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ABSTRACT

The Envisat microwave radiometer is designed to correct the satellite altimeter data for the excess path
delay resulting from tropospheric humidity. Neural networks have been used to formulate the inversion
algorithm to retrieve this quantity from the measured brightness temperatures. The learning database has
been built with European Centre for Medium-Range Weather Forecasts (ECMWF) analyses and simulated
brightness temperatures by a radiative transfer model. The in-flight calibration has been performed in a
consistent way by adjusting measurements on simulated brightness temperatures. Finally, coincident radio-
sonde measurements are used to validate the Envisat wet-tropospheric correction, and this comparison
shows the good performances of the method.

1. Introduction

The European satellite Envisat was launched from
Kourou (French Guyana) on 1 March 2002. It is
equipped with many instruments dedicated to the ob-
servation of the earth environment. Among them, the
Radar Altimeter (RA)-2 is used over sea to determine
the ocean topography, thus supporting the research of
sea level and ocean circulation. To correct the altimeter
range for water vapor path delay over ocean, a nadir-
looking microwave radiometer has been added to the
mission, as for previous altimetry missions [the Euro-
pean Space Agency (ESA) Remote Sensing Satellite
(ERS)-1, ERS-2, Ocean Topography Experiment

(TOPEX), Jason-1]. This radiometer provides at the
location of the altimeter footprint brightness tempera-
ture (TB) measurements at 23.8 and 36.5 GHz. Because
any error in the wet-tropospheric correction directly
impacts the sea level determination, the constraints on
the quality of the in-flight calibration and data process-
ing of the radiometer are particularly stringent. The
uncertainty on the wet-tropospheric correction is today
around 1-cm rms (Ruf et al. 1994; Bernard et al. 1993),
but remains a significant contribution in the global un-
certainty on the sea level estimation (around 4-cm rms;
Fu and Cazenave 2001). In this paper, we present the
method we used to prepare and improve the processing
of the Envisat microwave radiometer (MWR) to per-
form the in-flight calibration, so to provide at the end of
the commissioning phase an accurate wet-tropospheric
correction.

The altimeter wet-tropospheric correction depends
on atmospheric vertical profiles of humidity, tempera-
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ture, and pressure, and can be retrieved from micro-
wave radiometer measurements. The most classical way
to do this consists of the use of multilinear regression
between the wet-tropospheric correction and functions
of the corresponding brightness temperatures (Ruf et
al. 1994; Eymard et al. 1996). Recent improvements in
the retrieval algorithm are mainly related to the devel-
opment of nonlinear statistical methods, such as neural
network techniques. We present in section 2 the work
performed before launch to prepare and define the
neural algorithms dedicated to the retrieval of the mi-
crowave radiometer parameters (wet-tropospheric cor-
rection, water vapor content, cloud liquid water con-
tent, and atmospheric attenuation of the altimeter
backscattering coefficient in both the Ku and S bands).

After launch, the major difficulty lies in performing
the in-flight calibration of the microwave radiometer.
There is no natural blackbody target that could help to
control the measured brightness temperatures. The
method we used to calibrate the Envisat MWR is there-
fore a combination of a comparison with its predecessor
ERS-2 MWR flying on the same orbit with a time lag of
about half an hour, and simulations over sea using at-
mospheric profiles, sea surface temperature, wind, and
a radiative transfer model. A detailed description of the
methodology we used to perform the early in-flight cali-
bration of the radiometer and the estimated uncertainty
on the measured brightness temperatures are presented
in section 3.

The validation of the wet-tropospheric correction is
performed by comparison with collocated radiosonde
measurements. But, the weak number of collocations
obtained during the first 3 yr of the mission and the
heterogeneous geographical distribution of the radio-
sonde measurements make this validation insufficient.
It is therefore completed with a systematic comparison
with analyses from a meteorological model. Further-
more, the use of the Envisat retrieval algorithms to
retrieve the ERS-2 wet-tropospheric corrections from
the ERS-2 brightness temperatures allows a more com-
plete validation of the algorithm using radiosonde mea-
surements (7-yr time series). These validation results
are presented in section 4.

Finally, conclusions and perspectives are presented
in section 5.

