
HAL Id: hal-00150156
https://hal.science/hal-00150156

Preprint submitted on 29 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Curry-style type Isomorphisms and Game Semantics
Joachim de Lataillade

To cite this version:

Joachim de Lataillade. Curry-style type Isomorphisms and Game Semantics. 2007. �hal-00150156�

https://hal.science/hal-00150156
https://hal.archives-ouvertes.fr

ha
l-

00
15

01
56

, v
er

si
on

 1
 -

 2
9

M
ay

 2
00

7

Curry-style type isomorphisms and game semantics

Joachim de Lataillade
Preuves Programmes Systèmes

CNRS - Paris 7
Joachim.de-Lataillade@pps.jussieu.fr

Abstract

Curry-style system F, i.e. system F with no explicit types in terms, can be seen as a core presentation of
polymorphism from the point of view of programming languages.

This paper gives a characterisation of type isomorphisms for this language, by using a game model
whose intuition comes both from the syntax and from the game semantics universe. The model is composed
of: an untyped part to interpret terms, a notion of game to interpret types, and a typed part to express the
fact that an untyped strategy σ plays on a game A.

By analysing isomorphisms in the model, we prove that the equational system corresponding to type
isomorphisms for Curry-style system F is the extension of the equational system for Church-style isomor-
phisms with a new, non-trivial equation: ∀X.A ≃ε A[∀Y.Y/X] if X appears only positively in A.

1 Introduction

Types isomorphisms. The problem of type isomorphisms is a purely syntactical question: two types A
and B are isomorphic if there exist two terms f : A→ B and g : B→ A such that f ◦ g = idB and g ◦ f = idA.
This equivalence relation on data types allows to translate a program from one type to the other without
any change on the calculatory meaning of the program. Thus, a search in a library up to type isomorphism
will help the programmer to find all the functions that can potentially serve his purpose, and to reuse them
in the new typing context [Rit91]. This is particularly appealing with functional languages, because in
this case the type can really be seen as a partial specification of the program: such a library search up to
isomorphisms has been implemented in particular for Caml Light by Jérôme Vouillon. It can also be used
in proof assistants to help finding proofs in libraries and reusing them [BP01] (for more details on the use of
type isomorphisms in computer science, see [DC95]). From a more general point of view, type isomorphisms
are the natural answer to the question of equivalence between types in a programming language.

The question of characterising these type isomorphisms is then a very simple problem to formulate,
however its resolution is often non-trivial, especially when dealing with polymorphism. Roberto Di
Cosmo [DC95] has solved syntactically this question for Church-style system F (i.e. system F where types
appear explicitly in the terms) by giving an equational system on types equivalent to type isomorphisms.
In a preceding work [dL07], we have given a new proof of this result by using a game semantics model
of Church-style system F. In this more geometrical approach, types were interpreted by an arborescent
structure, hyperforests: the natural equality for this structure happened to be exactly the equality induced by
type isomorphisms. The efficiency of game semantics in this context was an incitement to go further and to
explore the possibility of resolving this question for other languages.

Curry-style system F. In the present work, we deal with type isomorphisms for Curry-style system F, i.e.
system F where the terms grammar is simply the untyped λ-calculus’ one. Although this system appears
to be less relevant than Church-style system F in proof-theory (a term does not correspond exactly to one
proof), it is actually more accurate when we consider programming languages. Indeed, in Church-style

1

system F, a term t of type ∀X.A will not have the type A[B/X]: only t{B} will be of this type; whereas
in Curry-style, a term t of type ∀X.A will have all the types A[B/X], which is more the idea induced by
the notion of polymorphism: the same function may be used with different types. The typing rules and
equalities of this language are presented on figure 1.

Grammars:
A ::= X | A→ A | ∀X.A | A × A | ⊥
t ::= x | λx.t | (tt) | 〈t, t〉 | π1(t) | π2(t)

Typing rules:

(ax)
x1 : A1, . . . , xn : An ⊢ xi : Ai

Γ, x : A ⊢ t : B
(→ I)

Γ ⊢ λx.t : A→ B

Γ ⊢ t : A→ B Γ ⊢ u : A (→ E)
Γ ⊢ (tu) : B

Γ ⊢ t : A Γ ⊢ u : B (×I)
Γ ⊢ 〈t, u〉 : A × B

Γ ⊢ t : A × B (×E1)
Γ ⊢ π1(t) : A

Γ ⊢ t : A × B (×E2)
Γ ⊢ π2(t) : B

Γ ⊢ t : A (∀I)
Γ ⊢ t : ∀X.A

if X < Γ

Γ ⊢ t : ∀X.A (∀E)
Γ ⊢ t : A[B/X]

Equalities:

(λx.t)u = t[u/x] (β)
λx.tx = t if x < t (η)
π1(〈u, v〉) = u (π1)
π2(〈u, v〉) = v (π2)
〈π1(u), π2(u)〉 = u (×)

Type isomorphism:

(t, u) s.t.























