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Abstract

In this paper we investigate the speed of convergence of the fluctu-

ations of a general class of Feynman-Kac particle approximation mod-

els. We design an original approach based on new Berry-Esseen type

estimates for abstract martingale sequences combined with original

exponential concentration estimates of interacting processes. These

results extend the corresponding statements in the classical theory

and apply to a class of branching and genealogical path-particle mod-

els arising in non linear filtering literature as well as in statistical

physics and biology.
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1 Introduction

Feynman-Kac distribution flows and their particle interpretations arise in
the modelling and the numerical solving of a variety of problems including
directed polymer simulations in biology and industrial chemistry, non linear
filtering in advanced signal processing and Bayesian statistics methodology,
rare event estimation in telecommunication and computer systems analysis
as well as physics in the spectral analysis of Schrödinger operators and in
the study of particle absorbtions. Their asymptotic behavior as the size of
the systems and/or the time parameter tend to infinity has been the subject
of various research articles. For more details on both the theoretical and
applied aspects of the topic we refer the reader to the review article [5] and
references therein.

To better connect this study with existing and related articles in the lit-
erature we give a brief discussion on the fluctuation analysis of these models:
The first “local” central limit theorems were presented in [1]. These fluctu-
ations were restricted to local sampling errors of an abstract class of genetic
type particle model. This study was extended in [3] in the spirit of Shiga-
Tanaka’s celebrated article [9] to particle and McKean path-measures. This
approach to fluctuations in path space was centered around Girsanov type
change of measures techniques and a theorem of Dynkin-Mandelbaum on
symmetric statistics [7]. This strategy entirely relies on appropriate regular-
ity conditions on the Markov kernels which are not satisfied for genealogical
tree evolution models as the ones described in [1]. Another drawback of this
approach is that the description of resulting limiting variance is not explicit
but expressed in term of the inverse of an L2 integral operator.
Donsker’s type theorems and an explicit computation of the limiting variance
in terms of Feynman-Kac semi-groups were further developed in [4] in the
context of particle density profile models. These explicit functional formu-
lations were the starting point of a new approach to central limit theorems
based on judicious martingale decompositions and Feynman-Kac semi-group
techniques [2, 5].
The main objective of the current article is to complete and further extend
these studies with the analysis of the speed of convergence of fluctuations.

The article is organized as follows:

In section 1.1 we describe the Feynman-Kac and the particle models dis-
cussed in this article. In section 1.2 we present our main results and specify
the set of regularity conditions needed in the sequel. Section 2 is concerned
with a precise Berry-Esseen type estimate for abstract martingale sequences.
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In section 3 we show how these martingale fluctuations apply to a sufficiently
regular class of McKean particle interpretations.

We end this section with some rather standard and classical notation that
will be of current use in the article:

By M(E) we denote the set of all bounded and positive measures on a
measurable space (E, E), by P(E) ⊂ M(E) we denote the subset of prob-
ability measures on (E, E) and by Bb(E) the Banach space of all bounded
E-measurable functions f on E equipped with the uniform norm ‖f‖ =
supx∈E |f(x)|. We also let Osc(E) ⊂ Bb(E) be the subset of all bounded
measurable functions with oscillations osc(f) = sup(x,y) |f(x) − f(y)| ≤ 1.
We finally recall that a bounded and positive integral operator Q from (E, E)
into another measurable space (E ′, E ′) generates two operators. One acting
on functions f ∈ Bb(E

′) and taking values in Bb(E), the other acting on
measures µ ∈ M(E) into M(E ′) and defined by

Q(f)(x) =

∫

E′

Q(x, dx′)f(x′) , µQ(dx′) =

∫

E

µ(dx) Q(x, dx′)

To clarify the presentation we shall slightly abuse the notations, and we often
write Q(f − Q(f))2 for the function x → Q(f − Q(f)(x))2(x).
Finally we shall use the letter c to denote any non negative and universal
constant whose values may vary from line to line but does not depend on the
time parameter nor on the Feynman-Kac models.

1.1 Description of the models

We consider some collections of measurable spaces (En, En)n∈N, of Markov
transitions Mn+1(xn, dxn+1) from En to En+1, and bounded En-measurable
and strictly positive functions Gn on En. We assume that the latter are
chosen so that for any n ∈ N we have

rn = sup
(xn,yn)∈E2

n

(Gn(xn)/Gn(yn)) < ∞ (1)

We associate to the pair (Gn,Mn) the Bolzmann-Gibbs transformation Ψn

on P(En) and the mapping Φn+1 from P(En) into P(En+1) given for any
(xn, µn) ∈ (En,P(En)) by

Ψn(µn)(dxn) = Gn(xn)µn(dxn)/µn(Gn)

Φn+1(µn) = Ψn(µn)Mn+1

For any η0 ∈ P(E0) we denote by Eη0(.) the expectation operator with
respect to the distribution of a Markov chain Xn with initial distribution
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η0 and elementary transitions Mn. We consider the distribution flow ηn ∈
P(En), n ∈ N, also called Feynman-Kac flow in the sequel, defined for any
fn ∈ Bb(En) by the Feynman-Kac formulae

ηn(fn) = γn(fn)/γn(1) with γn(fn) = Eη0

[
fn(Xn)

∏

0≤p<n

Gp(Xp)
]

(2)

with the convention
∏

∅ = 1. Using the multiplicative structure of the
Feynman-Kac model and the Markov property one readily checks that the
flow ηn satisfies the non linear equation

ηn+1 = ηnKn+1,ηn (3)

where (Kn+1,µn)n∈N,µn∈P(En), is a non unique collection of Markov transitions
satisfying the compatibility condition

∀n ∈ N , ∀µn ∈ P(En) , µnKn+1,µn = Φn+1(µn). (4)

These collections of transitions are often called the McKean interpretations
of the equation (3). Notice that the compatibility relation (4) is satisfied if
we take

Kn+1,µn(xn, ·) = εn Gn(xn) Mn+1(xn, ·) + (1 − εn Gn(xn)) Φn+1(µn) (5)

for any non negative constant εn such that εn Gn(xn) ∈ [0, 1]. We finally
notice that the random variables Xn may represent the path of an auxiliary
Markov chain X ′

p from the origin up to time n and taking values in some
Hausdorff topological spaces E ′

p, that is we have

Xn = (X ′
0, . . . , X

′
n) ∈ En = (E ′

0 × . . . × E ′
n) (6)

