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Abstract

It is a well-known fact that algorithms are often hidden inside mathematical proofs.
If these proofs are formalized inside a proof assistant, then a mechanism called
extraction can generate the corresponding programs automatically. Previous work
has focused on the dificulties in obtaining a program from a formalization of the
Fundamental Theorem of Algebra inside the Coq proof assistant. In theory, this
program allows one to compute approximations of roots of polynomials. However,
as we show in this work, there is currently a big gap between theory and prac-
tice. We study the complexity of the extracted program and analyze the reasons
of its inefficiency, showing that this is a direct consequence of the approach used
throughout the formalization.

Key words: Program extraction, Complexity, Constructive reals,
Fundamental Theorem of Algebra, Formalization of Mathematics.

1 Introduction

Several approaches can be used for certifying software. A first one, perhaps
the most natural, is to start with an handwritten program and then inspect it
formally in a suitable logical system, like Hoare logic. But there exists an al-
ternative approach where one needs not write the program, but rather obtains
it automatically from a mathematical proof. This automatic transformation
of proofs into correct-by-construction programs is called (program) extraction.

The ability of extracting programs from proofs is an instance of the Curry–
Howard isomorphism, which explains in particular that a constructive proof is
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isomorphic to a functional program. In practice, though, extraction is not just
a mere application of this isomorphism. In the case of proof assistants based on
Type Theory (like Coq [20] or NuPrl [12]), the internal representation of proofs
is an actual λ-term, so a proof is a functional program; but in practice large
portions of these proofs correspond to logical justifications and are irrelevant
from a computational point of view. In order to obtain realistic programs, one
of the main tasks of the extraction is to identify and remove such parts.

For more than fifteen years, extraction has been both studied theoretically
and incorporated in several proof assistants, like PX [11], NuPrl [12], Min-
log [8], Isabelle [3] or Coq [17,18,13,14]. As a consequence of these various
works, the correction of extraction is now generally well understood and this
mechanism has become a framework of choice for certifying functional pro-
grams Moreover, this framework is quite elegant. In particular, it allows one
to unify constructive mathematics and certified functional programming.

On the other hand, evaluating and/or improving the complexity of the
extracted programs is still an active research subject. Automatic analysis
of extracted program complexity has been studied in NuPrl [2]. Also worth
mention are some recent efforts to determine which kind of restrictions on
proofs can ensure that the final extracted program is polynomial in time [1].

Most of the experiments done so far with program extraction deal with ex-
amples from Computer Science. In this paper we focus on a different problem:
the computational behaviour of a program extracted from a formalization of a
mathematical statement. As we will show, this example raises quite different
problems than the ones previously addressed, due both to its different nature
and to its size, and the results are not so satisfactory.

The work described in this paper was partially included in the authors’
PhD theses [5] and [14].

1.1 The C-CoRN library

In this experiment we work with the Coq proof assistant. More concretely, we
study the behavior of its extraction mechanism when applied to a construc-
tive proof of the Fundamental Theorem of Algebra [10], part of the C-CoRN
library [6].

C-CoRN is a library of mathematics formalized in the proof assistant
Coq [20] that has been in development since 1999. At present, it has achieved
a considerable size, making it an appropriate environment for a large-scale
experiment.

C-CoRN ranges over different subjects, including Algebra, Real Analysis
and General Topology. From the perspective of program extraction, most of
these are not very interesting to look at, since they deal with results with little
or no computational content. Therefore the focus was set on two specific parts
of the library: the constructive proof of the Fundamental Theorem of Algebra,
described in [10], and the model of R as Cauchy sequences of rationals, whose
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formalization is the subject of [9].

The Fundamental Theorem of Algebra (FTA) states that every non-con-
stant polynomial over the complex numbers has a root. The proof of this
statement in C-CoRN is a constructive proof that embodies the Newton–
Raphson root-finding algorithm (see [10]). For this reason, the problem of
extracting a program from this proof is not only a non-trivial case study, but
also one that is computationally interesting.