2. Retrieval algorithms

Methods have been established since the launch of
the Seasat scanning multichannel microwave radiom-
eter (SMMR) (Wilheit and Chang 1980) to relate the
integrated content in water vapor to the brightness tem-
peratures using empirical relationships. They combine

channels taken inside and outside the water vapor ab-
sorption line centered at 22.235 GHz. Two other chan-
nels are required to account for the effect of the sea
surface and cloud scattering. For these reasons, both
the TOPEX microwave radiometer (TMR) and Jason-1
microwave radiometer (JMR) use three channels—one
below the water vapor line (18 and 18.7 GHz, respec-
tively) where the sensitivity to clouds is low, one in the
absorption line (21 and 23.8 GHz, respectively), and
one at a higher frequency (37 and 34 GHz, respectively)
where the sensitivity to cloud liquid water is higher. In
the case of the ERS-1, ERS-2, and Envisat microwave
radiometers, which do not include the low-frequency
channel, the surface roughness is taken into account
either through the altimeter wind speed (Eymard et al.
1996) or the backscattering coefficient in Ku band
(Obligis and Eymard 2000).

The retrieval of the geophysical parameters from the
radiometric measurements is difficult. This is mainly
because of the nonlinearity of the relation linking the
brightness temperatures to the geophysical parameters
(atmosphere and surface), but also because of the inte-
grated nature of the radiometric measurement. For the
formulation of the Envisat MWR retrieval algorithms,
we chose a “mixed” method, already used for the
ERS-1 MWR and ERS-2 MWR processing (Eymard et
al. 1996), which is a compromise between statistical and
physical methods. It is based on the use of a represen-
tative database of surface and atmosphere variables
and a radiative transfer model. The database is built
with a very large number of meteorological situations
to ensure good representativity. Brightness tempera-
tures corresponding to each point of this database are
simulated using a radiative transfer model. The im-
provement with respect to the ERS-2 methodology is
the use of neural networks to perform the regression.

Neural networks have been widely tested these last
10 yr to retrieve atmospheric and oceanographic pa-
rameters [see Krasnopolsky et al. (1995) and Mejia et
al. (1998) for surface wind, Bourras et al. (2001) for
latent heat fluxes, and Aires et al. (2001) and Mallet et
al. (2002) for atmospheric parameters]. They exhibit
several properties that make them attractive for solving
inverse problems. On the one hand, they are able to
represent the nonlinear relationships without a priori
information and, on the other hand, even if the learning
step is time consuming, the retrieval method applica-
tion is fast and robust.

a. Building of the database

The quality of the retrieval with neural networks al-
gorithms is directly related to the quality of the data-
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base used to train the network, and more precisely to its
representativity.

The database is built with four global fields from the
European Centre for Medium-Range Weather Fore-
casts (ECMWF) operational model distributed over 1
yr, with one per season between August 2000 and
March 2001. We used forecast fields at 12 h, which gives
the best compromise between a good impact of data
assimilation for each latitude and a good balance in the
precipitation–evaporation budget (Gérard and Saun-
ders 1999). These fields contain analyses of surface pa-
rameters (temperature, pressure, wind speed) and at-
mospheric profiles (temperature, pressure, water va-
por, and cloud liquid water content). The 60 pressure
levels in the model allow for a complete description of
the troposphere/stratosphere, and the horizontal reso-
lution is half a degree.

The final database, containing a total of 85 122 geo-
physical situations, is separated in two parts—a “learn-
ing database,” which represents 75% of the initial da-
tabase, extracted randomly, and a “validation data-
base,” containing the 25% remaining data. This
partition allows the parameters of the inversion algo-
rithm (parametric or neural) on the learning database
to be tuned and its quality and its capacity of general-
ization over an unknown dataset to be checked. A ran-
dom draw function of the latitude is performed to avoid
an overrepresentation of high-latitude situations in the
learning database.

Because of the particular distribution of the wet-
tropospheric correction and cloud liquid water values,
the constitution of the learning database requires spe-
cial care in the case of linear regression. This is not the
case with the neural formalism, which will provide an
accurate algorithm over the whole interval of values.

b. Simulations on the geophysical database

For each set of geophysical parameters in the data-
base (learning and validation), brightness temperatures
(at 23.8 and 36.5 GHz) and backscattering coefficients
(in Ku and S bands) are simulated using a radiative
transfer model. The double-scale emissivity model has
been developed at the Université Catholique de Lou-
vain by Guissard and Sobieski (1987), and improved by
Lemaire (1998) and Boukabara et al. (2002). It is asso-
ciated with the Elfouhaily spectrum (Elfouhaily et al.
1997) to describe the sea surface roughness and is ap-
propriate for a non–fully developed sea state. The foam
is represented as a porous dielectric layer of water and
air. The sea surface emissivity is corrected using the
thickness, the coverage rate, and the foam layer emis-
sivity. The thickness of the foam layer is arbitrarily
fixed to 1 cm, following Droppleman (1970). The cov-

erage rate is approximated by a function of the wind
speed at 10 m and the sea surface viscosity (Monahan
and Lu 1990). The relative dielectric constant of the
foam is given by Troitsky (1962) and is a function of the
portion of air in the mixed layer (arbitrarily fixed to
0.95). The seawater permittivity follows the model of
Ellison et al. (2003). To take into account the radiative
transfer in the atmosphere, it has been combined to the
Liebe millimeter-wave propagation model (MPM)
(Liebe et al. 1993) for gaseous absorption by oxygen
and water vapor. The absorption by cloud liquid water
is computed using the Rayleigh theory.