For each N ≥ 1 we denote by mN the mapping from the product space
EN into P(E) which associates to each configuration x = (xi)1≤i≤N ∈ EN

the empirical measure mN(x) = 1
N

∑
i=1 δxi . The interacting particle system

associated to a given McKean interpretation is defined as a Markov chain
ξ

(N)
n = (ξ

(N,i)
n )1≤i≤N taking values in the product spaces EN

n with initial
distribution η⊗N

0 and elementary transitions

Prob
(
ξ(N)
n ∈ dxn | ξ

(N)
n−1

)
=

N∏

i=1

K
n,mN (ξ

(N)
n−1)

(ξ
(N,i)
n−1 , dxi

n) (7)

where dxn = ×1≤i≤Ndxi
n stands for an infinitesimal neighborhood of the point

xn = (xi
n)1≤i≤N ∈ EN

n .
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Under appropriate regularity conditions on the McKean transitions ker-
nels Kn,µn it is known that in some sense the particle measures

ηN
n = mN(ξ(N)

n )

converge as N tends to infinity to the desired distributions ηn.

To illustrate this model we note that the particle interpretation of the
Feynman-Kac flow associated to McKean transitions (5) forms a two step
selection/mutation genetic algorithm. The particular situation where εn = 0
corresponds to a simple genetic model with an overlapping mutation/selec-
tion transition. In the same vein the corresponding particle interpretation
model of the Feynman-Kac path measures associated to the chain (6) forms
is a genetic type algorithm taking values in path space. Note that in this
situation the path-particles have the form

ξ(N,i)
n = (ξ

(N,i)
0,n , ξ

(N,i)
1,n , . . . , ξ(N,i)

n,n ) ∈ En = (E ′
0 × . . . × E ′

n)

In addition if the potential functions only depend on terminal values in the
sense that Gn(x′

0, . . . , x
′
n) = G′

n(x′
n) for some potential function G′

n on E ′
n

then the resulting path-particle model can be interpreted as a genealogical
tree evolution model.

As traditionally to clarify the presentation we slightly abuse the nota-
tion, by suppressing the size index N and we write (m(x), ξn, ξ

i
n) instead of

(mN(x), ξ
(N)
n , ξ

(N,i)
n ).

1.2 Statement of some results

For any sequence of FN
n -adapted random variables ZN

n defined on some fil-
tered probability spaces (ΩN , (FN

n )n≥0, P
N) we denote by ∆ZN

n the difference
process ∆ZN

n = ZN
n − ZN

n−1, with the convention ∆ZN
0 = ZN

0 for n = 0. If
∆MN

n is a given FN
n -martingale difference, then we denote by MN

n the FN
n -

martingale defined by MN
n =

∑n
p=0 ∆MN

p . We recall that its increasing

process 〈MN〉n is given by

〈MN〉n =
n∑

p=0

E
N

[
(∆MN

p )2 | FN
p−1

]
,

with the convention FN
−1 = {∅, ΩN} for p = 0. It is also convenient to intro-

duce the increasing process CN
n = N 〈MN〉n of the normalized martingale

LN
n =

√
NMN

n .
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The example we have in mind is the situation where (FN
n )n≥0 is the

natural filtration associated to the particle model (7) and the FN -martingale
difference ∆MN

n = ∆MN
n (fn), with fn ∈ Bb(En), is given by the particle n-th

sampling error

∆MN
n (fn) = ηN

n (fn) − ηN
n−1Kn,ηN

n−1
(fn) (8)

with the convention ηN
−1K0,ηN

−1
= η0 for n = 0. In this situation the increasing

processes 〈MN(f)〉n and CN
n (f) = 〈LN(f)〉n of the corresponding martingales

MN
n (f) and LN

n (f) =
√

NMN
n (f) are connected by the formula

CN
n (f) = N 〈MN(f)〉n =

n∑

p=0

ηN
p−1Kp,ηN

p−1
(fp − Kp,ηN

p−1
(fp))

2 (9)

Our first main result concerns a Berry-Esseen theorem for an abstract class
of martingale sequences under the following set of conditions:

(H1) For any n ≥ 0 there exists some constants a1(n) < ∞ and 0 < c1(n) ≤ 1
such that for any n ≥ 0 and λ3 ≤ c1(n) N1/2 we have, P

N almost surely,
∣∣∣E

[
eiλN1/2∆MN

n +λ2

2
∆CN

n | FN
n−1

]
− 1

∣∣∣ ≤ a1(n)λ3/N1/2.

(H2) For any n ≥ 0 there exists some finite constant a2(n) < ∞ such that
for any N ≥ 1, λ > 0 and n ≥ 0

∣∣∣E
[

eiλN1/2MN
n

]∣∣∣ ≤ E

[
e−

λ2

2
∆CN

n

]
eλ3a2(n)/N1/2

(H3) There exists a non-negative and strictly increasing deterministic process
C = (Cn)n≥0 as well as some finite constants 0 < a3(n) < ∞ such that
for any ε > 0 we have

E

[
eεN1/2|∆CN

n −∆Cn|
]
≤ (1 + εa3(n)) eε2a2

3(n).

Theorem 1.1 Let MN = (MN
n )n≥0 be a sequence of FN -martingales satisfy-

ing conditions (Hi), i = 1, 2, 3, for some non negative and strictly increasing
process Cn. We let FN

n , and respectively Fn, be the distribution function of
the random variable N1/2MN

n , and respectively the one of a centered Gaussian
random variable with variance Cn. Then for any n ≥ 0 we have

lim sup
N→∞

N1/2‖FN
n − Fn‖ < ∞.
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The above theorem does not apply directly to the particle martingale se-
quence introduced in (8). The first two conditions (Hi), i = 1, 2, are rather
standard. They can be checked for any kind of any McKean interpretation
model using simple and rather standard asymptotic expansions of character-
istic functions. The third condition is an exponential continuity condition of
the increasing processes introduced in (9). Next we provide a sufficient regu-
larity condition which can be easily checked in various McKean interpretation
models. If we set for any µn ∈ P(En)

µ−1
n (0) = {h ∈ Osc(En) : µn(h) = 0}

then this condition reads

(H) There exists a collection of uniformly bounded positive measures Γn,f

and Γ′
n+1,f on the sets η−1

n (0) and η−1
n+1(0) and indexed by n ∈ N and

f ∈ Osc(En+1) and such that

‖Kn+1,µn(f) − Kn+1,ηn(f)‖

≤
∫

|µn(h)| Γn,f (dh) +

∫
|Φn+1(µn)(h)| Γ′

n,f (dh)

When condition (H) is met we denote by Γ the supremum of the total mass
quantities Γ′

n,f (1) and Γn,f (1).