1.2 Extraction from C-CoRN

Applying the Coq mechanism of extraction to C-CoRN was not easy. One
of the reasons for this was the primitive state of the extraction mechanism
at the time of the first attempts. Another reason was the size of the library,
several orders of magnitude larger than any test done earlier. Finally, C-CoRN
was not originally developed with extraction in mind, and this turned out to
have important consequences as pointed out in [7]: obtaining a program of a
reasonable size required rethinking the use of the Coq sorts in a constructive
formalization and fine-tuning several proofs and definitions in the original
proof of the FTA.

All the work done so far succeeded in extracting a program of reasonable
size, but at the time it was not possible to execute the extracted programs
and study their computational behaviour. The present paper builds on that
work by studying what happens when one tries to compile and execute the
root-finding program extracted from the formalization of the FTA in C-CoRN.

Section 2 discusses some issues encountered while compiling the extracted
program and how they were solved. It then turned out that the compiled
program was too slow and did not produce any output when executed, so Sec-
tions 3 and 4 focus on two smaller examples that are simple enough for one
to understand the extracted code, while at the same time exhibiting essential
problems of the larger program. In Section 5 we present a different formal-
ization of the same theorem, developed by the second author together with
H. Schwichtenberg; this formalization differs fundamentally from C-CoRN be-
cause it was done with extraction in mind based upon [19]. In Section 6 we
compare the programs extracted from both formalizations and show that the
problems identified earlier are fundamental issues; as a consequence, there is
little hope that extraction from C-CoRN will ever produce an executable (in
practice) program.

2 Compilation of the extracted program

Compiling the source code extracted from the proof of the FTA in C-CoRN
into a program and running it was not done in [7]. In this section we address
some technical issues that had to be solved before this could be done.

The goal of extraction is to produce code for real programming languages;
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in the case of Coq, these are Ocaml and Haskell. Before 2003 the Coq ex-
traction mechanism was only able to produce extracted code for FTA that
failed to compile with usual Ocaml or Haskell compilers. This was due to
the extreme richness of the type system of Coq, which allows features with
no counterpart in ML-like type systems (for example, the definition of types
depending on terms). The extracted code will therefore not pass the type-
checking stage performed prior to the actual compilation. At the same time,
though, the correctness of the extraction guarantees that this extracted code,
albeit ill-typed, will always evaluate correctly.

Solving these problems was one of the main motivations for the recent
redesign of Coq extraction [14]. This has been done via the use of unsafe
type-changing primitives like Obj.magic in Ocaml. On the computational
level, this function is transparent: its argument is returned unchanged. But
it has a dramatic effect on typing: Obj.magic has type ’a → ’b, so using it
amounts to bypassing the type-checker locally.

Using Obj.magic everywhere is not satisfactory for several reasons. First,
the readability of the extracted code is decreased; secondly, some optimizations
of the compiler may be disabled; finally, the additional correctness properties
coming from the ML typing are lost, requiring one to rely strongly on the
correctness results of the extraction. For all these reasons, the extraction only
inserts Obj.magic in the extracted code precisely where untypable expres-
sions would occur. The details of this insertion mechanism are described in
Chapter 3 of [14].

The following example is a typical situation in C-CoRN where untypable
yet correct code is produced. Using the type Monoid for the mathematical
structure of monoids, a group is defined in the following way.

Record Group : Type := {

mon : Monoid;

inv : mon -> mon;

proof : Is_Group mon inv }

In other words, a group is composed of a monoid mon and an inverse function
inv fulfilling some logical requirements. This record is quite different from
an Ocaml record: the field mon is a type, used in the type of the second field
inv, whereas the third field contains some proofs. During extraction, the first
field is removed since a type cannot be expressed in ML on the object level,
while the type of the second field is changed to something acceptable using
Obj.magic.

The extracted code from the proof of the FTA contains around 400 occur-
rences of Obj.magic arising from similar situations. This code is accepted by
the Ocaml compiler without any additional modification.

The same mechanism for ensuring the typability of extracted code artifi-
cially has been adapted to extraction to Haskell. Here Obj.magic is named
unsafeCoerce, which is present in at least two of the main Haskell imple-
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mentations, namely GHC and Hugs. Using these unsafe typing coercions, we
were also able to extract Haskell code accepted by these two compilers and to
compare the performance of these programs with the ones coming from the
Ocaml extraction. However, this extraction of artificially-typed Haskell code
should be considered as experimental: even if it seems to work in practice, we
are still checking the lack of unexpected consequences.