This simulation model has been validated in a large
number of instrumental configurations: for simulations
of backscattering coefficients in Ku, C, and S bands, for
simulations of polarized brightness temperatures from
nadir to 53° of incidence angle, and for frequencies
between 10.7 and 85 GHz (Lemaire 1998; Eymard et al.
2000; Ellison et al. 2003; Obligis et al. 2004).

c. The network and its architecture

A neural network is defined by the number of layers,
the number of neurons for each layer, and the transfer
function associated to each neuron. The network pa-
rameters (the weights and biases associated to each
neuron) are adjusted when presenting the inputs and
outputs from the learning database to the network. This
is what is called “supervised learning.”

In the context of the Envisat MWR algorithm devel-
opment, the inputs consist of three parameters—the
brightness temperatures at 23.8 and 36.5 GHz and the
backscattering coefficient in Ku band measured by the
altimeter to take into account the surface roughness.
The output is one of the geophysical parameters to be
retrieved from these satellite measurements: the wet-
tropospheric correction (dh), the integrated water va-
por content (wv), the cloud liquid water content (wc),
and the atmospheric attenuation coefficients of the
backscattering coefficients in Ku (att_Ku) and S (att_S)
bands.

The resulting neural network has a simple architec-
ture (the same for each parameter) with one hidden
layer of eight neurons and the output layer with a linear
neuron. The transfer function for each neuron of the
first layer is the tan-sigmoid function. The retropropa-
gation algorithm is the Levenberg–Marquardt algo-
rithm because it is the most efficient for the conver-
gence speed.

d. Comparison with parametric algorithm on the
validation database

For comparison, we also developed in parallel clas-
sical log-linear algorithms for the Envisat MWR con-

804 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 23

Unauthenticated | Downloaded 06/09/21 02:08 PM UTC



figuration following Gérard and Eymard (1998) and
Eymard and Boukabara (1997). These algorithms
are very similar to the ones used for the ERS-2 mission,
but the surface roughness contribution, which is taken
into account with the altimeter wind speed for the
ERS-2 mission (Eymard et al. 1996), is now directly
introduced in the retrieval algorithm with the backscat-
tering coefficient in Ku band. This is actually an im-
provement because the direct use of the backscattering
coefficient in Ku band prevents any error coming from
the surface wind speed retrieval from being added, it-
self based on the inversion of the backscattering coef-
ficient. The general form of the parametric algorithm is
as follows:

P � c0 � c1 � ln�280 � TB23.8� � c2 � ln�280

� TB36.5� � c3 � �1.��Ku�2,

where P is the parameter to be retrieved (dh is in cen-
timeters, wv is in grams per square centimeter, wc is in
milligrams per square centimeter, or att_Ku and att_S
are in decibels). The brightness temperatures TB23.8
and TB36.5 are measured at 23.8 and 36.5 GHz (K),
and �Ku is the backscattering coefficient in Ku band
(dB).

To compare the quality of the parametric and neural
network models, both algorithms are then applied on
the “validation database.” Both algorithms are thus
compared on the same data, independent of the dataset
on which they have been formulated.

Figure 1a (Fig. 1b) shows the scatterplot between the
dh values in the validation database and the retrieved
dh with the parametric algorithm (with the neural al-
gorithm). Both algorithms present similar correlation
factors, but the neural network significantly reduces the
standard deviation (0.54 cm instead of 0.70 cm) and
corrects the defect observed with the parametric algo-
rithm in the case of a very dry atmosphere (overesti-
mation of wet path delays lower than 8 cm). Gérard
(1996) already observed this particular behavior with
the parametric algorithm and suggested that it could be
because of negative sea surface temperatures or the
very dry atmosphere associated with high wind speed.
The good performances of the neural algorithm in these
particular situations show that it may come from the
global log-linear form of the algorithm, which is not
enough flexible to model these situations. Here the
neural network has the capacity to well adjust locally
the retrievals, even in areas where there is a low density
of data.

