mensler et al. 2006), (Young and Garnier 2006), (Mahata and Garnier
2006), (Rao and Unbehauen 2006), (Garnier and Wang 2007).

In this paper, a new identification method is developed for multiple input single output (MISO)
continuous-time linear systems. In DT model identification, the approaches dedicated to multiple
transfer function model identification combine either extensions of linear regression techniques like
pseudo-linear, multi-linear regression, filtering, instrumental variable, or non linear optimization
techniques (Ljung 1999). For the CT case, as far as the authors are aware, the only procedure
developed to handle the MISO identification problem is based on non linear optimization techniques
which minimize the output error. However, the technique may critically rely on a good initial
parameter set to converge to the global minimum of the cost function. The linear regression-based
algorithms should offer an interesting solution to overcome this drawback. However, the parameter
estimation procedures for MISO systems have usually been developed by a straightforward extension
of procedures devoted to SISO systems, which only allows transfer function estimation with a
common denominator. Since this case is not very realistic in many practical applications, this paper
presents a new method to estimate MISO systems described by multiple CT transfer functions with
different denominators.

When looking at methods that can consistently identify systems while relying on simple lin-
ear regression algorithms, instrumental variable (IV) techniques seem to be rather attractive
((Söderström and Stoica 1983), (Young 1984) or (Gilson and Van den Hof 2005) for a recent
reference). Moreover, when dealing with highly complex processes that are high dimensional in
terms of inputs and outputs, it can be rather attractive to rely on methods that do not require
non-convex optimization.

Several IV estimators have been developed for CT SISO system identification (Garnier et al.
2003). Amongst these, the Simplified Refined Instrumental Variable for Continuous-time systems
(Young and Jakeman 1980), denoted by SRIVC from hereon, presents the advantage of yielding
asymptotically efficient estimates in the presence of white measurement noise. Therefore, the main
objective in this paper is to develop a SRIVC version dedicated to CT multiple transfer function
model identification, which is a CT version of a similar SRIV algorithm for DT systems (Young
and Jakeman 1979), (Jakeman et al. 1980). Another interesting advantage of using this refined IV
method is that a procedure based on the properties of the instrumental product matrix (Young et
al. 1980) can be used for identifying the model structure prior to parameter estimation.

The paper is organized in the following way. Section 2 states the problem. The proposed
method is described in Section 3. The properties of the proposed algorithm are illustrated through
Monte Carlo simulation in Section 4. The robustness of the proposed estimation scheme against
the initial parameter set is also illustrated and compared with a traditional output error technique.
Sections 5 and 6 present the results of the identification of a winding process and an industrial
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binary distillation column respectively. Finally, Section 7 gives some concluding remarks.

2 Problem statement
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Figure 1: Multiple input system to be identified

Consider a MISO CT linear time-invariant causal system that can be described by (see Figure 1)

S :











yui
(t) = Go

i (p)ui(t − τ o
i ),

yu(t) =
∑nu

i=1 yui
(t),

y(t) = yu(t) + v(t),

(1)

with

Go
i (p) =

Bo
i (p)

F o
i (p)

, (2)

Bo
i (p) = bo

i,0 + bo
i,1p + . . . + bo

i,mi
pmi , (3)

F o
i (p) = f o

i,0 + f o
i,1p + . . . + f o

i,ni
pni , (4)

f o
i,ni

= 1, ni ≥ mi, i = 1, . . . , nu,

where u(t) = [u1(t) . . . unu
(t)] is the vector of uncorrelated input signals, yu(t) the system response

to u(t) and v(t) is the disturbance signal ; p is the differential operator, i.e. px(t) := dx(t)
dt

; τ o
i

denotes the time-delay between the output and the ith corresponding input. The polynomials F o
i (p)

and Bo
i (p) are assumed to be relatively prime and the roots of the polynomials F o

i (p) are assumed to
have negative real parts; the system under study is therefore assumed to be asymptotically stable.

The first equation in (1) describes the ith output at all values of the continuous-time variable
t and can also be written as

f o
i,0yui

(t) + f o
i,1y

(1)
ui

(t) + · · · + y(ni)
ui

(t) = bo
i,0ui(t − τ o

i ) + · · · + bo
i,mi

u
(mi)
i (t − τ o

i ), (5)

where x(l)(t) denotes the lth time-derivative of the continuous-time signal x(t). The system is
subject to an arbitrary set of initial conditions

u0 =
[

u0
1 · · · u0

nu

]

, y0
u =

[

y0
u1

· · · y0
unu

]

, (6)

u0
i =

[

ui(0) u
(1)
i (0) · · · u

(mi−1)
i (0)

]T

∈ R
mi , (7)

y0
ui

=
[

yui
(0) y

(1)
ui (0) · · · y

(ni−1)
ui (0)

]T

∈ R
ni . (8)
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It is furthermore assumed that the disturbances that cannot be explained from the input signal can
be lumped into the additive term v(t) (1). The disturbance term v(t) is assumed to be independent
of the inputs ui(t), i.e. the case of the open-loop operation of the system is considered. For the
identification problem, it is also assumed that the continuous-time signals ui(t) and y(t) are sampled
at regular time-interval Ts.

The goal is then to build a model of equation (1) based on sampled input and output data.
Models of the following form are considered

G :











yui
(tk, θi) = Gi(p, θi)ui(tk − τi),

yu(tk, θi) =
∑nu

i=1 yui
(tk, θi),

y(tk) = yu(tk, θi) + v(tk),

(9)

where x(tk) denotes the sample of the continuous-time signal x(t) at time-instant t = kTs and
Gi(p, θi) is the ith transfer function given by

Gi(p, θi) =
Bi(p)

Fi(p)
=

bi,0 + bi,1p + · · · + bi,mi
pmi

fi,0 + fi,1p + · · · + fi,ni
pni

, (10)

fi,ni
= 1, ni ≥ mi, i = 1, . . . , nu,

and θi = [bi,mi
. . . bi,0 fi,ni−1 . . . fi,0]

T ∈ R
npi , with npi

= ni + mi + 1, where ni and mi denote
the denominator and numerator orders of Gi(p, θi) respectively. Therefore, the sought parameter
vector is

θ =
[

θT
1 . . . θT

nu

]T
∈ R

np×1, (11)

with np =
∑nu

i=1 npi
.