3 Computing e

After the compilation issues discussed in the previous section were solved, we
were able for the first time to execute the program extracted from the proof of
the FTA. Therefore, we defined x2 − 2 as a polynomial in the complex plane,
proved it to be non-constant, extracted this proof to Ocaml, and gave this
as argument to the FTA program. After one week, the program had not yet
finished executing.

Unfortunately, this program was too complex to examine directly and un-
derstand why it was taking so long running. Instead, we decided to focus our
attention on simpler examples from C-CoRN that we could examine and from
these gain some insight into the broader picture.

In this section we focus on one of these simpler examples: the computation
of e. Although its value is not relevant for the proof of the FTA, e is one of the
simplest examples of real numbers in C-CoRN, in the sense that it is defined
as the limit of a sequence of rationals.

3.1 Improving the extracted program

In C-CoRN, real numbers are defined as Cauchy sequences of rationals, see [9].
In particular, e is defined as the sum of the series

∑∞
n=0

1
n!

, which unfolds to
the limit of the sequence of partial sums of λn.1/n!; as a consequence, e is
represented by that same sequence of partial sums (seen as a sequence of
rationals).

The corresponding extracted program is a function that takes a natural
number n as argument and returns the nth element in the Cauchy sequence
representing e. The first results were not promising at all: computing any
of the first five approximations of e was virtually instantaneous; the sixth
took a few seconds; and the seventh didn’t finish after more than one hour of
computation. The problem was easy to find: the sequence converging to e is
formalized using the natural numbers of Coq, which are the Peano numerals,
meaning that to compute the nth approximation of e one first computes k!
for 0 ≤ k ≤ n as the mth successor of 0 for some m, translates the result to
the real number 1 + 1 + . . . + 1 (m times), computes its reciprocal and then
adds everything together. Furthermore, the proof of k! 6= 0 is also needed to
compute this reciprocal, and this unfolds again to a computation of a factorial
in unary notation.
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Once this problem was identified, it was easy to fix: instead of computing
factorials in N and injecting the result in R, we defined directly the factorial
in an arbitrary ring using its multiplication. Next, we proved by induction
that this function is always non-zero, yielding a proof term linear in n. These
changes allowed us to compute the first 15 approximations of e, however the
execution time increased roughly ten-fold at each extra iteration. Some ad
hoc improvements both to the definition of the injection of N in R and to the
model of R itself helped bring this factor to around 2. This was still far from
satisfying, as it meant that only around twenty approximations of e could be
computed. Furthermore, profiling revealed that most of the time the program
was computing values of λx.0 for larger and larger values of x, which seemed to
be a consequence of the abstract way in which the real numbers were defined
in C-CoRN. This issue will be referred to again in Section 5.

Actually, it is awkward to devote so many efforts in order to compute a
real number like 1

n!
. After all, this number is only a rational number, so a

more natural thing to do would be to make this computation directly in the
structure of rational numbers and inject the result into the reals later.

This cannot be done directly, since C-CoRN enforces a strong separation
between an abstract structure of real numbers and any concrete counterpart
to it. All parts of this development using real numbers, like the proof of
FTA itself, are generic: they rely on one axiom stating the existence of a real
number structure IR, and this structure is just known to be an archimedian
ordered field where all Cauchy sequences admit a limit. Accordingly, we can
access nothing but a minimal set of primitive objects and basic properties,
according to the underlying structures.

In particular, the only known primitive reals are 0 and 1, which are respec-
tively the units of the underlying structures of semi-group and ring. To refer
to a rational number in IR, one must build it from 0, 1 and the operations +,
∗ and /, this last operation requiring in addition a proof of non-nullity as third
argument. Such a proof is normally deduced from a proof of strict positivity
(or negativity), which must be built from a restricted core of basic properties.
In the case of the strict order < over IR, these properties are: antisymmetry;
transitivity; compatibility with addition and multiplication; and the property
x 6= y ↔ x < y ∨ y < x. Any other property such as 0 < 1 is not primitive,
but derived from the ones above. The same holds for more complex proofs
like 0 < n!; as a conclusion, building 1

n!
in this setting, even with the best

optimizations, cannot be done via a simple injection from the rationals to the
reals.