Figures 2a and 2b show the scatterplots between wc
in the validation database and wc retrieved with para-
metric and neural algorithms. The retrieval is better
with the neural network, especially for values higher
than 100 kg m�2. All of the statistical parameters (bias,
standard deviation, and correlation factor) are also im-
proved. This is a significant improvement with respect
to the ERS-2 algorithm, which systematically underes-
timates the cloud liquid water contents higher than 0.5
kg m�2 (Gérard 1996).

FIG. 1. Scatterplot between dh in the validation database and retrieved dh with (a) the parametric algorithm
and (b) the neural algorithm.
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Similar comparisons have been performed for the in-
tegrated water vapor content and the attenuation of the
backscattering coefficients in Ku and S bands. Figures
are not reported here, but for each parameter the neu-
ral algorithm improves the retrieval when compared
with the parametric one. Table 1 summarizes the sta-
tistics computed from the difference between each pa-
rameter in the validation database and the one re-
trieved either with a parametric or with a neural algo-
rithm.1

The use of neural algorithms for the retrieval of En-
visat MWR products is a significant improvement with
respect to previous missions. The neural algorithms
have the following advantages.

• They are easier to develop: the choice of an a priori
form of the relation linking the geophysical param-
eter to the satellite measurements is no longer nec-
essary.

• They are more accurate: in all cases (for each param-
eter and everywhere in the range of variation of the
parameter), the adjustment is better (validation re-
sults with radiosonde measurements in section 4).

• They are faster and more robust: the implementation
of a neural algorithm is very simple (tables of weights
and biases easy to update), with no numerical prob-
lem.

The quality of the retrieval algorithms developed
with a neural network approach mainly relies on the

representativity of the learning database. This means
that any error in the ECMWF meteorological model or
in the radiative transfer model (used together to simu-
late the brightness temperatures) will directly impact
the quality of the retrieved product when applied on
real measurements. The reliability of our approach
mainly comes from the consistency between the re-
trieval algorithms and the in-flight calibration of the
brightness temperatures.

3. In-flight calibration

The on-ground calibration of the receiver consists of
the characterization of the receptor in a vacuum cham-
ber in which the reflector cannot be included. The an-
tenna pattern must be separately measured. This instru-
ment characterization is then not fully representative of
its behavior in space. Moreover, it is very difficult to
properly estimate the emission/reflection by the satel-
lite itself and the earth contribution in the sidelobes.
For these reasons, an update of the prelaunch calibra-
tion coefficients is required after launch.

1 FORTRAN codes for parametric and neural algorithms, with
associated tables of coefficients, can be obtained upon request
(e-mail the corresponding author at estelle.obligis@cls.fr).

FIG. 2. Scatterplot between wc in the validation database and retrieved wc with (a) the parametric algorithm
and (b) the neural algorithm.

TABLE 1. Main statistics (bias, standard deviation, correlation
coefficient) of the comparison between products in the validation
database and retrievals. Para: with parametric algorithm, NN:
with neural algorithm.

Bias Std dev Corr coef

Para NN Para NN Para NN

dh (cm) 0.09 �0.01 0.70 0.54 1.00 1.00
wc (mg cm�2) �4.09 0.0 4.47 2.30 0.99 1.00
att_Ku (dB � 100) �1.58 0.0 1.34 0.90 0.99 1.0
att_S (dB � 100) �0.05 0.0 0.20 0.10 0.92 0.95
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a. Instrument description and radiometric model

Alcatel Alenia Space was responsible for the devel-
opment and on-ground calibration of the Envisat
MWR. The measurement principle is the detection of
the natural thermal emission of the earth, converted
into brightness temperature, using the Rayleigh–Jeans
approximation of Planck’s law. In the microwave range
this signal is weak, so a very low noise stable receiver is
necessary. In this aim, the radiometer includes a fre-
quent measurement of the receiver gain. In the case of
radiometers on board altimetry missions, two alternate
circuits are used to measure the cold and hot gain
points, as shown in Fig. 3; depending on the calibration
switch position, the receiver is connected to the main
antenna or to one of the calibration branches (selected
by a second switch). The hot point is obtained by mea-
suring the thermal emission of an internal load, and an
additional antenna (sky horn) is used to get the cold
reference point. To keep the measurement free of low-
frequency noise, a Dicke switch is used and the actual
measurement is the difference between the microwave
circuit and the Dicke load (1-kHz switching frequency
for the Envisat MWR). The conversion of these raw
data in antenna temperature by the radiometric model
closely follows the one used for the ERS-1 and ERS-2
microwave radiometers (Bernard et al. 1993).