Note that estimation methods presented in this paper focus on identifying the parameters of each
plant transfer function Gi(p, θi) rather than the additive noise appearing in (1). The disturbance
term is assumed here to be a zero-mean discrete-time noise sequence denoted as v(tk). Moreover, the
pure time-delays are supposed to be known and multiple integers of the sampling period τi = nki

Ts.
The identification problem can now be stated as follows: determine the orders (ni and mi)

and the parameter vector θ =
[

θT
1 · · · θT

nu

]T
of the continuous-time plant model from N sampled

measurements of the input and the output ZN = {y(tk)u1(tk) . . . unu
(tk)}

N

k=1.

3 Refined IV methods for continuous-time transfer func-

tion model

3.1 Continuous-time transfer function model identification

There are mainly two time-domain approaches to determine a CT model from sampled data. The
first is to estimate a DT model which is then converted into a CT model. The second approach
consists in identifying directly a CT model from the DT data. In comparison with the DT coun-
terpart, CT model identification raises several technical issues. The first is related to the fact that
unlike the difference equation model, the differential equation model is not a linear combination of
samples of only the measurable process input and output signals. It also contains input and output
time-derivatives which are not available as measurement data in most practical cases. Various types
of continuous-time filters, such as the traditional State-Variable Filter (SVF) method, have been
devised to circumvent the need to reconstruct these time-derivatives (Garnier et al. 2003). The
CONtinuous-Time System IDentification (CONTSID) toolbox has been developed on the basis of
these methods (Garnier et al. 2006).
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Most of these CT model identification methods present the following drawbacks. First, they
can handle the case of MISO common denominator (CD) transfer function models only. Secondly,
these approaches require the a priori choice of a design parameter which can be difficult from a
practical point of view. Thirdly they disregard the properties of the additive noise and therefore
represent a sub-optimal solution to the estimation problem. One particularly successful stochastic
identification method is the iterative SRIVC method (see (Young and Jakeman 1980), (Young
2002)), where it is referred to as RIVC). This approach involves a method of adaptive prefiltering
based on an optimal2 statistical solution to the problem when the additive noise v(tk) is white,
but which also yields consistent and relatively low variance parameter estimates in the case of
coloured noise. This estimation technique was first proposed for DT model identification in the
form of the Refined Instrumental Variable (RIV) algorithm3 (Young 1976), (Young 1984) and
then extended for DT MISO systems with different denominators (Jakeman et al. 1980). The
CT MISO algorithm described in the present paper uses the same type of iterative, relaxation
algorithm as that used in this DT MISO algorithm. The RIV approach was extended for SISO
CT model identification at the time of its original development (Young and Jakeman 1980). It has
recently been revisited (Young 2002) and adapted to handle the case of irregularly sampled data
(Huselstein and Garnier 2002) (see also (Raghavan et al. 2006) for a recent review of identification
approaches for handling irregularly sampled data). This IV-type of method has often proved to be
particularly useful in practical applications (see e.g. (Young 1998)). This method not only ensures
that the estimate converges to statistically optimum values in the case of additive white noise,
it also generates information on the parametric error covariance matrix which can be used in an
associated procedure to identify the orders of the component transfer function models. SRIVC is
also a logical extension of the traditional and more heuristically defined SVF approach but presents
the advantage of not requiring manual specification of prefilter parameters.

In the following section, the SRIVC version for SISO transfer function model is first briefly
recalled and then extended to handle the case of multiple transfer function models.

3.2 SRIVC for SISO transfer function models

Consider a SISO system with a white measurement noise on the output. The SRIVC method is
based on the Maximum Likelihood (ML) approach where the error function is given by the output
error

v(tk, θ) = y(tk) −
B(p, θ)

F (p, θ)
u(tk − τ), (12)

with

F (p, θ) =
n−1
∑

l=0

flp
l + pn and B(p, θ) =

m
∑

l=0

blp
l. (13)

Minimisation of a least squares criterion function in v(tk, θ) provides the basis for the output error
estimation methods. However, v(tk, θ) can also be rewritten as

v(tk, θ) =
1

F (p, θ)
[F (p, θ)y(tk) − B(p, θ)u(tk − τ)] . (14)

2Strictly, the method is quasi-optimal because true optimality would require optimal interpolation of the input
signal u(t) over the sampling interval, whereas only simple interpolation is used in the SRIVC implementation.
However, this normally produces very good, near optimal estimation results.

3The RIV algorithm for DT model identification is available in the CAPTAIN toolbox (see
http://www.es.lancs.ac.uk/cres/captain/).
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Therefore, the output error given in (12) can be transformed in this manner to yield an equation
error expression of the form,

v(tk, θ) = F (p, θ)ỹ(tk) − B(p, θ)ũ(tk − τ), (15)

where ỹ(tk) and ũ(tk) are the variables pre-filtered by L(p, θ) = 1
F (p,θ)

. The problem with this

formulation is that θ and therefore F (p, θ) are unknown a priori. This problem can be conveniently
solved by employing an iterative optimization procedure which aims at adjusting an initial estimate
θ0 of θ adaptively until it converges on an optimal estimate. Therefore, at each step, a linear in
the unknown parameter vector θ equation has to be solved

ỹ(n)(tk, θ̂
j) = φ̃T (tk, θ̂

j)θj+1 + ε(tk, θ̂
j), (16)

where θ̂j is the parameter vector estimated at the jth step of the algorithm, θj+1 is the parameter
vector to be estimated and

φ̃T (tk, θ̂
j) =

[

ũ(m)(tk − τ, θ̂j) . . . ũ(tk − τ, θ̂j) − ỹ(n−1)(tk, θ̂
j) . . . − ỹ(tk, θ̂

j)
]

, (17)

where

x̃(i)(tk, θ̂
j) =

pi

F (p, θ̂j)
x̃(tk, θ̂

j) (18)