On the other hand, C-CoRN also provides the concrete construction of a
real number structure Concrete R referred to above, ensuring that this ax-
iomatization of the reals is coherent. A rational q can be immediately injected
into Concrete R via the Cauchy sequence with constant value q. In the same
way, a proof of an inequality a < b is straightforward in Concrete R, since we
can now access the definition of <: there should exist a strictly positive ratio-

6



Cruz-Filipe and Letouzey

nal ∆ and a rank N such that, in the two Cauchy sequences being compared,
all terms of rank greater than N are always apart by at least ∆. In particular,
for two rationals q < q′ we immediately obtain q < q′ in Concrete R by taking
∆ = q′ − q and N = 0.

From a mathematical point of view, this separation between abstract and
concrete reals is legitimate, since it ensures that a proof made at the abstract
level is independent of the particular representation selected as concrete model
of the real numbers: if one changes this concrete model later the proofs will
still hold. From a programming point of view, though, we are here in front of
two modules interacting via a minimalist interface that frequently obliges the
upper level module to reinvent the wheel, moreover in an ineffective way. The
situation is similar to an integer arithmetic module whose interface would not
export the multiplication, under the justification that it can be simulated by
repeated additions.

To confirm that this distinction between the concrete and abstract lev-
els constituted indeed a bottleneck for program extraction, we added to the
abstract level a few axioms, namely the existence of a factorial function and
the fact that the output of this function is always positive. Then we proved
straightforwardly that these axioms hold in Concrete R. Finally, we instructed
the extraction mechanism to replace every use of the axioms at the abstract
level by the extraction of the concrete proofs.

3.2 Performance of the extracted program

After having implemented all these changes, the efficiency of the extracted
program improved significantly. It still runs in exponential time, which is a
consequence of having to compute factorials in the naive way, but instead of
doubling at each iteration the execution time only increases by around 40%
for each 10 extra steps. A sample of the exact execution times on a P-IV
2.4Ghz with 500Mb RAM is given in Figure 1.

This means that we can compute the 100th iteration in just over one
minute, and the 140th (which produces 241 correct digits) in less than five
minutes. Also significant is the fact that the growth of the precision is su-
perlinear (the error of the nth approximation is smaller than 1/n!), so the
time needed to compute n correct digits grows somewhat slower (though not
much).

Surprisingly, it does not seem to make much difference whether one ex-
tracts to Ocaml or to Haskell. Although the Haskell program returns a value
much quicker when just a few iterations are required, after 100 iterations the
execution time is already half of that of the Ocaml program, and from 125 it-
erations it actually starts taking longer. Also, the Haskell program consumes
huge amounts of memory (several Mb for 140 iterations), while the Ocaml
program requires a fixed 4Kb. Apparently this is due to the little amount
of dead code in the extracted program (see [7]), which favours call-by-value
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execution.

Finally, we compared the performance of our programs with that of a
computer algebra system. For this, we implemented the same algorithm to
compute e in Mathematica [21] and looked at the execution times. These tests
were done on a machine running at about a third of the speed (Pentium at
900MHz running Windows 2000, 384Mb RAM), but even so using Mathemat-
ica is amazingly faster: in Figure 1, the results concerning Mathematica are
not in seconds, but in milliseconds (averaged over 1000 runs). Still we find
these results encouraging: the ratio between the execution times of the Ocaml
program and the equivalent Mathematica program is linear on the number
of iterations. Asymptotically, the complexities of the extracted programs are
not so bad, even if a huge practical constant factor separates them from the
complexity of the Mathematica code.

Iterations Ocaml(s) Haskell(s) Mathematica(ms) Ocaml / Math.