⊢ t : A→ B

⊢ u : B→ A

λx.t(ux) = λx.u(tx) = λx.x

Figure 1: Curry-style system F

2

Compared with this system, Church-style system F has a different grammar of terms:

t ::= x | λxA.t | (tt) | 〈t, t〉 | π1(t) | π2(t) | ΛX.t | t{A}

different typing rules for the quantification:

Γ ⊢ t : A (∀I)
Γ ⊢ ΛX.t : ∀X.A

if X < Γ
Γ ⊢ t : ∀X.A (∀E)

Γ ⊢ t{B} : A[B/X]

and two additional equalities:

(ΛX.t){A} = t[A/X] (β2)
ΛX.t{X} = t if X < t (η2)

As can be seen on the typing rules, a λ-term t is of type A if there exists a term t̃ of Church-style system
F such that t is obtained from t̃ by erasing all the type indications (for example, ΛX.λx∀Y.YλyY.x{Y} becomes
λxλy.x). In this case, we say that t is the erasure of t̃.

The characterisation of type isomorphisms for Curry-style system F is not directly reducible to the
Church-style corresponding question: indeed, types of the form ∀X.A and A with X < A are not equivalent
in the Church-style setting, but they are in the Curry-style one (where the isomorphism is realised by
the identity). We prove in this paper that the distinction between Church-style and Curry-style type
isomorphisms can be resumed in one new and non-trivial equation. To express it, one first have to recall
the definition of positive and negative type variables in a formula1:

Definition 1 If A is a formula, its sets of positive variables PosA and negative variables NegA are defined by:

• PosX = {X} , NegX = ∅

• Pos⊥ = Neg⊥ = ∅

• PosA×B = PosA ∪ PosB , NegA×B = NegA ∪NegB

• PosA→B = NegA ∪ PosB , NegA→B = PosA ∪NegB

• Pos∀X.A = PosA \ {X} , Neg∀X.A = NegA \ {X}

We also define FTV(A) = PosA ∪NegA.

The new equation is then the following:

∀X.A ≃ε A[∀Y.Y/X] if X < NegA

It is true in Curry-style but false (in general) in Church-style system F. Note that, although the isomorphism
is realised by the identity, the Church-style terms t : ∀X.A → A[∀Y.Y/X] and u : A[∀Y.Y/X] → ∀X.A, from
which we extract the identity by erasing explicit types, are not trivial (they will be explicitly described in
the proof of theorem 2 at the end of the paper). This is a difference with Church-style system F, where type
isomorphisms were exactly the expected ones, even if proving that point was not an elementary task.

Type isomorphisms for Curry-style system F are finally characterised by the following equational system:

A × B ≃ε B × A

A × (B × C) ≃ε (A × B) × C

A→ (B→ C) ≃ε (A × B)→ C

A→ (B × C) ≃ε (A→ B) × (A→ C)

∀X.∀Y.A ≃ε ∀Y.∀X.A

A→ ∀X.B ≃ε ∀X.(A→ B) if X < FTV(A)

∀X.(A × B) ≃ε ∀X.A × ∀X.B

∀X.A ≃ε A[∀Y.Y/X] if X < NegA

1All along this article we will identify the notions of type and formula (according to the Curry-Howard correspondence).

3

The purpose of this paper is to prove correctness and completeness of this characterisation by using a game
model.

The model. Models of second order calculi do not come about easily due to impredicativity. Among
the different possibilities, we choose models based on game semantics because of their high degree of
adequation with the syntax: indeed, game semantics has been widely used to construct fully complete
models for various calculi, such as PCF [AJM00, HO00], µPCF [Lai97], Idealized Algol [AM99], etc. This
means that this semantics gives a very faithful description of the behaviour of the syntax modulo reduction
rules in the system. And this is precisely what we need to deal semantically with type isomorphisms: a
model which is so precise that it contains no more isomorphisms than the syntax.