The use of the conventional least squares method to solve (16) will give biased results when the
output measurement is corrupted by noise. A solution is to use an IV-type of method to overcome
the bias problem. However, the choice of the instruments, denoted by Z̃T (tk) here, was shown
to have considerable effect on the parametric covariance matrix Pi. The lower bound of Pi for
any unbiased identification method is given by the Cramer-Rao bound, which is specified (see e.g.
(Ljung 1999) and (Söderström and Stoica 1983))

Pi ≥ P
opt
i (19)

with4

P
opt
i = σ2

ε [Ē
¯̃
φ(tk)

¯̃
φT (tk)]

−1 (20)

where ¯̃
φ(tk) = L(p)φ̄(tk) and φ̄(tk) is the noise-free part of φ(tk). The minimum variance can then

be achieved by the following choice of design variables (see (Young and Jakeman 1980)) where these
filters are defined by a special maximum likelihood solution to the problem):











L(p) =
1

F o(p)

Z̃T (tk) =
1

F o(p)
φ̄(tk)

(21)

Since the exact model F o(p) is not known, it has to be replaced by its estimate obtained at the
previous iteration: i.e.,











L(p, θ̂j) =
1

F (p, θ̂j)

Z̃T (tk, θ̂
j) =

[

ũ(m)(tk − τ, θ̂j) . . . ũ(tk − τ, θ̂j) − ỹu
(n−1)(tk, θ̂

j) . . . − ỹu(tk, θ̂
j)
]

,

(22)

4The notation Ē[.] = limN→∞

1

N

∑

N−1

k=0
E[.] is adopted from the prediction error framework of (Ljung 1999).
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where the filtered auxiliary model output is obtained from

ỹu(tk, θ̂
j) =

B(p, θ̂j)

F (p, θ̂j)
ũ(tk − τ) (23)

Z̃T (tk, θ̂
j) is thus an estimation of the filtered noise-free part of the regressor φ(tk). The optimal

IV-based parameter estimates are then given by

θ̂j+1 =

[

N
∑

k=1

Z̃(tk, θ̂
j)φ̃T (tk, θ̂

j)

]−1 N
∑

k=1

Z̃T (tk, θ̂
j)ỹ(n)(tk, θ̂

j), (24)

The main steps of the SRIVC algorithm dedicated to SISO5 transfer function model are pre-
sented in (Young and Jakeman 1980) and (Young 2002). It may be noted that since the instruments
are correlated with the input/output data but uncorrelated with the noise, the proposed IV algo-
rithm delivers consistent parameters even if the additive noise is a colored noise process. However,
it only gives asymptotically efficient estimates in the case of a white noise. In practical situations,
the additive noise will not have the nice white noise properties assumed above: it is likely that the
noise will be a colored noise process v(t) = Ho(p)e(t). In such a case, (21) becomes











L(p) =
1

Ho(p)F o(p)

Z̃T (tk) =
1

Ho(p)F o(p)
φ̄(tk)

(25)

The exact noise model is unknown in practice but could be estimated by extending to the
continuous-time case the procedure used in the full discrete-time RIV version (see (Young 1984) or
(Jakeman et al. 1980)) where an AR or ARMA model for the noise part is estimated and used in
the prefiltering operation. This would lead to the identification of a hybrid model where the plant
model would be in continuous-time while the noise part would be in discrete-time, as suggested
recently (Young et al. 2006).

3.3 SRIVC for multiple transfer function models

The proposed method derives from the equivalent iterative, relaxation algorithm for DT models in
(Young and Jakeman 1980) and (Jakeman et al. 1980). It aims at identifying MISO model with
different denominators (DD) for each input (9), which is more realistic than assuming an identical
denominator for all transfer function. However, the model is no longer linear in the parameters
and the proposed MISO version of SRIVC lies, therefore, in the domain of multi-linear regression.
The MISO model (9) can be converted into nu SISO models as follows

vi(tk, θ) = ξ̃i(tk, θ) − ỹui
(tk, θi) for i = 1 . . . nu, (26)

ξ̃i(tk, θ) = ỹ(tk) −
nu
∑

j=1,j 6=i

ỹuj
(tk, θj) (27)

The parameter vector θ is partitioned6 into classes θ1, . . . , θnu
such that the error is affine with

respect to the parameters of any of these classes when the parameters of all others are fixed (Walter

5The case of multiple transfer function models with common denominators can be handled in a straightforward
manner.

6The partition of θ into sub-vectors θi is related to the model order problem discussed further in Section 3.4.
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and Pronzato 1997). It is then possible to search for θ̂ by applying successively the SISO version
of the SRIVC algorithm to estimate the parameters of each class in turn, with a cyclic exploration
of all classes. This is achieved by following the same type of ‘relaxation’ procedure described in
Section 3.2

ξ̃
(ni)
i (tk, θ̂

j) = φ̃T
i (tk, θ̂

j)θj+1
i + ε̃i(tk, θ̂

j) (28)

φ̃T
i (tk, θ̂

j) =
[

ũ
(mi)
i (tk − τi, θ̂

j) . . . ũi(tk − τi, θ̂
j) − ξ̃

(ni−1)
i (tk, θ̂

j) . . . − ξ̃i(tk, θ̂
j)
]

(29)

where the filter is Li(p, θ̂
j
i ) = 1

Fi(p,θ̂
j
i )

. This equation is then solved by using the IV estimator

described in the previous section.

The main steps of the proposed iterative SRIVC method can be summarized by the following
algorithm7.

1. Estimate the initial parameter vectors

θ̂0
i =

[

b̂0
i,mi

. . . b̂0
i,0 f̂ 0

i,ni−1 . . . f̂ 0
i,0

]T

for i = 1 . . . nu, (30)

between the output y(tk) and each input ui(tk).

Calculate the auxiliary model outputs

yui
(tk, θ̂

0
i ) =

Bi(p, θ̂
0
i )

Fi(p, θ̂0
i )

ui(tk − τi).

2. j = 0 . . . Niter − 1, i = 1 . . . nu

(a) Generate an estimate ξui
(tk, θ̂

j
i ) of the noisy response to ui,

ξui
(tk, θ̂

j
i ) = y(tk) −

nu
∑

l=1,l 6=i

yul
(tk, θ̂

j
l ).