Then, the brightness temperature is deduced from
the antenna temperature by taking into account the
different antenna pattern contributions. The total an-

tenna temperature is a combination between the mea-
sured temperature in the main lobe (which represents
the useful measurement) and the secondary lobe con-
tributions affected by the different efficiency factors.
The secondary lobes see the earth (the most important
contribution), but also the sun, the cosmic background,
and the satellite itself. To extract the brightness tem-
perature measured by the main lobe, the contribution
of these elements should be removed by taking into
account their respective temperatures and efficiencies
(summarized in Table 2). Because frequencies for the
Envisat and ERS-2 radiometers are the same, the
brightness temperatures of the earth in the secondary
lobes in both channels could be approximated with the
mean brightness temperatures of the earth seen by the
ERS-2 MWR for 1 yr. The satellite is considered as a
perfect reflector, implying that its temperature is the
one of the earth. The sky temperature is slightly differ-
ent from 2.7 K because of the Rayleigh–Jeans approxi-
mation of the Planck’s law, which is no more valid for
this range of temperature. The particular position of
the radiometer on board the Envisat platform induces
strong spill-over problems, which results directly in an
unusually large value for the efficiency of the sidelobe
aiming the satellite at 23.8 GHz (more that 4%). This
coefficient is about 10 times higher than for its prede-
cessors on ERS-1 and ERS-2. These elements (Earth,
sky, sun, and overall satellite) provide a mean sidelobe
contribution of 8.21 K at 23.8 GHz and 0.41 K at 36.5
GHz. The strong contribution at 23.8 GHz pointed out
the weakness of the ERS-2 correction (the contribution
is assumed homogeneous and equal to the one in the

FIG. 3. Schematic view of the radiometric receiver for one
channel of the Envisat MWR.

TABLE 2. Efficiency of the beam and corresponding mean
brightness temperature for each term implied in the sidelobe (SL)
contribution.

23.8
GHz

36.5
GHz

Efficiency of the SL aiming the
earth: �earth (%)

0.0017 0.000 08

Efficiency of the SL aiming the sky:
�sky (%)

0.3973 0.0198

Efficiency of the SL aiming the sun:
�sun (%)

0 0

Efficiency of the SL aiming the sat-
ellite: �satell (%)

4.341 0.216

Temperature of the earth seen by
the SL: Tsl_earth (K)

189 191

Temperature of the sky seen by the
SL: Tsl_sky (K)

2.74 2.79

Temperature of the sun seen by the
SL: Tsl_sun (K)

6000 6000

Temperature of the satellite seen by
the SL: Tsl_satell (K)

189 191
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main lobe) and the necessity of performing a more ac-
curate correction in the Envisat MWR processing
(Obligis et al. 2003).

b. Instrumental monitoring

To provide an instrumental status, to report any
change at the instrumental level that would likely im-
pact the quality of the brightness temperatures, and to
check the stability of the instrument, the key instrumen-
tal parameters of the radiometer were monitored since
launch. Figure 4 shows the gains of the 23.8- and 36.5-
GHz channels. The gain in the 23.8-GHz channel re-
mains stable around 9.6 counts per kelvin. For the sec-
ond channel the evolution shows two successive de-
creasing trends—the first is small (starting around day
25) and there is a stronger one since around 150 days
after the launch. The total decrease since the launch is
about 14%. The sky horn counts on Fig. 5a to exhibit
similar features as the gain for both channels. The
counts present a very slight increase with time for the
first channel. For the second channel, the values drop
from 3600 to 3150 (�12%). The hot load counts on Fig.
5b are stable for the first channel, around 553. They
decrease for the second channel from 660 at launch
time to about 635 (�4%).

No explanation for these drifts at 36.5 GHz has been
provided to date. These features should impact the
36.5-GHz brightness temperature, as reported in Tran
et al. (2005), and studies are ongoing to evaluate the
impact of these drifts on measured brightness tempera-
tures and the wet-tropospheric correction. As soon as
the impact of these drifts are estimated, a strategy of
correction will be proposed. Either a correction of the
gain drift depending on time will allow the brightness
temperature drift to be corrected and restored to the
launch level, or a new calibration associated with a new
algorithm will be proposed.

c. Methodology of the in-flight calibration
adjustment

The in-flight calibration is difficult because there is
no suitable reference target over the earth.

A possible method for the in-flight calibration is to
calibrate systematically a new radiometer on the previ-
ous one considered as a reference (Envisat MWR TBs
on ERS-2 MWR TBs, itself calibrated on ERS-1 MWR
TBs, etc.). This is the method chosen for the JMR cali-
bration in order to get a time series of JMR products as
close as possible to that of the TMR (Brown et al.
2004), and therefore to provide the scientists with a
consistent long time series, which is actually necessary
for the sea level rise survey. Nevertheless, the continu-
ity between the missions (which is even crucial for al-
timetry missions) does not justify neglecting technologi-
cal and algorithmic improvements.