Note that (H) is related to some Lipschitz-type regularity of the increas-
ing process and it is clearly met for the McKean transitions given (5), since
we have in this case

Kn+1,µn(f) − Kn+1,ηn(f) = (1 − εnGn) [Φn+1(µn) − Φn+1(ηn)](f).

Thus, in this situation, we have that (H) is met with Γn,f = 0 and Γ′
n,f = δh

with h = [f − ηn+1(f)] so that Γn,f (1) = 0 and Γ′
n,f (1) = 1. When the

parameter εn = εn(µn) in (5) depends on the index measure µn we also find
that (H) is met as soon as we have

|εn(µn) − εn(ηn)| ≤
∫

|µn(h)| Λn(dh)

for some uniformly bounded positive measures Λn on η−1
n (0).

Remark 1.2 The above considerations show that condition (H3) is in fact
easily verified in most of the classical applications of McKean models, and
in particular in the case of non linear filtering, for which we refer to [5], for
sake of conciseness.
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To check the exponential estimates stated in condition (H3) we shall use
a refined version of Burkholder’s inequality recently presented by the first
author with L. Miclo and F. Viens in [6]. Roughly speaking these sharp
Lp-estimates combined with some judicious error decompositions lead to the
desired exponential concentrations estimates for the normalized sampling
error martingale LN

n (f) defined by (9) with the limiting increasing process

Cn(f) =
n∑

p=0

ηp−1Kp,ηp−1(fp − Kp,ηp−1(fp))
2 (10)

Observe that, even if this strategy lead to the desired Berry-Essen esti-
mates on MN

n (f) we would still need to transfer these rates of fluctuations to
the random field sequence defined by

√
N (ηN

n −ηn). One of the most elegant
approach is probably to follow to semi-group techniques and the martingales
decompositions developed in [5]. To describe these decompositions with some
precision we let Qp,n be the linear Feynman-Kac semi-group associated to the
flow γn. To be more specific, we define the semi-group Qp,n by the relation

γn = γpQp,n,

and we associate to Qp,n a “normalized” semi-group Qp,n, defined for fn ∈
Bb(En) by

Qp,n(fn) =
Qp,n(fn)

ηpQp,n(1)
=

γp(1)

γn(1)
Qp,n(fn). (11)

If we let (WN
p,n(fn))p≤n, fn ∈ Bb(En) be the random field sequence defined by

WN
p,n(fn) =

√
N (ηN

p − ηp)(fp,n), with fp,n = Qp,n (fn − ηnfn) (12)

then we have the Doob’s type decomposition

WN
p,n(fn) = BN

p,n(fn) + LN
p,n(fn),

with the predictable and martingale sequences given by

∆BN
p,n(fn) =

√
N

[
1 − ηN

p−1(Gp−1)/ηp−1(Gp−1)
]

× [Φp(η
N
p−1)(fp,n) − Φp(ηp−1)(fp,n)]

∆LN
p,n(fn) =

√
N

[
ηN

p (fp,n) − ηN
p−1Kp,ηN

p−1
fp,n

]
,

The above decomposition is now more or less standard. For the convenience
of the reader its proof is housed in the appendix.
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Intuitively speaking we see from the quadratic structure of the predictable
term that it should not influence the fluctuation rate. We will make precise
this observation with a Stein’s type approximation lemma and we will prove
the following

Theorem 1.3 Let fn ∈ Bb(En), and WN
p,n the quantity defined by (12). For

any McKean interpretation model satisfying condition (H) we have

lim sup
N→∞

√
N sup

u∈R

∣∣∣∣P
(
WN

n,n(fn) ≤ u σn(f)
)
−

∫ u

−∞

e−v2/2 dv

(2π)1/2

∣∣∣∣ < ∞.

for any fn ∈ Bb(En) and n ≥ 0 with

σ2
n(f) =

n∑

p=0

ηp−1Kp,ηp−1(fp,n − Kp,ηp−1(fp,n))2

2 An estimate for martingale sequences

The central limit theorem for sequences of random variables is usually ob-
tained by convergence of characteristic functions. Unsurprisingly, the nat-
ural question of determining the speed of convergence in the CLT can also
be handled through characteristic functions considerations. The formaliza-
tion of this idea is due to Berry and Esseen, and can be summarized in the
following theorem:

Theorem 2.1 (Berry-Esseen) Let (F1, F2) be a pair of distribution func-
tions with characteristic functions (f1, f2). Also assume that F2 has a deriva-
tive with ‖∂F2

∂x
‖ < ∞. Then for any a > 0 we have

‖F1 − F2‖ ≤ 2

π

∫ a

0

|f1(x) − f2(x)|
x

dx +
24

aπ

∥∥∥∥
∂F2

∂x

∥∥∥∥ .

In this section, we will try to apply this theorem to a sequence of martingales
satisfying the general set of hypothesis (H1)-(H3) in order to get a sharp
asymptotic result for its convergence towards a Gaussian martingale. In
order to prepare for the proof of theorem 1.1 we start with the following
technical key lemma.

Lemma 2.2 Suppose we are given a sequence of martingale MN = (MN
n )n≥0

with respect to some filtrations FN
n , satisfying the conditions (Hi), i = 1, 2, 3

stated in page 6. Then, for any n ≥ 0, there exist a finite constant a(n) < ∞,
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a positive constant b(n), and some N(n) ≥ 1 such that for any N ≥ N(n)
and 0 < λ ≤ b(n)N1/2,

∣∣∣E
[

eiλN1/2MN
n

]
− e−

λ2

2
Cn

∣∣∣ ≤ a(n) e−
λ2

4
∆Cn

λ2(1 + λ)

N1/2
.

Since the proof of theorem 1.1 is a simple consequence of the above lemma
we have chosen to give it first.