Filter the latter variable, the input signal and the auxiliary model output

ξ̃ui
(tk, θ̂

j
i ) =

1

Fi(p, θ̂
j
i )

ξui
(tk, θ̂

j
i ),

ũi(tk, θ̂
j
i ) =

1

Fi(p, θ̂
j
i )

ui(tk),

ỹui
(tk, θ̂

j
i ) =

1

Fi(p, θ̂
j
i )

yui
(tk, θ̂

j
i ).

(b) Build up the regressor (29) and the instruments

Z̃T
i (tk, θ̂

j
i ) =

[

ũ
(mi)
i (tk − τi, θ̂

j
i ) . . . ũi(tk − τi, θ̂

j
i ) − ξ̃(ni−1)

ui
(tk, θ̂

j
i ) . . . − ξ̃ui

(tk, θ̂
j
i )
]

. (31)

Calculate the IV estimate of the parameter vector θ̂
j+1
i

θ̂
j+1
i =

[

N
∑

k=1

Z̃i(tk, θ̂
j
i )φ̃

T
i (tk, θ̂

j
i )

]−1 N
∑

k=1

Z̃T
i (tk, θ̂

j
i )ξ̃

(ni)
i (tk, θ̂

j
i ). (32)

7This can also be considered as a ’backfitting’ algorithm: see (Young et al. 2001), where a similar device is used
to identify nonlinear, state-dependent parameter systems.
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Use θ̂
j+1
i to generate the auxiliary model output

yui
(tk, θ̂

j+1
i ) =

Bi(p, θ̂
j+1
i )

Fi(p, θ̂
j+1
i )

ui(tk − τi).

Repeat step 2 until the relative error on the parameters is sufficiently small

nu
∑

i=1

npi
∑

l=1

∣

∣

∣

∣

∣

θ̂
j+1
i,l − θ̂

j
i,l

θ̂
j
i,l

∣

∣

∣

∣

∣

< ǫ, (33)

where θ̂
j
i,l denotes the lth element of the parameter θ̂

j
i , ǫ is a given tolerance and Niter is the

final iteration number.

3. For i = 1 . . . nu, θ̂i = θ̂Niter

i . Compute an estimate of the parametric covariance matrix P̂i (see
(Young 2002) for example)

P̂i = σ̂2
ε

[

N
∑

k=1

Z̃i(tk, θ̂i)Z̃
T
i (tk, θ̂i)

]−1

(34)

where σ̂2
ε denotes the empirical variance of the simulation error

ε(tk, θ̂) = y(tk) − yu(tk, θ̂).

The parameter vector and parametric covariance matrix estimates are given by

θ̂ = [θ̂T
1 . . . θ̂T

nu
]T (35)

P̂ =













P̂1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 P̂nu













(36)

Remarks

1. For the initialisation of the algorithm, estimates for a particular transfer function i can be
obtained using SISO modeling of the output y(tk) against each input ui(tk) in turn. This is
not a difficult task and there are several alternatives available to the user in the CONTSID
toolbox. An automatic option is to use the DT version (SRIV) of the SRIVC method, which
has the advantage of not requiring any design parameters to be specified. The estimated
discrete-time model is then first used to generate the auxiliary model outputs yui

(tk, θ̂
0
i ) and

also converted to continuous-time form to provide the F̂i(p, θ̂
0
i ) polynomials. Two alternatives

include the user specification of a single cut-off frequency used in either the traditional least
squares-based SVF or the basic IV-based GPMF methods (see (Garnier et al. 2003) for
example).

2. This method is an IV-type estimation technique. Therefore, upon convergence, it yields consis-
tent estimates, when the model belongs to the system class (Go ∈ G8).

3. The proposed approach can be implemented recursively (Young and Jakeman 1980).

8This notation is adopted from (Ljung 1999).
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4. An indication of the estimated parameter uncertainties is given which makes it possible to assess
the model quality. Note, however, that there is an implicit assumption, introduced by the
nature of the algorithm, that the parameter estimates of each component TF are statistically
independent (see (36)).

5. The proposed estimation scheme is implemented in both CONTSID9 and CAPTAIN10 toolboxes
for Matlab.

6. If the measurement noise v(tk) is coloured, then the method is not optimal in statistical terms.
However, experience has shown that it is robust and normally yields estimates with reasonable
statistical efficiency (i.e. low but not minimum variance). In the colored noise situation, it is
possible to use, albeit at the cost of increased complexity, a hybrid approach where the noise
modelling, as well as the noise-derived parts of the prefiltering, are carried out in discrete-time
terms, as suggested recently (Young et al. 2006).

3.4 Model order estimation

A key point to be solved in the identification procedure concerns the model order selection. The
method available for SISO systems (see e.g. (Young 1989), (Young 2002)) is extended to the case
of MISO systems. While models are estimated from a given data set, two statistical measures are
computed and used to choose between a range of model orders. These are R2

T and Y IC, which are
defined as follows,

R2
T = 1 −

σ̂2
ε

σ̂2
y

,

Y IC = loge

{

σ̂2
ε

σ̂2
y

}

+ loge

1

np

nu
∑

i=1

npi
∑

l=1

σ̂2
ε σ̂

2
θi,l

θ̂2
i,l

(37)

where σ̂2
y , σ̂2

ε denote, respectively, the variance of the measured output and the variance of the

simulation error; θ̂2
i,l is the squared value of the lth element of the estimated parameter vector θ̂i;

σ̂2
θi,l

is the lth diagonal element of the SRIVC estimated parametric covariance matrix P̂i; and np is

the total number of parameters. R2
T is recognized as the coefficient of determination based on the

simulation error. It is a measure of how well the model output explains to the system output and
will be close to 1 in low noise situations. However, R2

T does not provide a clear indication of the
best model order and can suggest over-parameterized models. The Young’s Information Criterion
(Y IC) is more complex and provides a measure of how well the parameters are defined statistically
(see (Young 1996) for example): the more negative the Y IC, the better the definition. However
it may lead to underestimate the model orders. Both criteria are inspected to find the orders for
which R2

T is sufficiently high to indicate a good explanation of the data and the Y IC is sufficiently
negative to indicate well defined parameter estimates.