The methodology we used for the Envisat MWR is
similar to the one used for the in-flight calibration of
the ERS-1 and ERS-2 radiometers, and benefits from
our new concern on long-term survey and calibration

FIG. 4. Time evolution of the gain since the Envisat launch (1
Mar 2002; data available since 15 Mar 2002) for channel 1: 23.8
GHz, and channel 2: 36.5 GHz.

FIG. 5. Time evolution of the calibration counts since Envisat
launch for the (a) sky horn count and (b) hot load count.
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issues (Eymard et al. 2005). It consists of the use of
brightness temperatures simulations as a reference for
calibration. Furthermore, the use of the same tools
(meteorological model, radiative transfer model) to
calibrate the radiometer and to develop the retrieval
algorithms ensures a consistency in the processing,
which guarantees at the end the quality of the products.

As explained in section 2, the retrieval algorithms
have been formulated using ECMWF fields of 2001, so
the calibration of the radiometer should be done using
simulations on the same analyses or analyses generated
with the same version of the ECMWF model.

The in-flight calibration of the Envisat MWR was
undertaken at the end of the commissioning phase in
October 2002. Unfortunately, important changes in the
operational ECMWF model occurred in January 2002.
These improvements concerned the assimilation of new
data and the upgrade of preprocessing and four-
dimensional variational data assimilation (4DVAR)
analysis algorithms (Lalaurette 2002). These changes
impacted many parameters in the model, including at-
mospheric humidity profile. Figure 6 shows the daily
difference between the TMR wet-tropospheric correc-
tion and the one analyzed by the ECMWF model for a
6-yr period (1998–2004). The different changes made in
the ECMWF model in January 2002 induce a decrease
in the humidity content, corresponding to a mean de-
crease of about 7–8 mm in the ECMWF wet path delay.
It was therefore incorrect to calibrate the Envisat
MWR brightness temperatures by using ECMWF fields
in October 2002, and to use retrieval algorithms formu-
lated with the previous version of the ECMWF model
(2001). This problem was overcome by using ERS-2

MWR brightness temperatures as a link between the
2001 version of the ECMWF model (used to formulate
the retrieval algorithm) and the calibrated Envisat
MWR brightness temperatures in 2002.

The four global fields of section 2a and the corre-
spondent simulated brightness temperatures are used
as references. ERS-2 MWR-measured brightness tem-
peratures falling in a mesh within 	30 min of the analy-
sis time (1200 UTC) are selected, and these observa-
tions are averaged to the model resolution. Further-
more, cloudy pixels and ECMWF meshes associated
with cloud liquid water higher than 20 mg cm�2 were
filtered out in both datasets. The ERS-2 brightness tem-
peratures at 23.8 GHz have corrected the gain drop of
1996 and drift using Eymard and Obligis (2003).

Figures 7a and 7b show the scatterplots between
simulations and ERS-2 measurements obtained for the
23.8- and 36.5-GHz channels, respectively. Considering
the simulations as a reference (to be fully consistent
with the retrieval algorithms), it appeared that the
ERS-2 brightness temperatures were too low by 4.91 K
at 23.8 GHz and by 2.16 K at 36.5 GHz. To perform a
calibration of the Envisat MWR consistent with the
algorithms, the calibration was performed in such a way
that the Envisat MWR brightness temperatures are
4.91 K higher than those of the ERS-2 at 23.8 GHz and
2.16 K higher at 36.5 GHz.

The relevance of this approach was evaluated in 2000
by performing similar comparisons on several radiom-
eters [Special Sensor Microwave Imager (SSM/I),
Tropical Rainfall Measuring Mission (TRMM) Micro-
wave Imager (TMI), TMR, ERS-2 MWR] with the
same ECMWF analyses (Eymard et al. 2000), and the
main conclusions were that the bias between the simu-
lations and measurements lies within the expected
range of 	5 K in brightness temperatures, and that this
approach was reliable.

d. The in-flight calibration tuning

For the Envisat microwave radiometer, the in-flight
calibration was performed with the tuning of three in-
ternal parameters that were identified as being the most
sensitive during the ERS-1 MWR (Eymard et al. 1996;
Eymard and Boukabara 1997) and then the ERS-2
MWR in-flight calibration (Eymard and Boukabara
1997). First, the sky horn feed transmission coefficient
is tuned to provide a gain of the system as close as
possible to the value estimated on ground. Then, the
transmission coefficient of the reflector is modified to
adjust the measured brightness temperatures on the
reference ones. Finally, residual biases are corrected for
by tuning the main antenna transmission coefficient.