20 0.11 0.01 0.070 1.57143

40 1.82 0.22 0.411 4.42822

60 8.99 1.95 1.302 6.90476

80 28.28 10.00 2.924 9.67168

100 68.77 47.48 5.778 11.902

120 147.80 151.53 10.295 14.3565

140 285.66 375.01 16.624 17.2836

Fig. 1. Execution times of programs computing e

4 Computing
√

2

After the encouraging results described in the previous section, we looked
again into the program extracted from the FTA proof. As was said earlier,
the full program in itself was too complicated to analyze directly. Therefore,
we decided to focus on one subroutine that was being used over and over
again, namely the function that computes square roots of real numbers using
the Intermediate Value Theorem (IVT) for real-valued polynomials. In this
section we will show that this situation is totally unlike the previous, and this
in turn has dramatic impact on the full FTA program.

Throughout this section we will focus on the IVT applied to the polynomial
x2 − 2, which computes

√
2.

4.1 The Intermediate Value Theorem

Computing the first non-trivial approximation of
√

2 using the IVT took over
52 hours. The algorithm being implemented was again quite simple, being
a constructivization of the bisection root-finding algorithm. Classically, one
begins with an interval [a, b] with f(a)f(b) < 0 and at each step changes either
a or b to the midpoint of the interval, according to whether f(a)f((a+b)/2) >

8



Cruz-Filipe and Letouzey

0. Constructively this cannot be done, since we cannot decide on the sign of
an arbitrary real number; thus the algorithm must first find the point c where
the interval should be split.

There are several constructivizations of the IVT, and the one originally
formalized in C-CoRN was the most general one. To prove that a function f
satisfies the IVT it is sufficient to assume that, for any given y and interval I,
there is always a point x ∈ I such that f(x) 6= y. Using this, the above proof
can be adapted as follows: instead of taking the midpoint of [a, b], choose
a point c in [(2a + b)/3, (a + 2b)/3)] such that f(c) 6= 0; then we can decide
whether f(a)f(c) > 0 or f(a)f(c) < 0 and proceed as above. The convergence
is slower than in the classical case, since the length of the interval now only
shrinks by one-third, but this is not very significant.

Profiling reveals that most of the execution time is spent on the proof
that any polynomial satisfies the above property. This proof proceeded by
rewriting each polynomial in a canonical form, factorizing it through its value
on n+1 points on the given interval (n being an upper bound on the degree of
the polynomial), and then repeatedly applying extensionality of the algebraic
operations: if a sum or product is not zero, then one of the summands or
factors must also be non-zero. In this way, the expansion of x2 − 2 on the
interval [0, 3] is

−23
16

(
x− 3

2

− 3
4

) (
x− 9

4

− 3
2

)
+ 1

4

(
x− 3

4
3
4

) (
x− 9

4

− 3
4

)
+ 49

16

(
x− 3

4
3
2

) (
x− 6

4
3
4

)
and it is no longer such a surprise that the program is inefficient.

However, there are much better constructive variants of the IVT which are
much better suited for the computation of roots of real numbers. In particular,
since polynomials of the form xn − c (needed to compute n

√
c) are increasing,

we can use the IVT for increasing functions: if f is increasing on [a, b], then we
know that f((2a + b)/3) < f((a + 2b)/3), and hence either f((2a + b)/3) > 0
or f((a + 2b)/3) < 0 by the properties of the < relation (in particular, co-
transitivity of <).

The program extracted from this variant of the IVT is amazingly different:
it produces the second approximation of

√
2 in just over 16 seconds, which

were brought down to around 5 seconds by some rewriting of proofs, similar
to what had been done for e. Computing each approximation, however, takes
roughly thrice the time of the previous one.

The next step was to follow the route that had proved successfull to com-
pute e: isolate the relevant proof-term that is being evaluated, parameterize
the proof of the IVT on that term and build a direct proof on the model. In
this case, the only proof term that is being repeatedly evaluated is the proof
that x > y → xn− c > yn− c (for x, y > 0, c >= 0 and n ≥ 1). Changing this
proof term was quite straightforward, since it was just a question of adapting
the work done for e. The results were however nothing like before: though
the computation time required for the first iteration dropped dramatically, it
still trebled at each step.
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Close examination of what is happening does not help much. Profiling
shows that most of the time is spent adding and multiplying (binary) integers.
Although part of this may be a consequence of the concrete model we are
working with, and it is sure worthwhile to experiment with other models,
the bottleneck seems to be the abstract approach used throughout C-CoRN.
Because many of the relevant results used in the proof of the IVT are stated
for arbitrary rings, they yield relatively inefficient programs when extracted.