The present paper introduces a game model for Curry-style system F. This model was largely inspired
by two preceding game semantics works: the PhD thesis of Juliusz Chroboczek [Chr03], which presents
among others a game semantics for an untyped calculus that we will almost copy-paste in this paper; and
the game semantics model for generic polymorphism by Samson Abramsky and Radha Jagadeesan [AJ03],
from which we will extract many ideas in our context. Other game semantics models had an influence on
our work: Dominic Hughes gave the first game models of Church-style system F [Hug00] and introduced
the notion of hyperforests that we reuse here; Andrzej Murawski and Luke Ong presented a simple and
efficient model for dealing with affine polymorphism [MO01], and their presentation of moves inspired
ours.

It shall be noticed that the design of our Curry-style game model is actually very connected to the
concepts present in the syntax: the notion of erasure we introduce is of course reminiscent of the erasure of
types in a Church-like term to obtain a Curry-like term. This is no surprise as we need a model describing
very precisely the syntax (that is why, in particular, one cannot be satisfied by an interpretation of the
quantification as an intersection or a greatest lower bound). The specificities of (HON-)game semantics, as
for example the arborescent structure that interprets types, are however decisive for our demonstration.

2 General definitions

In this section we give general constructions that will apply on the different grammars we use in the model.
These constructions are strongly related to usual HON-style games operations (cf. [HO00]).

2.1 Moves

We consider the set of type variables X, Y, . . . to be in bijection withN\{0}, and we will further write this
set X = {X j | j > 0}.

All along this article, we define several grammars of the form:

µ ::= ↑µ | ↓µ | αiµ | j (i ∈ I, j ∈N)

Let us noteM the set of words (often called moves) defined by this grammar.
Intuitively, the token ↑ (resp. ↓) corresponds to the right side (resp. the left side) of an arrow type, the αi’s

are related to additional (covariant) connectors, the constants j ∈N\{0} correspond to free type variables X j

and the constant 0 corresponds either to bounded type variables or to ⊥.

On such a grammar, we define automatically a function λ of polarity, with values in {O,P}:

• λ(j) = O

• λ(↑µ) = λ(αiµ) = λ(µ)

• λ(↓µ) = λ(µ)

where O = P and P = O.

We also introduce an enabling relation ⊢ ⊆ M∪ (M×M):

4

• ⊢ j

• if ⊢ µ then ⊢ αiµ, and ⊢ ↑µ

• if ⊢ µ and ⊢ µ′ then ↑µ ⊢ ↓µ′

• if µ ⊢ µ′ then αiµ ⊢ αiµ′, ↑µ ⊢ ↑µ′ and ↓µ ⊢ ↓µ′.

which induces a partial order ≤ for this grammar by reflexive and transitive closure. If ⊢ µ we say that µ is
an initial move (in which case λ(µ) = O).

2.2 Substitution

As we want to deal with polymorphism, we need some operations acting directly on the leafs j:

• a function ♯ of leaf extracting:

– ♯(j) = j

– ♯(↑µ) = ♯(↓µ) = ♯(αiµ) = ♯(µ)

• an operation of substitution µ[µ′]:

– j[µ′] = µ′

– ↑µ[µ′] = ↑(µ[µ′]), ↓µ[µ′] = ↓(µ[µ′]) and αiµ[µ′] = αi(µ[µ′])

We say that µ1 is a prefix of µ2 if there exists µ′ ∈ M such that µ2 = µ1[µ′]. This is denoted µ1 ⊑
p µ2.

2.3 Plays and strategies

Definition 2 (justified sequence, play) A justified sequence on a given grammar is a sequence s = µ1 . . . µn of
moves, together with a partial function f : {1, . . . , n} ⇀ {1, . . . , n} such that: if f (i) is not defined then ⊢ µi, and if
f (i) = j then j < i and µ j ⊢ µi: in this case we say that µ j justifies µi.

A play on a grammar is a justified sequence s = µ1 . . . µn on this grammar such that: for every 1 ≤ i ≤ n − 1, if
λ(µi) = P then λ(µi+1) = O and if λ(µi) = O then λ(µi+1) = P and ♯(µi) = ♯(µi+1).