FIG. 6. Variations of the daily mean difference (m) between
ECMWF and radiometer wet-tropospheric correction between
1998 and 2004 for the TOPEX mission.
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e. Results

ERS-2 and Envisat satellites are flying on the same
ground track with a 30-min time lag, which allows for an
easy correlation study. Figures 8a and 8b show the scat-
terplots between the ERS-2 MWR- (cycle 78) and En-
visat MWR- (cycle 10) calibrated brightness tempera-
tures for channels 23.8 and 36.5 GHz, respectively.

ERS-2 TBs have been corrected for the biases indicated
in section 3c (�4.91 and �2.16 K). The final biases
between calibrated Envisat TBs and reference TBs are
�0.6 K at 23.8 GHz and �0.2 K at 36.5 GHz. These
biases are negligible, ensuring a calibration of the En-
visat brightness temperatures at the end of the commis-
sioning phase that is fully consistent with the algorithms
used to retrieve the wet-tropospheric correction.

FIG. 7. Scatterplot between ERS-2 measurements and simulations for the (a) 23.8- and (b) 36.5-GHz channels.

FIG. 8. Scatterplot between ERS-2 TBs adjusted to simulations on the 2001 version of the ECMWF model and
Envisat TBs at (a) 23.8 and (b) 36.5 GHz.
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4. Validation of the products

a. With ECMWF correction

The validation of the radiometer products with in situ
measurements relies on small datasets (even if they in-
crease in size as the time goes on). The systematic com-
parison between the wet-tropospheric correction re-
trieved from the radiometer brightness temperatures
and the ones predicted by the ECMWF model allows a
rapid check of the products retrieved globally. Figure
9a presents the scatterplot between the ECMWF and
Envisat MWR wet-tropospheric correction obtained
for the geophysical data record (GDR) cycle 15. Figure
9b shows the difference between the ECMWF and En-
visat wet-tropospheric correction as a function of the
ECMWF one. These plots show very good consistency
between the ECMWF and Envisat MWR wet-tropo-
spheric correction with a mean value of the difference
of 4.9 mm and a 1.7-cm standard deviation. The two
corrections agree well, with an almost perfect slope
agreement (1.02) from an orthogonal regression. The
same plots for the ERS-2 wet-tropospheric correction
(GDR cycle 83) are shown in Figs. 10a and 10b, and
they show that the agreement between the radiometer
and ECMWF wet-tropospheric corrections was slightly
lower because of the use of a linear algorithm.

b. With radiosonde measurements

The most conventional and only available method for
a “real” validation of the wet path delay is the com-
parison with in situ measurements over ocean. Radio-
sonde measurements files from ECMWF contain atmo-
spheric temperature and pressure profiles, along with

the distribution of the water vapor content. Radiometer
data over the ocean are selected when the closest dis-
tance of the satellite track to the radiosonde location is
less than 100 km and is within 1 h. These criteria were
chosen to provide 1) a satisfactory consistency between
in situ measurements and satellite-retrieved products,
and 2) enough collocated measurements. For the Envi-
sat MWR, this approach produces an accumulation of
about 5000 comparison points since the Envisat launch
(a 3-yr period). The geographical distribution of the
radiosonde network shows a majority of the compari-
son points located in the North Atlantic Ocean. Cases
with rain are automatically removed during the collo-
cation process because we are using “validated” radi-
ometer brightness temperatures, which means from
only over ocean and in no-rain condition data. Cloudy
situations are not filtered out, so wet situations are also
represented in the comparison.

Figure 11a shows the comparisons between Envisat
MWR and radiosonde wet path delay, and Fig. 11b
provides a zoom on (0; 20) cm where most of the data
lie. The mean bias is �0.2 mm, with a 22-mm standard
deviation on the whole set. This latter decreases slightly
to 18 mm for a comparison between 0 and 20 cm. The
derived slope of the least squares regression line is not
very different from unity (1.08), showing a good agree-
ment between the two corrections. This rms difference
is mainly because of the space–time collocation errors
and to the atmospheric variability.

c. Envisat processing applied to ERS-2 data

As explained in section 3, previous missions can ben-
efit from new processing improvements, and therefore