Note that the proposed procedure, based on the two criteria, is not always completely un-
ambiguous, as all model order procedures and other factors, such as physical considerations and
parsimony, need also to be taken into account in the final selection of the model order. However,
as illustrated in the next Section, the proposed SRIVC-based model order selection procedure is
helpful and is shown to be reasonably successful for the multiple input transfer function model,
although the procedure is not as clearly defined as in the equivalent SISO situation.

9see http://www.cran.uhp-nancy.fr/contsid/
10see http://www.es.lancs.ac.uk/cres/captain/
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4 Simulation examples

Two simulation examples are considered in this section. The system orders are first assumed to be
known and Monte Carlo simulations are used to illustrate the relevance of the proposed SRIVC es-
timation scheme in comparison to the traditional identification method for MISO transfer function
model with common denominators. The performance of the proposed approach is also compared
with the direct CT model identification method for MISO transfer finction model with different de-
nominators minimizing the Output Error (COE)11. The model order selection procedure described
in Section 3.4 is then evaluated. The first system has two transfer functions with approximately the
same bandwidth; while the second example has two transfer functions with clearly distinguished
bandwidths.

4.1 Simulation example 1

The first system considered (S1) is a two input, one output system, with second-order non-
minimum phase transfer functions

S1:







yu(t) =
−0.5p + 1

p2 + 0.6p + 1
u1(t) +

−3p + 2

p2 + 4p + 3
u2(t)

y(tk) = yu(tk) + v(tk),
(38)

The first transfer function presents a resonant mode, with a damping coefficient of 0.3 and a natural
frequency of 1 rad/s, while the second has two time constants equal to 1 and 3 s. The dynamic
characteristics between the two inputs and the output are quite similar, as can be observed from
the step response of both transfer functions displayed in Figure 2(a).

The measured output y(tk) consists of the noise-free output yu(t) sampled at time tk, to which
is added a zero-mean independent identically distributed (i.i.d.) Gaussian sequence v(tk). Note
that S1 is formulated with the model structure assumed in both SRIVC and COE methods. The
sampling period is equal to Ts = 50 ms. The system is excited by two uncorrelated PRBS of
maximum length. The characteristics of the PRBS signals, whose amplitude switches between −1
and +1, are the following: the number of stages of the shift register is set to ns1 = 6, the clock
period is set to np1 = 40 for the first input, while ns2 = 7 and np2 = 20 for the second input. The
first input is duplicated and then truncated in order to have the same number of points N = 2540
for both inputs. Note that the noise-free system response to the PRBS has been calculated exactly
at the sampling instances by discretizing the continuous-time transfer function model, assuming a
zero-order hold on the inputs.

The variance of the additive noise v(tk) on the measured output is adjusted in order to obtain
a signal-to-noise ratio (SNR) of 20dB. The SNR is defined as

SNR = 10log
Pyu

Pv

, (39)

where Pv represents the average power of the zero-mean additive noise on the system output (i.e.
the variance) while Pyu

denotes the average power of the noise-free output fluctuations. The noisy
system response, along with the two PRBS inputs, are displayed in Figure 3(a).

The estimation results12 from a Monte Carlo simulation with Nexp = 200 experiments are shown
in Table 1. The aim here is first to illustrate the relevance of the proposed approach dedicated

11This algorithm is also available in the CONTSID toolbox where the parameters of MISO models are estimated
by using the Levenberg-Marquardt algorithm via sensitivity functions.

12All of the identification results were computed using version 4.0 of the CONTSID toolbox on Matlab 7.0.1.
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to MISO transfer function model with different denominators. The estimation results obtained
with the proposed SRIVC and with the traditional Instrumental Variable-based State Variable
Filter (IVSVF)13 method (Garnier et al. 2003) for MISO transfer function models with common
denominators are presented in Table 1. The estimation results obtained with the COE method14

are also included in Table 1 for comparison purposes. Note that both SRIVC and COE routines
are initialised in the same way from an initial estimate obtained by using the IV-based GPMF
algorithm (see (Garnier et al. 2003) for example) since the automatic option based on the use of
the discrete-time version SRIV is not available in the COE method.

To compare the statistical performance of the different approaches, the computed mean θ̂i,l

and standard deviation σθ̂i,l
of the estimated parameters are presented, as well as the empirical

normalised mean square error (NMSE) which is defined as

NMSE(θ̂i,l) =
1

Nexp

Nexp
∑

j=1

(

θo
i,l − θ̂i,l(j)

θo
i,l

)2

, (40)

where θ̂i,l(j) is the lth element of the estimated parameter vector at the jth Monte Carlo simu-

lation experiment θ̂i(j) (i = 1 or 2 here) while ‘o’ denotes the true value of the parameter. The
average iteration number N̄iter, the standard deviation of iterations σNiter

and the average compu-
tational time T̄c for the iterative methods to converge are also considered later in the analysis of
the estimation results.

The comparison of the estimation results displayed in Table 1 obtained by the SRIVC and
IVSVF methods show, as expected, the relevance of the proposed SRIVC algorithm dedicated to
different denominator transfer function models. It can be seen that the IVSVF method assuming
common denominators fails to give a good estimate because the same dynamic is used for the two
transfer functions. In contrast to this, the SRIVC algorithm, which considers different denomina-
tors, gives very accurate results with no bias and very low standard errors. This analysis is further
illustrated by the Bode plots of the 200 estimated models for both SRIVC and IVSVF estimation
techniques displayed in Figure 4.

Table 1 shows also that, for this system with quite similar dynamic characteristics, there is
nothing to choose between the SRIVC and COE methods. The two methods dedicated to different
denominator transfer function model identification are consistent with very low estimated standard
errors and give their best performance when applied to simulated data that conform with the as-
sumptions made in their derivation, which is clearly the case in this additive Gaussian measurement
noise example.

4.2 Simulation example 2

The second system considered (S2) is also a two input, one output system given by

S2:







yu(t) =
−0.5p + 1

p2 + 0.6p + 1
u1(t) +

100

p2 + 8p + 100
u2(t)

y(tk) = yu(tk) + v(tk),
(41)

The first transfer function is identical to the one used in S1, while the second transfer function is
now a minimum phase, second order which has a resonant mode, with a damping coefficient of 0.4

13This algorithm is also available in the CONTSID toolbox.
14Both SRIVC and COE iterative searches are automatically stopped by using the procedure presented in Section

3.3. (see (33)).
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and a natural frequency of 10 rad/s. The dynamic characteristics between the two inputs and the
output are now clearly different, as it may be seen from the step responses displayed in Figure 2(b).