We will return to these issues in Section 6 and in the conclusions.

4.2 Performance of the extracted program

The last version of the program was extracted to both Ocaml and Haskell.
This time, the difference in execution time is striking: the Haskell program
runs about 250 times quicker. However, the memory consumption more than
doubles at each step, which is unsustainable: the 12th approximation of

√
2

requires more than 2Gb of RAM memory, making it the limit of what we
can compute in this way, and it gives but three correct digits. When the
same algorithm was implemented in Mathematica, its performance was not
in any way comparable with that of the extracted programs: it computes
(predictably) in linear time. The precise execution times are given in Figure 2.

Iterations Ocaml(s) Haskell(s) Mathematica(ms) Ocaml / Haskell

2 0.13 <0.01 0.211 —

4 1.42 0.01 0.341 142

6 14.31 0.06 0.551 239

8 165.76 0.66 0.711 251

10 2008.00 8.34 0.891 241

Fig. 2. Execution times of programs computing
√

2

5 An alternative approach

The previous section shows that, even after important optimizations, the ex-
tracted program could compete in speed with unsafe, manually-written pro-
grams. In this section we analyze how specific to C-CoRN this conclusion
is, and if we can derive more general lessons about extraction from it. For
this purpose, we now describe another Coq formalization of Constructive Real
Analysis, developed with extraction in mind.

This formalization was realized in collaboration with H. Schwichtenberg,
who was willing to implement part of his lectures notes [19]. This small and
quickly-made development was not meant to be a new C-CoRN; rather, it just
focused on one particular problem, the computation of

√
2, and tackled it by

considering constructive reals immediately from the point of view of extrac-
tion, unlike the FTA, where this idea of extraction came only a posteriori.

10
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With this approach, we extracted a program that can compute an ap-
proximation of

√
2 with more than 40 correct digits in less than 3 minutes.

Furthermore, this program uses the very same principle as the one extracted
from C-CoRN, namely seeking a root of x2 − 2.

It should be stressed that this formalization is not complete: while fo-
cusing on obtaining an extracted program, we have ignored several logical
justifications and posed them as axioms. This development should then be
considered as a proof of concept allowing to test several ideas. However, the
extracted program obtained this way is independent of these unfinished parts:
completing them will only add a guarantee of correction to this program.

We now describe the critical points that made this small experiment far
more successful than the extraction from C-CoRN.

5.1 Rational numbers

In this project, we reused the rational numbers of C-CoRN with one major
improvement. In C-CoRN, the operations on Q never reduced fractions to
canonical forms. Consequently, the computed fractions e.g. during the com-
putation of e grew very quickly without need. Although frequently simplifying
the fractions can also be dangerous, because this also has a cost, our experi-
mental development showed without possible ambiguity the enormous compu-
tation speed-up induced by some carefully introduced simplifications: instead
of three digits of

√
2, we were able to compute several hundreds quickly.

The simplification of fractions is done by a function Qred: Q → Q, which
computes the gcd of the numerator and denominator and divides both by this
number. We proved that any fraction returned by Qred is (numerically) equal
to the initial fraction and inserted a Qred in the main computation loop for√

2. More thorough tests would be needed to decide whether it would it be
better to place one Qred at each elementary operation, or on the contrary to
use it less frequently.

Induced by this we tried to add a similar function in the C-CoRN formal-
ization. This induced indeed a speedup, but the gain factor was far smaller
that the one we were expecting; for this reason we abandoned this idea.

5.2 Cauchy sequences

Another major difference with C-CoRN is the definition of Cauchy sequence.
There, x is a Cauchy sequence if

∀k.∃N.∀m,n > N.|f(n)− f(m)| ≤ 2−k.