FIG. 9. Scatterplot (a) between the ECMWF wet-tropospheric correction and that of Envisat and (b) of the
difference between the two for the GDR cycle 15.
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participate in an accurate and consistent long time se-
ries. Envisat MWR algorithms are applied to ERS-2
MWR measurements to provide products that are bet-
ter and more consistent with those of Envisat. The first

step consists of adjusting the ERS-2 brightness tem-
peratures to those of Envisat. In a second step, the
ERS-2 wet-tropospheric corrections were recomputed
using Envisat neural algorithms. The comparison with
radiosonde measurements is performed, and the quality
of the new products can be estimated with respect to
the ERS-2 operational products. Figure 12 shows the
comparison with radiosonde measurements for the
range of 0–20 cm obtained with the standard ERS-2
wet-tropospheric dh (Fig. 12a) and with the recom-
puted dh (Fig. 12b) after 1) correction of the 23.8-GHz
drift (Obligis et al. 2003), 2) adjustment of the ERS-2
brightness temperatures, and 3) retrieval of the dh with
the Envisat neural algorithms. The improvement is sig-
nificant, with a weaker bias and a weaker rms standard
deviation. The improvement in the case of the dry at-
mosphere is obvious and shows the benefit of a neural
algorithm thereto.

5. Conclusions

We present in this paper the in-flight calibration of
the Envisat MWR and the development of the retrieval
algorithms. Our main concern was to use a consistent
approach between these two steps that guarantees the
quality of the final products (wet-tropospheric correc-
tion).

The observed limitations of the retrieval algorithms
led us to replace the multilinear parametric regression
by a neural network approach. The learning phase of
the neural networks is performed using ECMWF geo-
physical fields and associated TB simulations. The per-
formances of the algorithms over the validation data-
base shows a significant improvement with respect to
classical parametric algorithms. Furthermore, because

FIG. 11. Scatterplot between radiosonde and Envisat MWR wet
path between (a) 0 and 50 cm and (b) 0 and 20 cm.

FIG. 10. Scatterplot (a) between the ECMWF wet-tropospheric correction and that of ERS-2 and (b) of the
difference between the two for the GDR cycle 83.
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neural network algorithms are easy to implement, fast,
and robust, they are particularly adaptable to opera-
tional processing.

The in-flight calibration of the TBs is difficult be-
cause there is no natural target that can be used as a
reference. Our approach consists of the adjustment of
the measured brightness temperatures on simulated
ones. This was performed at the end of the commis-
sioning phase using the same version of the ECMWF
model and the same radiative transfer model as that of
the retrieval algorithm formulation. This consistency
between the calibration of the brightness temperatures
and the processing used to retrieve the geophysical pa-
rameters is necessary to provide high-quality products
at the end.

The validation of the methodology (retrieval algo-
rithms and consistent in-flight calibration) has been
performed by comparing the radiometer wet-
tropospheric correction with that of the radiosonde.
Results are satisfactory with a very weak bias and a
standard deviation of about 2 cm for the whole range of
variation.

The Envisat MWR products result from retrieval al-

gorithms and in-flight calibration based on the 2001
version of the ECMWF model as well as the current
version of our radiative transfer model at this time.
These last years, changes have been performed [new
assimilation in the ECMWF model in 2002, atmo-
spheric unstabilities, and wave breaking included in our
radiative transfer model (Keriaki 2003)], and the Envi-
sat MWR products should benefit from these last im-
provements. In this context, we are preparing a new set
of retrieval algorithms and a new consistent in-flight
calibration. Since the beginning of the mission, the key
instrumental parameters at 36.5 GHz have been drift-
ing with time. It appears that the mean drift of the
brightness temperatures is around �0.5 K yr�1, imply-
ing a drift of the wet path delay around �1 mm yr�1.
Investigations are in progress to identify the source of
these drifts and to propose a suitable correction that
will be part of the new in-flight calibration of the radi-
ometer.

Moreover, we showed that after a preliminary adjust-
ment of the TBs, it is possible to use the Envisat set of
retrieval algorithms to reprocess and improve the
ERS-2 MWR products. The adjustment of the bright-
ness temperatures implies a common period for two
successive missions and is more accurate if instrumental
configurations are similar and if both satellites fly along
the same track. This is the case between the ERS-2 and
Envisat missions, flying along the same ground track
with half an hour time lag, and also between the ERS-1
and ERS-2 missions. In this configuration, it is there-
fore very easy to adjust the ERS-1 and ERS-2 bright-
ness temperatures to those of Envisat to build a con-
sistent TB time series and to apply on it the last gen-
eration of the retrieval algorithms. This would be a
significant contribution to build a long, consistent, and
high-quality altimetry time series, which is especially
needed for the survey of the sea level rise.
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