Proof of theorem 1.1:
By Theorem 2.1 and Lemma 2.2 we have, for any N ≥ N(n),

N1/2‖FN
n − Fn‖

≤2a(n)

π

∫ b(n)N1/2

0

e−
λ2

4
∆Cn λ(1 + λ) dλ +

24

b(n) (2eπ3Cn)1/2

≤2a(n)

π

∫ ∞

0

e−
λ2

4
∆Cn λ(1 + λ) dλ +

24

b(n)C
1/2
n

,

for some N(n) ≥ 1 and some finite positive constant 0 < b(n) < ∞. Invoking
the fact that ∆Cn > 0, this ends the proof of the theorem.

¤

We now come to the proof of the lemma 2.2.

Proof of lemma 2.2: Let IN
n be the function defined for any λ ≥ 0 by

IN
n (λ) = E

[
eiλN1/2MN

n +λ2

2
Cn

]
− 1,

and notice that

E

[
eiλN1/2MN

n

]
− e−

λ2

2
Cn = e−

λ2

2
CnIN

n (λ). (13)

Furthermore, we have the easily verified recursive equations

IN
n (λ) − IN

n−1(λ)

= E

[
eiλN1/2MN

n−1+λ2

2
Cn−1

(
E

[
eiλN1/2∆MN

n +λ2

2
∆Cn|FN

n−1

]
− 1

)]
,

and hence
IN
n (λ) − IN

n−1(λ) = A(λ) + B(λ),

with

A(λ) = E

[
eiλN1/2MN

n−1+λ2

2
Cn−1

(
e

λ2

2
(∆Cn−∆CN

n ) − 1
)]

,
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and

B(λ) = E

[
eiλN1/2MN

n−1+λ2

2
Cn−1

(
e

λ2

2
(∆Cn−∆CN

n )
)

×
(
E

[
eiλN1/2∆MN

n +λ2

2
∆CN

n

∣∣∣FN
n−1

]
− 1

) ]
.

Using this we obtain

∣∣IN
n (λ) − IN

n−1(λ)
∣∣ ≤ e

λ2

2
Cn−1 (A1(λ) + B1(λ)) ,

where

A1(λ) = E

[
e

λ2

2
|∆Cn−∆CN

n | − 1
]
,

and

B1(λ) = E

[ ∣∣∣E
[

eiλN1/2∆MN
n +λ2

2
∆CN

n
∣∣FN

n−1

]
− 1

∣∣∣ e
λ2

2
(∆Cn−∆CN

n )
]
.

Now, under conditions (H1) and (H3) applied for ε = λ2

2N1/2 , we find that

|IN
n (λ) − IN

n−1(λ)|

≤ e
λ2

2
Cn−1

[
a1(n)λ3

N1/2

(
1 + λ2a3(n)

2N1/2

)
e

λ4

4N
a2
3(n)

+
(
1 + λ2a3(n)

2N1/2

)
e

λ4

4N
a2
3(n) − 1

]

= e
λ2

2
Cn−1

[
a1(n)λ3

N1/2

(
1 + λ2a3(n)

2N1/2

)
e

λ4

4N
a2
3(n)

+
(
e

λ4

4N
a2
3(n) − 1

)
+ λ2a3(n)

2N1/2 e
λ4

4N
a2
3(n)

]
,

for any 0 < λ3 ≤ c1(n) N1/2. Since for these pairs of parameters (λ,N) we
have λ2 ≤ N1/2 (and therefore λ4 ≤ N), we find that

N1/2 |IN
n (λ) − IN

n−1(λ)| ≤ d(n) e
λ2

2
Cn−1 λ2(1 + λ),

for some finite constant d(n), whose value only depend on ai(n), i = 1, 3,
and such that

d(n) ≤ c e
a2
3(n)

4 (1 ∨ a1(n) ∨ a3(n))2
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If we set
c⋆(n) = ∧n

p=0c1(p) (≤ 1) and d⋆(n) = ∨n
p=0d(p),

then for any 0 ≤ p ≤ n and any 0 < λ3 ≤ c⋆(n) N1/2, we have that

N1/2 |IN
p (λ) − IN

p−1(λ)| ≤ d⋆(n) e
λ2

2
Cn−1 λ2(1 + λ)

It is now easily verified from these estimates that

N1/2 |IN
n (λ)| ≤ (n + 1)d⋆(n)e

λ2

2
Cn−1λ2(1 + λ),

from which we conclude that, for any 0 < λ3 ≤ c⋆(n) N1/2,

∣∣∣E
[

eiλN1/2MN
n

]
− e−

λ2

2
Cn

∣∣∣ ≤ (n + 1)d⋆(n) e−
λ2

2
∆Cn

λ2(1 + λ)

N1/2
. (14)

On the other hand, we have, for any pair (λ,N),

∣∣∣E
[

eiλN1/2MN
n

]
− e−

λ2

2
Cn

∣∣∣ ≤
∣∣∣E

[
eiλN1/2MN

n

]∣∣∣ + e−
λ2

2
Cn , (15)

and under condition (H2),

∣∣∣E
[

eiλN1/2MN
n

]∣∣∣ ≤ E

[
e−

λ2

2
∆CN

n

]
eλ3a2(n)N−1/2

.

Using again (H3) we also find that

∣∣∣E
[

eiλN1/2MN
n

]∣∣∣ ≤ e−
λ2

2
∆Cn

(
1 +

λ2a3(n)

2N1/2

)
e

λ4a2
3(n)

4N e
λ3a2(n)

N1/2

=

(
1 +

λ2a3(n)

2N1/2

)
exp

[
−λ2

2

(
∆Cn − λ

N1/2

(
2a2(n) + a2

3(n)
λ

2N1/2

))]

Recall that ∆Cn > 0, and observe that for any pair (λ,N) such that

λ ≤ c⋆(n)N1/2 with c⋆(n) =
[
2a−2

3 (n) ∧
(
2−1∆Cn (1 + 2a2(n))−1)] ,

we have

λ

N1/2

(
2a2(n) + a2

3(n)
λ

2N1/2

)
≤ λ

N1/2
(2a2(n) + 1) ≤ ∆Cn

2
.