In [19], the bound N is given explicitly as a function of k, this last function
being named modulus of the Cauchy sequence. These two formulations are
equivalent from the constructive point of view, since one can find the modulus
N(k) starting from the proof of ∀k.∃N . . .; nevertheless, the more explicit
formulation of the modulus encourages one to choose it carefully, and we
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endeavored to do this as accurately as possible. As a consequence, during the
computation of an approximation of

√
2 by the extracted program, one directly

obtains an upper error margin for the result. When the argument given to the
program is n, then the result is within 2−n of

√
2 or, said otherwise, we get n

correct binary digits. In practice, we even get some additional correct digits
due to approximations in the computation of the sequences modulus, but the
order of magnitude is correct. In comparison, during the computation of e in
C-CoRN, it is experimentally clear that the approximation of rank k, i.e. the
k-th term of the Cauchy sequence, provides us with n correct decimal digits,
but the relation between k and n is not explicit. Furthermore, if it were made
explicit, it is not sure that this relation would be very accurate, due to the
often naive choices for bounds in C-CoRN. For this reason, the error estimates
mentioned in the text were carried out a posteriori using Mathematica.

5.3 Continuous functions

The definition of continuous real functions differs also appreciably between
[19] and C-CoRN. In the latter, a continuous function is a function R → R
coupled with some properties. Since R is a set of Cauchy sequences, this
reduces to an object of type (N → Q) → N → Q. Having a function as first
argument is not desirable, because it makes the extracted code more complex,
more delicate to analyze and potentially less effective. The alternative is then
to use a family of rational functions converging to the desired real function;
hence, a function is now an object of type N → Q → Q.

Abstracting from these representation questions, the underlying algorithm is
the same one as in Section 4. In particular, we are also using here the variant
of the IVT specialized for monotonic functions. The difference is that now
we have defined a strictly minimal set of needed objects, and we have not
introduced any abstraction layer between real numbers and results like the
IVT. For instance, we have not expressed that R is a field, since division was
useless. As a consequence, the extracted program is both:

• short: because of the search for minimality, the final code is made of only
600 lines, mostly library functions;

• simple: the main loop consists of 20 lines of fairly clear code where no
complex structures are used (unlike in C-CoRN); the extracted program is
directly typable and requires no use of Obj.magic;

• quick: with this approach, computing 40 digits takes about three minutes;
of course, this is still slower than computing in Mathematica, due to the
different data structures used to encode arbitrary precision integers, but
this is still much faster than program extracted from C-CoRN.

This clearly illustrates the effect of representation choices on the efficiency
of the extracted code, even if these representations are isomorphic from a
mathematical point of view.
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6 Abstraction and Computation

The discussion above suggests that we should temper one of our initial state-
ments about the Curry–Howard isomorphism: proving theorems and building
programs can be done in the same framework, but they are certainly not the
same process, since they follow quite different requirements.

First, a good mathematical proof should be done in a setting as general
as possible, independently of a particular data representation. But for a pro-
gram, a quicker but more restrictive algorithm will be preferable to a slower
but broader one, as the example of the IVT shows. Also, changes in data
representation have a huge impact on the efficiency of programs, as well as
whether high-level parts are allowed to access low-level representations.

A simple and illustrating example of the difference between the two pro-
cesses is the choice of the representation of the integers. From a programming
perspective, using binary integers is clearly the best choice, since they yield
more efficient functions. From a mathematical perspective, though, the induc-
tion principle derived from the Peano (unary) integers is the usual one, while
the induction principle derived from the binary integers is very awkward to
use in practice.

Another instance of this difference, omnipresent in C-CoRN, is the use of
coercions. In mathematics, it is common practice to identify sub-structures
with their image by inclusion, e.g. the rational numbers with their injection
into the reals, and to consider algebraic structures as weaker ones, e.g. to see
rings as groups. Expliciting all these silent isomorphisms and injections would
transform mathematics into a permanent nightmare; therefore, Coq provides
a coercion mechanism that gives a precise meaning to these practices. These
coercions are a syntactic facility, allowing the user to write less, but internally
they are just ordinary functions that are not displayed to the user. However,
they appear again after the extraction.

In the concrete case of C-CoRN, with a chain of ten imbricated algebraic
structures ranging from setoids to complex numbers, the extracted code con-
tains literally thousands of explicit coercions: the sole real expression 0 + 1
needs three lines to be written. Although these coercions have a negligible
effect on the execution time, they prevent any detailed analysis of the code by
making it unreadable.