The simulation conditions are the same than before. The input signal u2 was kept at 1 for some
decades of seconds after the PRBS sequence had finished15. The noisy system response, along with
the two PRBS inputs, are displayed in Figure 3(b). The estimation results obtained with the pro-
posed SRIVC and COE algorithms from a Monte Carlo simulation with 200 realizations are shown
in Table 2. From this table, the difference in performance between the two estimation approaches
is clearly noticeable. While the proposed SRIVC method still delivers very good estimation results,
the output error-based technique is not able to converge to the global minimum for this system with
quite different dynamic characteristics16. The COE iterations stop when the maximum number of
iterations is achieved. Note that both algorithms are initialized in the same way from an initial
IVGPMF-based model estimates. The difference in performance of both methods cannot, therefore,
come from the algorithm initialization stage. The Bode plots of the 200 estimated models for both
estimation techniques are plotted in Figure 5 and further illustrate the previous analysis.

4.3 Model order selection

The model order selection procedure presented in Section 3.4 is now applied to the second sim-
ulated system S2 for the same simulation conditions (same PRBS, SNR=20dB). The procedure
implemented in the CONTSID SRIVCSTRUC routine is applied to search all models in the range
[m1,m2, n1, n2] = [0, 0, 1, 1] to [1, 1, 3, 3]. Table 3 shows the best 15 model orders sorted in increasing
Y IC.

For this simulation example, the proposed model order estimation procedure, based on the
selection of the most negative Y IC and a relatively high value of R2

T , clearly identifies the true
model structure [m1,m2, n1, n2] =[1, 0, 2, 2]. It presents the most negative Y IC = −13.71 with
a R2

T = 0.990 very close to the highest R2
T value17 and with the lowest number of iterations to

converge.

5 Winding process application

5.1 Process description

A diagram of the winding process is presented in Figure 6. The main part of this MIMO pilot
plant is a winding process composed of a plastic web and three reels. Each reel is coupled with a
direct-current motor via gear reduction. The angular speed of each reel (S1, S2, S3) is measured
by a tachometer, while the tensions between the reels (T1, T3) are measured by tension meters.
At a second level, each motor is driven by a local controller. Two PI control loops adjust the
motor currents (I1) and (I3) and a double PI control loop drives the angular speed (S2). The
set-points of the local controllers (I∗

1 , S∗
2 , I∗

3 ) constitute the manipulated inputs of the winding

system u(t) =
[

I∗
1 (t) S∗

2(t) I∗
3 (t)

]T
. Driving a winding process essentially comes down to con-

trolling the web linear velocity and the web tensions (T1) and (T3) around a given operating point.

15This non-zero mean portion of signal was added to the PRBS in order to ensure that the COE method estimated
the correct steady state gain in the Monte Carlo simulation.

16This kind of output error minimization techniques is known to encountered difficulties (linked to local minima
problems) under conditions that are non-standard, such as rapidly sampled data and dominant system modes with
widely different natural frequencies (see (Ljung 2003) for example). Various remedies exist for the local minima
problems as, for example, the special choice of an excitation signal or the use of robust initialisation procedure.
However, these special remedies have not been further investigated here.

17where R2

T
= 0.991, but with an associated Y IC = −6.42. This is why it does not appear in Table 3.
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Consequently, the output variables of the winding system are y(t) =
[

T1(t) T3(t) S2(t)
]T

. The
process is described in more detail in (Bastogne et al. 1998).

5.2 Experiment design

The estimation and validation data sets are displayed in Figures 7 and 8. Discrete interval binary
sequences were used as input excitation signals. The sampling rate is equal to Ts = 10ms. The
experimental period, around 30s for the estimation data set, is short enough to overlook the changes
of the winding radii r1(t) and r3(t). The mean and linear trends of the input/output signals were
removed. The raw input/output data set can be found in the Matlab file winding.mat available in
the CONTSID toolbox.

5.3 Model order selection

The SRIVC-based procedure presented in Section 3.4 has been used to determine the transfer
function orders of the winding process model. For each output, a large number of models have been
estimated for a wide range of model orders. The best model structures according to identification
criteria Y IC and R2

T are given in Table 4. Each model presented in this Table respects two
conditions

• Y IC < min(Y IC) + 3,

• R2
T < max(R2

T ) − 0.01.

It can be seen that there is still some ambiguity about which is the best model for the three
outputs. In the SISO situation, the choice of the best model is usually clear cut, since the correct
model’s Y IC is singularly most negative in relation to higher order models. However, in this MISO
and real-life data situation, for a given output, some of the models within one order of the best
model possess very similar Y IC and R2

T criteria. In such cases, the intuitive procedure is to choose
within the potential model set, the most parsimonious model with the lowest number of parameters.
Models which respect the above condition have finally been selected and these are referenced by ∗

in Table 4.

5.4 Model identification

The proposed multiple inputs single output estimation scheme has been implemented for each of
the three outputs. The final identified transfer function matrix is:





T1(s)
T3(s)
S2(s)



 = G(s)





I∗
1 (s)

S∗
2(s)

I∗
3 (s)



 (42)

with

G(s) =















−35.9(±1.2)
s2+9.3(±0.3)s+11.5(±0.4)

−1.3(±0.02)
s+2.3(±0.04)

2.0(±0.2)
s+6.9(±0.9)

−4.1(±0.2)s−2.7(±0.2)
s2+5.6(±0.3)s+12.3(±0.6)

−1.6(±0.08)
s+6.0(±0.3)

4.8(±0.1)
s+3.7(±0.1)

1.1(±0.05)
s2+1.4(±0.1)s+7.8(±0.2)

3.4(±0.02)
s+2.7(±0.01)

1.4(±0.1)
s+5.8(±0.4)















(43)

where s denotes the Laplace variable and the figures in parentheses are the estimated standard
errors.
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5.5 Cross-validation results

To evaluate the quality of the estimated transfer function models, a cross-validation procedure has
been applied to data that were not used to build the model. Cross-validation results are plotted
in Figure 9, where it may be observed that there is a satisfactory reproduction of the multiple
output behaviour by the transfer function models. These results demonstrate the applicability of
the proposed SRIVC algorithm for the identification of reduced-order, continuous-time, multiple
transfer function models. Note that the oscillatory character of the output (T3) is not modeled
as well as the first two outputs. However, this problem is not due to the estimation algorithm.
Indeed, it has been shown in (Bastogne and Sibille 1998) that the tension (T3) has non linear
transient behaviour depending on the sign of the steps on the input (I∗

1 ). These input dependent
dynamics cannot, therefore, be captured by a linear model identification procedure, although they
may be captured if a nonlinear input transformation and this is being investigated using the state
dependent parameter estimation approach to modelling nonlinear systems (see e.g. Young et al,
2001).