This yields

∣∣∣E
[

eiλN1/2MN
n

]∣∣∣ ≤
(

1 ∨ a3(n)

2

) (
1 +

λ2

N1/2

)
e−λ2 ∆Cn

4 , (16)
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and hence, by (15), and for any λ ≤ c⋆(n)N1/2, we find

∣∣∣E
[

eiλN1/2MN
n

]
− e−

λ2

2
Cn

∣∣∣ ≤ e−
λ2

4
∆Cn (2 ∨ a3(n))

(
1 +

λ2

N1/2

)
(17)

To take the final step we observe that for any

N ≥ c⋆(n)/c⋆(n)3 and c1/3
⋆ (n)N1/6 ≤ λ ≤ c⋆(n) N1/2,

we have 1 = c⋆(n)/c⋆(n) ≤ c−1
⋆ (n)λ3/N1/2, and by (17),

∣∣∣E
[

eiλN1/2MN
n

]
− e−

λ2

2
Cn

∣∣∣ ≤ c−1
⋆ (n) (2 ∨ a3(n))

λ2 (1 + λ)

N1/2
e−λ2 ∆Cn

4 . (18)

In conjunction with (14) we conclude that for any N ≥ N(n) = c⋆(n)/c⋆(n)3

and any λ ≤ c⋆(n) N1/2,

∣∣∣E
[

eiλN1/2MN
n

]
− e−

λ2

4
Cn

∣∣∣ ≤ a(n)
λ2

N1/2
(1 + λ) e−

λ2

4
∆Cn ,

with a(n) = [(n + 1)d⋆(n)] ∨ [c−1
⋆ (n) (2 ∨ a3(n))]. This ends the proof of the

lemma.
¤

3 Application to interacting processes

In this section, we prove that Theorem 1.1 can be applied to our particle
approximations. We shall go through a series of preliminary results leading
to the proof of Theorem 1.3.

The first step is of course to provide some exponential estimates for the
particle density profiles. In the next pivotal lemma we describe an original
exponential concentration result in terms of the following pair of parameters

β(Pp,n) = sup
(xp,yp)∈E2

p

‖Pp,n(xp, .) − Pp,n(yp, .)‖tv

rp,n = sup
(xp,yp)∈E2

p

Qp,n(1)(xp)/Qp,n(1)(yp) (19)

where ‖µ − ν‖tv = supA∈E |µ(A) − ν(A)| represents the total variation dis-
tance between probabilities and Pp,n denotes the Markov transition from Ep

into En defined by

Pp,n(xp, dxn) = Qp,n(xp, dxn)/Qp,n(xp, En)

13



Lemma 3.1 For any McKean model we have for every n ≥ 0, fn ∈ Osc1(En)
and ε > 0

E

[
eεN1/2|ηN

n (fn)−ηn(fn)|
]
≤

(
1 + ε2−1/2 b(n)

)
e(εb(n))2/2

for some finite constant b(n) such that b(n) ≤ 2
∑n

q=0 rq,n β(Pq,n).

Remark 3.2 The quantities (rp,n, β(Pp,n)) play an important role in the
asymptotic and long time behavior of Feynman-Kac particle approximation
models. The above lemma combined with the semigroups approach developed
in [5] readily yields uniform exponential concentration properties. To be more
specific, let us suppose that r = ∨nrn < ∞. Also assume that there exist some
integer parameter m ≥ 1 and some ρ ∈ (0, 1] such that for any (x, y) ∈ E2

n,
A ∈ En+m and n ≥ 0

Mn,n+m(x,A) ≥ ρ Mn,n+m(y, A)

where Mn,n+m = (Mn+1 . . . Mn+m) stands for the composition of the Markov
kernels Mp from p = (n + 1) to p = (n + m). In this situation, following the
arguments given in [5] one proves that

rn,n+m ≤ rm/ρ and β(Pn,n+m) ≤ (1 − rm−1ρ2)[(n−p)/m]

Furthermore, the constants b(n) in lemma 3.1 can be chosen such that ∨nb(n)
≤ 2mr2m−1/ρ3.

The proof of lemma 3.1 being rather technical it is housed in the appendix
(see Lemma 3.7). One consequence of lemma 3.1 is the following central
estimate.

Lemma 3.3 Suppose the McKean interpretation model satisfies condition
(H) for some finite constant Γ < ∞. In this situation, the martingale MN

n (f)
defined by (8) satisfies conditions (Hi)i=1,2,3, for some universal constants

(a1(n), a2(n)) = (a1, a2)

with the non-negative increasing process Cn(f) defined at (10), as soon as
n → Cn(f) is strictly increasing. In addition, the constant a3(n) in (H3) can
be chosen such that, for any n ≥ 0,

0 < a3(n) ≤ 4
√

2 (1 + Γ) sup
q=n,n−1

q∑

p=0

rp,q β(Pp,q)

Furthermore when the regularity condition stated in remark 3.2 are met
for some triplet (m, r, ρ) the constant a3(n) can be chosen such that 0 <
∨na3(n) ≤ 8

√
2 m r2m−1(1 + Γ)/ρ3.

14



The second step will be to get rid of the predictable term defined by
equation (12), with the help of the following lemma:

Lemma 3.4 Let FZ be the distribution function associated to a real valued
random variable Z, and let W be a centered Gaussian random variable with
unit variance. For any pair of random variables (X, Y ) we have

‖FX+Y − FW‖ ≤ ‖FX − FW‖ + 4E(|XY |) + 4E(|Y |). (20)

Lemma 3.4 can be proved using the Stein’s approach to fluctuations and
it can be found for instance lemma 1.3 chapter 11 in the book of Shorack [8].
Since the proof of theorem 1.3 is now a simple consequence of lemma 3.3
and lemma 3.4 we postpone the proof of 3.3 and start with the

Proof of theorem 1.3: Throughout this proof, b̂(n) will stand for a positive
constant that can change from line to line. We first notice that

WN
n,n =

√
N(ηN

n − ηn)

and by (12) we have WN
p,n(fn) = BN

p,n(fn) + LN
p,n(fn). Let us show now that

the main term in the fluctuations of the cdf of WN
p,n(fn) is due to LN

p,n(fn).
Indeed it is easily checked that

E
1/2(|BN

n,n(fn)|2) ∨ E(|BN
n,n(fn)|) ≤ b̂(n)(Cn(f))1/2

√
N

. (21)

By definition of the martingale term, it is also easily seen that

E
1/2(|LN

n,n(fn)|2) ≤ b̂(n)(Cn(f))1/2. (22)

Set now

X = LN
n,n(fn)/(Cn(f))1/2 and Y = BN

n,n(fn)/(Cn(f))1/2.