We note E the set of plays of even length. If s and t are two plays, we note t � s if t is a prefix of s.

The definition of a play implies that if sµν is an even-length play then ♯(µ) = ♯(ν). This will be a very
significant property in our model.

Definition 3 (strategy) A strategy σ on a given grammar is a non-empty set of even-length plays, which is closed
under even-length prefix and deterministic: if sµ and sν are two plays of σ then sµ = sν.

Definition 4 (view, innocence) Let s be a play on a grammar, we define its view psq by:

• pεq = ε

• psµq = psqµ if λ(µ) = P

• psµq = µ if ⊢ µ

• psµtνq = psqµν if λ(ν) = O and µ justifies ν

A strategy σ is called innocent if, for every play sν of σ, the justifier of ν is in psq, and if we have: if sµν ∈ σ,
t ∈ σ, tµ is a play and psµq = ptµq then tµν ∈ σ.

Definition 5 (bi-view) A bi-view on a given grammar is a justified sequence s = µ1 . . . µn (with n ≥ 1) such that
any move is justified by its predecessor. The set of bi-views is denoted BV.

5

2.4 Composition

Composition is usually defined between arenas of the form A→ B and B→ C. We are going to define it in
a context where arenas do not explicitly exist, but are however represented by the tokens ↑ and ↓.

Definition 6 (shape) Let ζ ∈ ({↑, ↓} ∪ {αi}i∈I)
∗, a move µ is said to be of shape ζ if ζ0 ⊑p µ.

Let Σ be a finite set of elements ζ j ∈ ({↑, ↓} ∪ {αi}i∈I)
∗. A justified sequence is said to be of shape Σ if each of its

moves is of shape ζ j for some j. A strategy is of shape Σ if each of its plays is of shape Σ.
In the case where Σ = {↑, ↓}, we say that the justified sequence (or the strategy) is of arrow shape.

Consider a justified sequence s = µ1 . . . µn, we define the sequence s↾ζ as the restriction of s to the moves
of shape ζ where the prefix ζ has been erased, and the pointers are given as follows: if µi = ζµ′i is justified
by µ j = ζµ′j in s, then the corresponding occurrence of µ′

i
is justified by µ′

j

Consider ζ, ξ ∈ ({↑, ↓} ∪ {αi}i∈I)
∗ such that neither of the two is a prefix of the other. Let us define the

sequence s↾ζ,ξ: first we consider s′, the restriction of s to the moves of shape ζ and the moves of shape ξ
hereditarily justified by a move of shape ζ. s↾ζ,ξ is the sequence s′ where the prefix ζ has been replaced by ↑
where it appears, the prefix ξ has been replaced by ↓where it appears, and the pointers are given as follows:
if µi = ζµ′i (resp. µi = ξµ′i) is justified by µ j = ζµ′j (resp. µ j = ξµ′j) in s, then the corresponding occurrence of

↑µ′
i

(resp. ↓µ′
i
) is justified by ↑µ′

j
(resp. ↓µ′

j
); and if µi = ξµ′i is hereditarily justified by a move µ j = ζµ′j in

s, then the corresponding occurrence of ↓µ′
i

is justified by the corresponding occurrence of ↑µ′
j

iff ⊢ µ′
i

and

⊢ µ′
j
.

Definition 7 (interacting sequence, composition) An interacting sequence s = µ1 . . . µn is a justified sequence
of shape {↑, ↓↑, ↓↓} such that s↾↑,↓↑, s↾↓↑,↓↓ and s↾↑,↓↓ are plays. The set of interacting sequences is denoted Int.

Suppose we have two strategies σ and τ. We call composition of σ and τ the set of plays

σ; τ = {u↾↑,↓↓| u ∈ Int, u↾↑,↓↑∈ τ and u↾↓↑,↓↓∈ σ}

σ; τ is a strategy: this can be proven like in the standard HON game model. Moreover if σ and τ are
innocent then σ; τ is innocent.

Definition 8 (totality on a shape) Let σ be a strategy and ζ ∈ ({↑, ↓}∪ {αi}i∈I)
∗. We say that σ is total on the shape

ζ if, for every play s ∈ σ of shape ζ, for every move µ such that sµ is a play of shape ζ, there exists a move ν of shape ζ
such that sµν ∈ σ.

