Böhm trees, Krivine machine and the Taylor expansion of ordinary lambda-terms

Abstract : We introduce and study a version of Krivine's machine which provides a precise information about how much of its argument is needed for performing a computation. This information is expressed as a term of a resource lambda-calculus introduced by the authors in a recent article; this calculus can be seen as a fragment of the differential lambda-calculus. We use this machine to show that Taylor expansion of lambda-terms (an operation mapping lambda-terms to generally infinite linear combinations of resource lambda-terms) commutes with Boehm tree computation.
Type de document :
Communication dans un congrès
A. Beckmann and U. Berger and B. Löwe and J.V. Tucker. Second Conference on Computability in Europe, CiE 2006, Jun 2006, Swansea, United Kingdom. Springer Berlin / Heidelberg, pp.186-197, 2006, LNCS 3988. 〈10.1007/11780342_20〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00150273
Contributeur : Thomas Ehrhard <>
Soumis le : mardi 29 mai 2007 - 23:21:00
Dernière modification le : vendredi 4 janvier 2019 - 17:32:59

Identifiants

Collections

PPS | IML | I2M | UNIV-AMU | USPC

Citation

Thomas Ehrhard, Laurent Regnier. Böhm trees, Krivine machine and the Taylor expansion of ordinary lambda-terms. A. Beckmann and U. Berger and B. Löwe and J.V. Tucker. Second Conference on Computability in Europe, CiE 2006, Jun 2006, Swansea, United Kingdom. Springer Berlin / Heidelberg, pp.186-197, 2006, LNCS 3988. 〈10.1007/11780342_20〉. 〈hal-00150273〉

Partager

Métriques

Consultations de la notice

117