The estimates (21) and (22) yield

E(|XY |) ≤ 1

Cn(f)
E

1/2
[
|LN

n,n(fn)|2
]
E

1/2
[
|BN

n,n(fn)|2
]
≤ b̂(n)

N1/2
,

and E(|Y |) ≤ b̂(n)/N1/2. Hence, applying lemma 3.4, the proof of theorem
1.3 can be reduced to show that

sup
u∈R

∣∣∣∣P
(
LN

n (fn,n) ≤ u(Cn(f))1/2
)
− 1

(2π)1/2

∫ u

−∞

e−v2/2 dv

∣∣∣∣ ≤
b̂(n)

N1/2
.

15



This last estimate is now a direct consequence of lemma 3.3 and theorem 1.1.
¤

We now come to the

Proof of lemma 3.3: Let us first check that the regularity condition (H3)
is satisfied. Since we have

∆Cn(f) = ηn−1

[
Kn,ηn−1((fn − Kn,ηn−1fn)2)

]

= Φn(ηn−1)(f
2
n) − ηn−1((Kn,ηn−1fn)2)

we easily prove that

|∆CN
n (f) − ∆Cn(f)| ≤ 2

(
|Φn(ηN

n−1)(hn)| + |ηN
n−1(h

′
n−1)|

+ ‖Kn,ηN
n−1

(fn) − Kn,ηn−1(fn)‖
)
,

with the pair of functions (hn, h
′
n−1) ∈ (Osc(En) × Osc(En−1)) defined by

hn = (f2
n − ηn(f 2

n))/2

h′
n−1 = ((Kn,ηn−1fn)2 − ηn−1((Kn,ηn−1fn)2))/2

On the other hand, under condition (H), we have that

‖Kn,ηN
n−1

(fn) − Kn,ηn−1(fn)‖

≤
∫

|ηN
n−1(h)| Γn−1,fn(dh) +

∫
|Φn(ηN

n−1)(h)| Γ′
n−1,fn

(dh)

from which we find that

|∆CN
n (f) − ∆Cn(f)|

≤ 2
( ∫

|ηN
n−1(h)| Γ̃n−1(dh) + E(

∫
|ηN

n (h)| Γ̃′
n−1(dh) | FN

n−1)
)

with
Γ̃n−1 = Γn−1,fn + δh′

n−1
and Γ̃′

n−1 = Γ′
n−1,fn

+ δhn

Applying Jensen’s inequality, we get that for any ε > 0

E

[
eεN1/2|∆CN

n (f)−∆Cn(f)|
]

≤ E

[
e2εN1/2{R

|ηN
n−1(h)| eΓn−1(dh)+

R

|ηN
n (h)| eΓ′

n−1(dh)}]
.
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Now, applying Cauchy-Schwarz’s inequality, we obtain

E

[
eεN1/2|∆CN

n (f)−∆Cn(f)|
]

≤ E
1/2

[
e4εN1/2

R

|ηN
n−1(h)|eΓn−1(dh)

]
E

1/2
[
e4εN1/2

R

|ηN
n (h)|eΓ′

n−1(dh)
]
.

If we set Γ̃ = Γ + 1 then using again Jensen’s inequality we find

E

[
eεN1/2|∆CN

n (f)−∆Cn(f)|
]2

≤
∫

E

[
e4εN1/2

eΓ|ηN
n−1(h)|

] Γ̃n−1(dh)

Γ̃n−1(1)
∫

E

[
e4εN1/2

eΓ |ηN
n (h)|

] Γ̃′
n−1(dh)

Γ̃′
n−1(1)

,

from which we get

E

[
eεN1/2|∆CN

n (f)−∆Cn(f)|
]
≤ sup

h∈Osc(Ep),p=n,n−1

E(e4εN1/2
eΓ |ηN

p (h)| )

Using lemma 3.7 we conclude that

E

[
eεN1/2|∆CN

n (f)−∆Cn(f)|
]
≤ (1 + ε a3(n)) eε2a2

3(n),

for some finite constant a3(n) such that

a3(n) ≤ 4
√

2 Γ̃ sup
q=n,n−1

q∑

p=0

rp,q β(Pp,q).

To prove that (H2) is met, we first recall that

∣∣∣E
[

eiλN1/2MN
n (f)

]∣∣∣ ≤ E

[∣∣∣E
[

eiλN1/2∆MN
n (f)

∣∣∣ FN
n−1

]∣∣∣
]
. (23)

Then we use a standard symmetrization technique: given the particle model
ξp up to time p ≤ n − 1 we let ηN

n an auxiliary independent copy of ηN
n .

In other words ηN
n is the empirical measure associated to an independent

copy ξn of the configuration of the system ξn at time n. With some obvious
abusive notation, we readily check that

∣∣∣E
[

eiλN1/2∆MN
n (f)

∣∣∣ FN
n−1

]∣∣∣
2

= E

[
eiλN1/2[∆MN

n (f)−∆M
N
n (f)]

∣∣∣ FN
n−1

]
,
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where ∆MN

n (f) =
[
ηN

n (fn) − Φn(ηN
n−1)(fn)

]
. We deduce from this that

∣∣∣E
[

eiλN1/2∆MN
n (f)

∣∣∣ FN
n−1

]∣∣∣
2

=
N∏

j=1

E

[
e

i λ

N1/2
[fn(ξj

n)−fn(ξ
j
n)]

∣∣∣ FN
n−1

]
.

Since the random variables [fn(ξj
n)− fn(ξ

j

n)] and −[fn(ξj
n)− fn(ξ

j

n)] have the
same law, their characteristic functions are real, and we have

E

[
e

i λ

N1/2
[fn(ξj

n)−fn(ξ
j
n)]

∣∣∣ FN
n−1

]

= E

[
cos

(
λ

N1/2
[fn(ξj

n) − fn(ξ
j

n)]

) ∣∣∣ FN
n−1

]
.

Using now the elementary inequalities

cos u ≤ 1 − u2/2 + |u|3/3! , 1 + u ≤ eu and |u − v|3 ≤ 4(|u|3 + |v|3),

we get that

E

[
e

i λ

N1/2
[fn(ξj

n)−fn(ξ
j
n)]

∣∣∣ FN
n−1

]

≤ 1 − λ2

N
Kn,ηN

n−1
(fn − Kn,ηN

n−1
(fn)))2(ξj

n) + c λ3

N3/2

≤ e
−λ2

N
K

n,ηN
n−1

(fn−K
n,ηN

n−1
(fn)))2(ξj

n)+ c λ3

N3/2 .