2.5 Presentation of the Curry-style model

Our model is defined through three grammars:

• X is the grammar of untyped moves which generate the untyped model to interpret untyped lambda-
terms

• A is the grammar of occurrences which are used for the interpretation of formulas

• M is the grammar of typed moves which generate an interpretation of the terms of Church-style
system F.

The interpretation of Curry-style system F in the model will be as follows:

• a type A will be interpreted as a game (also denoted A), i.e. a specific structure based on the grammar
A

6

• a term t of type A will be interpreted as a strategy σ on the grammar X, with the condition that this
strategy is the erasure of a strategy σ̃, defined on the grammarM and played on the game A (this will
be denoted σ̃ :: A)

• two additional properties are required: hyperuniformity which applies on σ, and uniformity which
applies on σ̃.

In what follows, we first define the untyped model to interpret untyped lambda-terms, then we define
games and typed strategies on games, and finally we introduce the notion of erasure and prove that we
have a model of Curry-style system F. Next we prove, using this model, our result on type isomorphisms.

3 The untyped model

In this section we give a semantics for the untyped λ-calculus with binary products, i.e. for the calculus of
figure 1 restricted to the language of terms with their reduction rules.

The untyped model that we present below has been defined by Julius Chroboczek in his PhD the-
sis [Chr03]. Our definition is formally a little bit different from Chroboczek’s one, but the substance of the
work is the same.

3.1 Untyped moves

The grammar of untyped moves is the following:

x ::= ↑x | ↓x | rx | lx | j (j ∈N)

The set of untyped moves is denoted X.
The justified sequences, plays and strategies induced by this grammar will be called untyped justified

sequences, plays and strategies.

3.2 Basic strategies

We define the following strategies:

• identity:
id = {s ∈ E | s of arrow shape and ∀t ∈ E, t � s⇒ t↾↑= t↾↓}

• projections:
πr = {s ∈ E | s of shape {↑, ↓r, ↓l} and ∀t ∈ E, t � s⇒ t↾↑= t↾↓r}

πl = {s ∈ E | s of shape {↑, ↓r, ↓l} and ∀t ∈ E, t � s⇒ t↾↑= t↾↓l}

• evaluation:

eval = {s ∈ E | s of shape {↑, ↓l↑, ↓l↓, ↓r} and ∀t ∈ E, t � s⇒ t↾↑= t↾↓l↑ ∧t↾↓r= t↾↓l↓}

We also define three basic operations on strategies:

• pairing without context: if σ and τ are two strategies,

〈σ, τ〉a = {s ∈ E | s of shape {r, l} and s↾l ∈ σ and s↾r ∈ τ}

• pairing with context: if σ and τ are two strategies of arrow shape,

〈σ, τ〉b = {s ∈ E | s of shape {↑r, ↑l, ↓} and s↾↑l,↓ ∈ σ and s↾↑r,↓ ∈ τ}

• abstraction: if σ is a strategy of shape {↑, ↓r, ↓l},Λ(σ) is the strategy of shape {↑↑, ↑↓, ↓}which is deduced
from σ by replacing each move ↑x by ↑↑x, each move ↓rx by ↑↓x and each move ↓lx by ↓x.

7

3.3 Hyperuniformity

We have enough material to define an untyped model. However, our use of untyped strategies in the
Curry-style model forces us to impose new requirements: for example, consider the formula X1 → X1. It
would be reasonable to think that the innocent strategy σ whose set of views is {ε, ↑1 · ↓1} has this type.
However, because we deal with a Curry-style model, any strategy of type X1 → X1 should also have the
type ∀X1.X1 → X1, and thus A→ A for any A, and should be able to do a copycat between the left and the
right side of the arrow.

This is the meaning of the notion of hyperuniformity defined below.

Definition 9 (copycat extension of an untyped play) Let s = x1 . . . xn be an untyped play, xi an O-move of s
and v = y1 . . . yp ∈ BV. Suppose s = s1xixi+1s2. The copycat extension of s at position i with parameter v is the
untyped play s′ = ccs(i, v), defined by :

• s′ = s1xi[y1]xi+1[y1]s2 if p = 1

• s′ = s1xi[y1]xi+1[y1]xi+1[y2]xi[y2] . . .xi+1[yp]xi[yp] if p even

• s′ = s1xi[y1]xi+1[y1]xi+1[y2]xi[y2] . . .xi[yp]xi+1[yp] if p > 1 and p odd

Definition 10 (hyperuniform strategy) An untyped strategy σ is called hyperuniform if it is innocent and if, for
any play s ∈ σ, any copycat extension of s is in σ.