A last point concerns the optimizations one may want to integrate into the
extracted code. In our framework, these optimizations have to be made on
the proof level. Experimentally we have noticed that this is neither natural
nor easy. For example, a experienced programmer would avoid writing twice
the same function call with the same arguments, and would group these calls
with a let in construct; but in a proof it is commonplace to use the same
hypothesis repeatedly, and the extracted code then ends up repeating the cor-
responding computations. In the context of recursive functions, that changes
the complexity of the program dramatically — this is certainly one major
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explanation for the current inefficiency of the FTA program. Unfortunately,
the size of this program currently prevents anyone from trying to factorize all
redundancies automatically. Moreover, when one knows what to group with a
let in, it is generally feasible to modify the proof accordingly; but for more
subtle optimizations the proof may need to be completely redone. Manipulat-
ing, maintaining and improving a program-carrying proof is certainly not as
easy as manipulating the program directly.

7 Conclusions

Although program extraction is not a new subject, practical work in this field
is still scarce. There have been a few experiments, but they typically concern
small formalizations, which can be explained by the investment in time that
would be needed to build a library big enough for larger test cases.

For this reason, the work we presented is a première. The formalized proof
of the FTA in C-CoRN consists of over 1400 lemmas and tens of thousands
of lines of code; though we could not examine the program extracted from
that specific proof, the smaller examples we discussed are still hundreds of
times larger than the examples in e.g. [16]. Our work also differs from other
experiments because it concerns a proof of a mathematical statement that em-
bodies an algorithm used in mathematics, whereas previous work in program
extraction has dealt mostly with examples from Computer Science.

The results we discussed are promising in some respects and very disap-
pointing in others. On the positive side, the importance of obtaining math-
ematically correct programs cannot be overstated, specially when these pro-
grams embody non-trivial algorithms such as the root-finding one in the FTA
proof. Also, the performance of the program computing e is very impressive,
although of course not comparable with that of computer algebra systems. On
the negative side, though, extracting an efficient program from the full proof
of the FTA is beyond what can be done presently: simply computing

√
2 with

two decimals of precision takes up all available resources.

One of the issues that strongly influences the performance of the extracted
program is the real number structure being used. In C-CoRN, the only one
that has been implemented to date defines the reals as Cauchy sequences of
rational numbers, the latter formalized as pairs of one integer and one positive
integer. This approach is very abstract, with the consequence that some simple
functions on the reals are not optimal. We feel that this is one of the limitations
of our work; among the plans for the near future is an implementation of reals
using the Stern–Brocot representation described in [15], but at the time of
writing this has still not been done.

The target language of the extraction is also important. The Coq extrac-
tion mechanism allows one to extract to two languages, namely Ocaml and
in Haskell. In principle, the difference between the corresponding programs
should be minor except when the extraction takes advantage of particular con-
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structs of the language, like the records of Ocaml; in practice, the difference
in the semantics and in the implementation of these languages may result in
rather different behaviours of the extracted programs. A good example of
this is the dramatic difference in performance between Ocaml and Haskell on√

2. A more thorough understanding of these differences needs to be brought
about by more tests, profiling and discussion with Ocaml/Haskell experts.

The big question is whether program extraction really comes for free. Al-
ready [7] points out that obtaining a program of a reasonable size requires
changing proofs at several places; making the program run in reasonable time
requires even more changes. Most of these changes made sense from the point
of view of the formalization, yet it does not seem likely that we will ever be
able to learn how to develop a formalization in a way that these changes will
not be needed — unless extraction is a goal from the beginning. While there
is a relatively well-defined notion of “efficient program”, there is no definition
of “good proof”, let alone of “good formal proof”; and if there were, nothing
guarantees that good formal proofs would extract to efficient programs; after
all, natural things to do when proving a statement often yield inefficient pro-
grams. As the discussion in Section 5 pointed out, reproving the IVT with
the goal of extraction produced an incomparably better program than all the
optimizations to the existing formalization.

The last point worth mention is the extracted program itself. It is striking
that it does not look at all like a program anyone would write.
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