Multiplying over j, we obtain

∣∣∣E
[

eiλN1/2∆MN
n (f)

∣∣∣ FN
n−1

]∣∣∣
2

≤ e
−λ2∆CN

n (f)+ c λ3

N1/2 ,

and by (23) we conclude that condition (H2) is met with a2(n) = c/2.

We now come to the proof of (H1). By definition of the particle model
associated to a given collection of transitions Kn,η we have

E

[
eiλN1/2∆MN

n (f)+λ2

2
∆CN

n (f)
∣∣∣ FN

n−1

]

=
∏N

j=1

[
Kn,ηN

n−1

(
e

i λ

N1/2
f̃j

n+ λ2

2N
∆CN

n (f)

)]
(ξj

n−1),
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with the random function f̃ j
n = (fn−Kn,ηN

n−1
(fn)(ξj

n−1). Using the elementary
inequality ∣∣∣∣e

z −
(

1 + z +
z2

2

)∣∣∣∣ ≤ e|z|
|z|3
3!

,

it is easily seen that, for any λ ≤ N1/2, we have

e
i λ

N1/2
f̃j

n+ λ2

2N
∆CN

n (f)
= 1 + i λ

N1/2 f̃
j
n + λ2

2N
[∆CN

n (f) − (f̃ j
n)2] + rN

n,1(f)

with |rN
n,1(f)| ≤ c λ3N−3/2. This clearly implies that, for any λ ≤ N1/2,

[
Kn,ηN

n−1

(
e

i λ

N1/2
f̃j

n+ λ2

2N
∆CN

n (f)

)]
(ξj

n−1)

= 1 + λ2

2N
[∆CN

n (f) − Kn,ηN
n−1

(f̃ j
n)2(ξj

n−1)] + rN
n,2(f),

with |rN
n,2(f)| ≤ c λ3N−3/2. It is now convenient to notice that for any

λ ≤ N1/2

∣∣∣∣
λ2

2N
[∆CN

n (f) − Kn,ηN
n−1

(f̃ j
n)2(ξj

n−1)] + rN
n,2(f)

∣∣∣∣ ≤
c λ

N1/2
.

On the other hand for any |z| ≤ 1/2 and with the principal value of the
logarithm we recall that

log (1 + z) = z −
∫ z

0

u

1 + u
du = z − z2

∫ 1

0

t

1 + tz
dt.

Since for any |z| ≤ 1/2 and t ∈ [0, 1] we have |1 + tz| ≥ 1/2, we find that for
any |z| ≤ 1/2 we have | log (1 + z) − z| ≤ |z2|. The previous computations
show that there exists some universal constant c0 ∈ (0, 1) such that for any
λ ≤ c0 N1/2 we have

log Kn,ηN
n−1

(e
i λ

N1/2
f̃j

n+ λ2

2N
∆CN

n (f)
)(ξj

n−1)

= λ2

2N
[∆CN

n (f) − Kn,ηN
n−1

(f̃ j
n)2(ξj

n−1)] + rN
n,3(f)

with |rN
n,3(f)| ≤ c λ3/N3/2. Summing over j, we see that for any λ ≤ c0 N1/2

∣∣∣∣∣

N∑

j=1

log Kn,ηN
n−1

(e
i λ

N1/2
f̃j

n+ λ2

2N
∆CN

n (f)
)(ξj

n−1)

∣∣∣∣∣ ≤ c λ3/N1/2.
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Finally, using the elementary inequality |ez − 1| ≤ |z|e|z|, we conclude that,
for any λ ≤ c0 N1/2,

∣∣∣E
[

eiλN1/2∆MN
n (f)+λ2

2
∆CN

n (f)
∣∣∣ FN

n−1

]
− 1

∣∣∣ ≤ c
λ3

N1/2
e

c λ3

N1/2 .

This readily implies that there exists some universal positive constant c1 such
that, for any λ3 ≤ c1 N1/2, we have

∣∣∣E
[

eiλN1/2∆MN
n (f)+λ2

2
∆CN

n (f)
∣∣∣ FN

n−1

]
− 1

∣∣∣ ≤ c
λ3

N1/2
,

which proves that condition (H1) is met with a1(n) = c and c1(n) = 1.
¤

Appendix

Doob’s type decompositions

Proposition 3.5 ([5]) Let (Qp,n)p≤n be the semi-group defined at (11). For

fn ∈ Bb(En) and p ≤ n we set fp,n = Qp,n (fn − ηnfn). Then we have the
following decomposition,

ηN
p (fp,n) = AN

p,n(fn) + MN
p,n(fn),

with the predictable and martingale sequences AN
p,n(fn) and MN

p,n(fn) given
by

AN
p,n(fn) =

p∑

q=1

[
1 − ηN

q−1(Qq−1,q1)
]

Φq(η
N
q−1)(fq,n) (24)

MN
p,n(fn) =

p∑

q=0

[
ηN

q (fq,n) − Φq(η
N
q−1)fq,n

]
, (25)

with the usual convention Φ0(η
N
−1) = η0.

Proof: Note that for any ϕn ∈ Bb(En) we have the decomposition

ηN
p (Qp,nϕn) − ηN

0 (Q0,nϕn) =

p∑

q=1

δ̄q,
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with δ̄q = ηN
q (Qq,nϕn) − ηN

q−1(Qq−1,nϕn). Choose now ϕn = fn − ηnfn. For
q ≤ p, we have, by definition of fq,n,

δ̄q = ηN
q (fq,n) − ηN

q−1(Qq−1,nϕn) = U1 + U2,

with

U1 = ηN
q (fq,n) −

[
Φq

(
ηN

q−1

)]
(fq,n)

U2 =
[
Φq

(
ηN

q−1

)]
(fq,n) − ηN

q−1(Qq−1,nϕn).

In order to show (12), it is thus enough to verify that

ηN
q−1(Qq−1,nϕn) = ηN

q−1(Qq−1,q1)
[
Φq

(
ηN

q−1

)]
(fq,n). (26)

However, we have

Qq−1,nϕn =
γq−1(1)

γn(1)
Qq−1,nϕn =

γq−1(1)

γn(1)
Qq (Qq,nϕn)

=
γq−1(1)

γq(1)
Qq

(
Qq,nϕn

)
=

γq−1(1)

γq(1)
Qq (fq,n) ,

and hence

ηN
q−1(Qq−1,nϕn) =

γq−1(1)

γq(1)
ηN

q−1 (Qq (fq,n))

=
γq−1(1)ηN

q−1 (Gq−1)

γq(1)

[
Φq

(
ηN

q−1

)]
(fq,n). (27)

On the other hand, for q ≥ 1 and xq−1 ∈ Eq−1,

[
Qq−1,q(1)

]
(xq−1) =

γq−1(1)

γq(1)
[Qq−1,q(1)](xq−1),

and

[Qq−1,q(1)](xq−1) =

∫

Eq

Gq−1(xq−1) Mq(xq−1, dxq) = Gq−1(xq−1),

which yields
γq−1(1)Gq−1

γq(1)
= Qq−1,q(1).