6 Industrial distillation column application

6.1 Column description

Figure 10 shows a schematic description of the industrial binary distillation column. It is equipped
with 48 trays, a steam-heated reboiler and a total condenser. The column is fed in at the 18th tray
with a binary mixture of carbonate components. The separation of components takes place under
controlled pressure. The objectives are to control the impurity of the top product or distillate Xt

and the impurity of the bottom product or residue Xb with respect to changes on reflux flow Fr

and heating power Q while preventing influence of changes on feed flow Ff and feed composition.
The distillate and residue Xt and Xb are measured by means of analyzers and expressed in volume
per million (vpm). The process is described in more detail in (Defranoux et al. 2000).

6.2 Experiment design

Two kinds of experiment were carried out while respecting constraints imposed by the industrial
company. These constraints were first to not perturb the production, since the top composition is
a finished product; and secondly to manipulate the inputs separately for security and productivity
reasons. This latter constraint required that the inputs were perturbed separately and that MISO
identification was utilized. The sampling time was set to 10 s. The two experiments, therefore,
consisted of manipulating separately the set-points of the reflux flow, Fr, and the temperature of
tray 40, T40, around their normal operating point; the other variables being locally controlled. The
experiment lasted between 5 and 17 hours. The manipulated variables were chosen as zero-mean
Random Binary Signals (RBS). Two RBS with a magnitude of 0.3 t/h and of 1.5C were separately
applied to the reflux flow Fr and to the temperature T40, respectively, as illustrated in Figure 11.
Before executing the estimation procedure, classical data pre-processing was carried out on the raw
data sets.

6.3 Model structure selection

Based on detailed data analysis, it turns out that the temperature measurement of the sensitive
tray T12 can be considered as a continuous indication of the distillate Xt that reacts quickly to
changes. This sensitive tray temperature T12 has, therefore, been considered as an output variable
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instead of the distillate. However, no temperature tray could represent a continuous indication of
the residue Xb, which constitutes the second output of the model. Classically, the reflux flow Fr

and heating power represented by the controlled temperature T40 are used as input variables for
the system. The most important disturbance entering this distillation column is a change in the
feed flow rate. Since the feed flow rate Ff is measured, therefore, it has been included as a third
input variable for the model. The multivariable coupling in the process can be then be described
by the following model:

(

T12(s)
Xb(s)

)

=

(

H11(s) H12(s) H13(s)
H21(s) H22(s) H23(s)

)





Fr(s)
T40(s)
Ff (s)



 (44)

6.4 Model identification

The measured reflux flow and tray 40 temperature rather than the set-points for these variables were
considered in the identification procedure. Time delays from input to output variables and model
orders were previously estimated from step responses and from previous identification (Defranoux
et al. 2000) respectively. During the experiment, the feed flow changes did not disturb explicitly
the bottom product composition of the column. The distant position of the feed tray (Figure 10)
in respect to the bottom of the column probably explains this phenomenon. The transfer function
H23 was not, therefore, considered in the estimation procedure and was set to zero. Furthermore,
no coupling between the reflux flow Fr and the residue Xb could be demonstrated. Consequently,
the transfer function H21 was also set to zero and was not considered in the estimation procedure.
This explains why there is no cross-validation plot for Xb in the case of excitation on the reflux flow
set-point. The proposed multiple input, single output estimation scheme has been implemented for
each of the two outputs.

6.5 Cross-validation results

Cross-validation results are presented in Figures 12 and 13. They are of identical quality to those
obtained by using an indirect approach consisting first of estimating a discrete-time model by a
prediction error method and then converting it into a continuous-time one (Defranoux et al. 2000).
This application demonstrates further the practical applicability of the proposed scheme.

7 Conclusions

In this paper, an optimal IV-type method has been proposed to directly estimate asymptotically
efficient estimates in multiple input, single output continuous-time models from sampled data,
where the additive noise is white. This method also yields consistent and relatively low variance
parameter estimates in the case of coloured noise; and it could be made statistically efficient in
this situation by incorporating a discrete-time model for the coloured noise process, as in (Young
et al. 2006). The proposed procedure differs from many other MISO estimation schemes in that it
is applied to a MISO model with different transfer functions between the various inputs and the
output. In this sense, the proposed refined IV procedure has considerable potential for practical
application, particularly in those cases where the dynamic characteristics between the various
inputs and the single output are quite different. Moreover, the proposed IV procedure, in contrast
to alternative output-error minimization approaches, exploits the advantage of using an iterative,
linear regression approach and, therefore, does not appear to suffer from the local minima problems
that characterize the output-error methods in similar circumstances. Other advantages are that
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the proposed approach can easily handle non-uniformly sampled data and the refined IV method
allows for the use of the YIC model structure identification criterion, which based on the properties
of the instrumental product matrix and helps to identify the most appropriate model orders, prior
to parameter estimation. All of these interesting properties have been illustrated via Monte Carlo
simulations and the application to both a winding process and an industrial binary distillation
column. Another successful application of the proposed estimation scheme to identify a two input-
two output flexible robotic arm designed for heart-beating tracking is also reported in Cuvillon et
al. (2006), demonstrating the wide practical applicability of the proposed identification approach.
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Figure 2: Step responses of the two inputs one output simulation systems
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Figure 3: System response to the PRBS inputs for a SNR = 20dB