Lemma 1 The identity strategy, the projections and the evaluation strategy are hyperuniform. If σ and τ are
hyperuniform then 〈σ, τ〉 and Λ(σ) are hyperuniform.

The preceding lemma is straightforward. The interesting case is composition:

Lemma 2 If σ and τ are hyperuniform then σ; τ is hyperuniform.

P: Let us consider a play s = x1 . . . xp ∈ σ; τ, an O-move xi of s and a bi-view v = y1 . . . yq. We have
to prove that s′ = ccs(i, v) belongs to σ; τ.

There exists a justified sequence u such that u↾↑,↓↓= s, u↾↓↑,↓↓∈ σ and u↾↑,↓↑∈ τ. If u = t1xib1 . . . bqxi+1t2,
we build a new justified sequence U depending on the value of p :

• if p = 1, U = t1xi[y1]b1[y1] . . . bq[y1]xi+1[y1]t2

• if p even,
U = t1xi[y1]b1[y1] . . . bq[y1]xi+1[y1]xi+1[y2]bq[y2] . . . b1[y2]xi[y2] xi+1[yp]bq[yp] . . . b1[yp]xi[yp]

• if p odd and p > 1,
U = t1xi[y1]b1[y1] . . . bq[y1]xi+1[y1]xi+1[y2]bq[y2] . . . b1[y2]xi[y2] xi[yp]b1[yp] . . . bq[yp]xi+1[yp]

We have U↾↓↑,↓↓∈ σ and U↾↑,↓↑∈ τ by hyperuniformity of σ and τ. So, U↾↑,↓↓= s′ ∈ σ; τ.
�

3.4 Semantics of the untyped λ-calculus with binary products

We now present the interpretation of the untyped calculus. Instead of directly interpreting terms, we
interpret sequents of the form Γ ⊢ t, where t is a term and Γ is simply a list of variables that includes the free
variables occurring in t.

8

The interpretation is as follows:

~x ⊢ x� = id

~Γ, x ⊢ x� = πr if Γ , ∅

~Γ, y ⊢ x� = πl; ~Γ ⊢ x�

~Γ ⊢ λx.t� = Λ(~Γ, x ⊢ t�)

~Γ ⊢ (tu)� = 〈~Γ ⊢ t�, ~Γ ⊢ u�〉a(Γ); eval

~Γ ⊢ 〈t, u〉� = 〈~Γ ⊢ t�, ~Γ ⊢ u�〉a(Γ)

~Γ ⊢ π1(t)� = ~Γ ⊢ t�;πl

~Γ ⊢ π2(t)� = ~Γ ⊢ t�;πr

with a(Γ) = a if Γ = ∅ and a(Γ) = b otherwise.

From lemmas 1 and 2 we derive:

Lemma 3 Let t be a term whose free variables are contained in the list Γ, then ~Γ ⊢ t� is a hyperuniform strategy.

Proposition 1 If two terms t and u are equal up to the equalities of the language, and if all their free variables are
contained in the list Γ, then ~Γ ⊢ t� = ~Γ ⊢ u�.

See [Chr03] for the proof of the equivalent proposition in Chroboczek’s setting.

4 Games

4.1 Interpretation of a formula

In this section we introduce the notion of game2, the structure that will interpret Curry-style types. This
structure is very similar to the one presented in [AJ03].

We define the following grammar of occurrences:

a ::= ↑a | ↓a | ra | la | ⋆a | j (j ∈N)

The set of all occurrences is denotedA.
We define a translation E fromA to X: E(a) is obtained by erasing all the tokens ⋆ in a. Inductively:

• E(i) = i

• E(⋆a) = E(a)

• E(αa) = αE(a) if α ∈ {↑, ↓, r, l}.

The syntactic tree of a formula A is a tree with nodes labelled by type connectors (→,×,∀) or integers,
edges labelled by the tokens ↑, ↓, r, l, ⋆, and possibly some arrows linking a leaf to a node. It is defined as
follows:

• T⊥ is reduced to a leaf 0

• TXi
is reduced to a leaf i

2The denomination arena would also fit, but we wanted to stress the fact that our games are not trees like HON-arenas, but just
partial orders.