Plugging this last equality into (27), we get (26), and hence (12). The mar-
tingale property of MN

p,n(fn) is readily checked.

21



Some asymptotic estimates

The next lemma provides a refined version of Burkholder’s type inequalities
for independent sequences of random variables.

Lemma 3.6 ([6]) Let m(X) = 1
N

∑N
i=1 δXi be the N-empirical measure as-

sociated to a collection of independent random variables X i, with respective
distributions µi on some measurable space (E, E). For any sequence of E-
measurable functions hi such that µi(hi) = 0 and σ2(h) = 1

N

∑N
i=1 osc2(hi) <

∞ we have for any integer p ≥ 1
√

N E(|m(X)(h)|p) 1
p ≤ d(p)

1
p σ(h) (28)

with the sequence of finite constants (d(n))n≥0 defined for any n ≥ 1 by the
formulae

d(2n) = (2n)n 2−n and d(2n − 1) =
(2n − 1)n√

n − 1/2
2−(n−1/2) (29)

The extension of the above lemma to the interacting particle measures
ηN

n and the Feynman-Kac flow ηn is the following

Lemma 3.7 Let (d(p))p≥1 be the sequence introduced in (29). For any McK-
ean interpretation model and for any n ≥ 0, p ≥ 1, fn ∈ Osc(En) and ε > 0
we have

E
(
|[ηN

n − ηn](fn)|p
) 1

p ≤ d(p)1/p b(n)/
√

N

E

[
eεN1/2|ηN

n (fn)−ηn(fn)|
]

≤
(
1 + ε2−1/2 b(n)

)
e(εb(n))2/2,

for some finite constant b(n) such that b(n) ≤ 2
∑n

q=0 rq,n β(Pq,n).

Proof: The proof if based on the following decomposition:

ηN
n − ηn =

n∑

q=0

[Φq,n(ηN
q ) − Φq,n(Φq(η

N
q−1))] (30)

We introduce the random potential functions

GN
q,n : xq ∈ Eq −→ GN

q,n(xq) =
Gq,n

Φq(ηN
q−1)(Gq,n)

∈ (0,∞)

and the random bounded operators PN
q,n from Bb(En) into Bb(Eq) defined for

any (fn, xq) ∈ (Bb(En) × Eq) by

PN
q,n(fn)(xq) = Pq,n

(
fn − Φq,n

(
Φq(η

N
q−1)

)
(fn)

)
(xq)

=

∫
(Pq,nf(xq) − Pq,nf(yq)) GN

q,n(yq) Φq(η
N
q−1)(dyq)
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We associate to the pair (GN
q,n, P

N
q,n) the random bounded and integral oper-

ator QN
q,n from Bb(En) into Bb(Eq) defined for any (fn, xq) ∈ (Bb(En) × Eq)

by
QN

q,n(fn)(xq) = GN
q,n(xq) × PN

q,n(fn)(xq)

Each ”local” term in (30) can be expressed in terms of QN
q,n as follows. For

any q ≤ n and fn ∈ Bb(En) with osc(fn) ≤ 1 we have

Φq,n(ηN
q )([fn − Φq,n(Φq(η

N
q−1))(fn)])

=
1

ηN
q (Gq,n)

ηN
q

(
Gq,n Pq,n[fn − Φq,n(Φq(η

N
q−1))(fn)]

)

=
ηN

q QN
q,n(fn)

ηN
q QN

q,n(1)

By construction we also observe that

Φq(η
N
q−1)

(
GN

q,n

)
= 1 and Φq(η

N
q−1)

(
QN

q,n(fn)
)

= 0

The above considerations easily yield the decomposition

Φq,n(ηN
q ) − Φq,n(Φq(η

N
q−1)) =

1

ηN
q (GN

q,n)
[ηN

q − Φq(η
N
q−1)]Q

N
q,n

Using the properties of the Dobrushin’s contraction coefficient, we also have

‖PN
q,n(fn)‖ ≤ osc(Pq,nf) ≤ β(Pq,n)

‖QN
q,n(fn)‖ ≤ ‖GN

q,n‖ ‖PN
q,n(fn)‖ ≤ ‖GN

q,n‖ β(Pq,n),

and from these estimates, we readily prove the inequality

∣∣[Φq,n(ηN
q ) − Φq,n(Φq(η

N
q−1))](fn)

∣∣

≤ rq,n β(Pq,n)
∣∣∣[ηN

q − Φq(η
N
q−1)]Q

N

q,n(fn)
∣∣∣ ,

with Q
N

q,n(fn) = QN
q,n(fn)/‖QN

q,n(fn)‖. Now, using lemma 3.6, we check that
for any p ≥ 1 we have

√
N E(|[ηN

q − Φq(η
N
q−1)]Q

N

q,n(fn)|p | FN
q−1)

1/p ≤ 2 d(p)1/p

with the sequence of finite constants d(p) introduced in (29). This ends the
proof of the first assertion. To prove the second one we The Ln-inequalities
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stated in lemma 3.6 clearly implies that, for any ε > 0,

E(eε|ηN
n (fn)−ηn(fn)|)

=
∑

n≥0
ε2n

(2n)!
E(|ηN

n (fn) − ηn(fn)|2n)

+
∑

n≥0
ε2n+1

(2n+1)!
E(|ηN

n (fn) − ηn(fn)|2n+1)

≤ ∑
n≥0

1
n!

(
ε2b(n)2

2N

)n

+
∑

n≥0
1
n!

(
ε2b(n)2

2N

)n+1/2

,

from which we conclude that

E(eε|ηN
n (fn)−ηn(fn)|) =

(
1 +

εb(n)√
2N

) ∑

n≥0

1

n!

(
ε2b(n)2

2N

)n

=

(
1 +

εb(n)√
2N

)
e

ε2

2N
b(n)2 .

We end the proof of the lemma by replacing ε by ε
√

N .
¤
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