b1,1 b1,0 f1,1 f1,0 b2,1 b2,0 f2,1 f2,0 N̄iter ± σNiter
T̄c

method True value -0.5 1 0.6 1 -3 2 4 3

θ̂i,l -1.339 1.747 1.970 1.737 -1.697 1.873 1.970 1.737

IVSVF σ
θ̂i,l

0.022 0.019 0.024 0.014 0.027 0.016 0.024 0.014 0.44

NMSE(θ̂i,l) 2.8 5.6e-1 5.2 5.4e-1 1.9e-1 4.1e-3 2.6e-1 1.8e-1

θ̂i,l -0.500 1.001 0.601 1.000 -3.001 1.999 4.002 3.001

SRIVC σ
θ̂i,l

0.005 0.004 0.003 0.003 0.037 0.022 0.050 0.030 8.69±0.46 4.02

NMSE(θ̂i,l) 9.5e-5 1.8e-5 3.3e-5 8.2e-6 1.5e-4 1.3e-4 1.6e-4 1.0e-4

θ̂i,l -0.500 1.001 0.601 1.000 -3.001 1.999 4.002 3.001

COE σ
θ̂i,l

0.005 0.004 0.003 0.003 0.037 0.022 0.050 0.030 6.46±0.66 6.09

NMSE(θ̂i,l) 9.5e-5 1.8e-5 3.3e-5 8.2e-6 1.5e-4 1.3e-4 1.6e-4 1.0e-4

Table 1: Monte Carlo simulation results for System 1
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(a) Estimated G1(s) by SRIVC

10
−2

10
−1

10
0

10
1

−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

−250

−200

−150

−100

−50

0

Frequency (rad/s)

P
ha

se
 (

°C
)

(b) Estimated G1(s) by IVSVF
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(c) Estimated G2(s) by SRIVC
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(d) Estimated G2(s) by IVSVF

Figure 4: Bode plots of estimated SRIVC and IVSVF models for System 1

b1,1 b1,0 f1,1 f1,0 b2,0 f2,1 f2,0 N̄iter ± σNiter
T̄c

method True value -0.5 1 0.6 1 100 8 100

θ̂i,l -0.500 1.000 0.600 1.000 99.947 7.995 99.944

SRIVC σ
θ̂i,l

0.005 0.004 0.003 0.003 1.134 0.121 1.031 6.65±0.56 2.99

NMSE(θ̂i,l) 1.2e-4 1.8e-5 2.8e-5 7.3e-6 1.3e-4 2.3e-4 1.1e-4

θ̂i,l -0.400 0.986 0.583 0.978 3.4e+6 2.6e+6 4.4e+6

COE σ
θ̂i,l

0.011 0.005 0.004 0.003 1.8e+6 1.5e+6 2.4e+6 50±0 19.77

NMSE(θ̂i,l) 4.1e-2 2.1e-4 8.7e-4 4.9e-4 1.5e+9 1.4e+11 2.5e+9

Table 2: Monte Carlo simulation results for System 2
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(a) Estimated G1(s) by SRIVC
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(b) Estimated G1(s) by COE
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(c) Estimated G2(s) by SRIVC
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(d) Estimated G2(s) by COE

Figure 5: Bode plots of estimated SRIVC and COE models for System 2
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Figure 9: Cross-validation results for the winding process
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Figure 11: RBS excitation signals
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Figure 12: Cross-validation results for RBS excitation on the reflux flow set-point
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Figure 13: Cross-validation results for RBS excitation on the tray 40 temperature set-point

m1 m2 n1 n2 YIC R2
T Niter

1 0 2 2 -13.71 0.990 6

1 0 2 1 -12.03 0.975 17

1 1 2 1 -12.03 0.975 17

0 0 3 1 -11.17 0.970 17

0 1 3 1 -11.17 0.970 17

0 0 2 2 -11.06 0.959 9

0 0 2 1 -10.50 0.945 21

0 1 2 1 -10.50 0.945 21

0 1 3 3 -7.92 0.985 21

0 0 1 2 -7.08 0.738 50

1 0 1 2 -7.08 0.738 50

0 0 1 1 -6.96 0.722 50

1 0 1 1 -6.96 0.722 50

0 1 1 1 -6.96 0.722 50

1 1 1 1 -6.96 0.722 50

Table 3: Best 15 model orders according to Y IC and R2
T for System 2
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m1 m2 m3 n1 n2 n3 Y IC R2
T

Output 1, T1(tk)

0 0 1 2 1 2 -8.96 0.960

1 0 1 1 1 2 -8.82 0.957

0 0 1 2 2 2 -8.78 0.962

0 0 0 2 1 1 -8.68∗ 0.955

1 0 0 1 2 2 -8.57 0.953

1 0 1 1 2 2 -8.53 0.958

0 1 1 2 2 2 -8.33 0.962

0 1 1 2 1 2 -8.29 0.960

0 1 1 1 2 2 -8.25 0.953

Output 2, T3(tk)

1 0 0 2 1 1 -8.03∗ 0.882

1 0 0 2 2 1 -7.81 0.884

1 0 1 2 2 1 -7.32 0.885

1 0 1 2 1 1 -7.28 0.883

1 1 0 2 2 1 -7.26 0.890

1 1 1 2 2 1 -6.86 0.891

1 0 0 2 1 2 -6.74 0.884

Output 3, S2(tk)

0 1 0 2 2 1 -10.52 0.988

0 1 0 2 1 1 -10.34 0.985

0 0 0 2 2 1 -10.30 0.986

0 0 0 2 1 1 -10.14∗ 0.983

0 0 0 2 2 2 -9.93 0.986

0 1 1 2 2 1 -9.93 0.988

1 0 1 2 1 2 -9.71 0.986

1 1 1 2 1 2 -9.70 0.987

1 0 0 2 1 1 -9.67 0.983

1 0 1 2 2 2 -9.65 0.987

1 0 0 2 2 2 -9.61 0.986

1 1 0 2 1 2 -9.53 0.986

0 0 1 2 2 2 -9.26 0.987

0 0 0 2 1 2 -9.23 0.983

Table 4: Best model structures according to Y IC and R2
T for the winding process
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