9

• TA→B consists in a root→with the two trees TA and TB as sons; the edge between→ and TA (resp. TB)
is labelled ↓ (resp. ↑)

• TA×B consists in a root × with the two trees TA and TB as sons; the edge between × and TA (resp. TB)
is labelled l (resp. r)

• T∀Xi.A consists in a root ∀with the tree T as unique son, where T is deduced from TA by linking each of
its leafs labelled by i to its root, and relabelling these leafs by 0; the edge between ∀ and T is labelled
⋆.

A maximal branch in a syntactic tree is a path from the root to a leaf; it will be described by the sequence
of labels of its edges, with the index of the leaf at the end of the sequence. Such a maximal branch is then
an occurrence.

The set OA of occurrences of a formula A is the set of maximal branches of TA. We define a function of
linkageLA : OA → A∪ {†} as follows: if the leaf reached by the maximal branch a is linked to a node c, then
LA(a) is the sequence of labels of the edges we cross to reach c starting from the root, with a 0 at the end;
otherwise, LA(a) = †.

The structure (OA,LA) will be called a game. It will also be denoted A, with no risk of confusion.

Example: The type A = ∀X1.(X1 → ((∀X2.X2)→ (X3 × ⊥))) has as set of occurrences:

OA = {⋆↓0 , ⋆↑↓ ⋆ 0 , ⋆↑↑l3 , ⋆↑↑r0}

And its function of linkage is given by:































LA(⋆↓0) = ⋆0

LA(⋆↑↓ ⋆ 0) = ⋆↑↓ ⋆ 0

LA(⋆↑↑l3) = †

LA(⋆↑↑r0) = †

Definition 11 (game) A game A is defined by a finite non-empty setOA ⊆ A and a function of linkageLA : OA →

A ∪ {†} satisfying the following conditions:

• OA is coherent: for every a ∈ OA, either ⊢ a or ∃a′ ∈ OA, a′ ⊢ a

• OA is non-ambiguous: ∀a, a′ ∈ OA, if E(a) ⊑p E(a′) then a = a′

• for every a ∈ OA, either LA(a) = † or LA(a) = a′[⋆0] ⊑p a for some a′ ∈ A

• for every a ∈ OA, if ♯(a) , 0 then LA(a) = †

The set of games is denoted G.

We stress the fact that the set OA shall not be empty: this will be a crucial point in our proofs.

Definition 12 (auxiliary polarity) Given a game A, we define its auxiliary polarity as a partial function pauxA :
OA ⇀ {O,P} by: pauxA(c) = λ(LA(c)) if LA(c) , †, otherwise it is undefined.

10

4.2 Alternative, inductive interpretation of a formula

We define the following constructions on games:
(atoms) ⊥ = ({0}, 0 7→ †) Xi = ({i}, i 7→ †) for i > 0.
(product) if A,B ∈ G, we define A × B by:

• OA×B = {la | a ∈ OA} ∪ {rb | b ∈ OB}

• LA×B(la) =















† if LA(a) = †

lLA(a) otherwise
LA×B(rb) =















† if LB(b) = †

rLB(b) otherwise

(arrow) if A,B ∈ G, we define A→ B by:

• OA→B = {↓a | a ∈ OA} ∪ {↑b | b ∈ OB}

• LA→B(↓a) =















† if LA(a) = †

↓LA(a) otherwise
LA→B(↑b) =















† if LB(b) = †

↑LB(b) otherwise

(quantification) if A ∈ G and i > 0, we define ∀Xi.A by:

• O∀Xi .A = {⋆a | a ∈ OA ∧ ♯(a) , i} ∪ {⋆a[0] | a ∈ OA ∧ ♯(a) = i}

• L∀Xi .A(⋆a) =















† if LA(a) = †

⋆LA(a) otherwise
L∀Xi .A(⋆a[0]) = ⋆0

This gives rise to an inductive interpretation of a formula, which coincides with the one defined from
the syntactic tree.

Finally, we define an operation of substitution on games:

Definition 13 (substitution) Let A,B ∈ G. The substitution of Xi by B in A is the game A[B/Xi] defined by:

• OA[B/X] = {a ∈ OA | ♯(a) , i} ∪ {a[b] | a ∈ OA ∧ ♯(a) = i ∧ b ∈ OB}

• LA[B/X](a) = LA(a) and LA[B/X](a[b]) =















† if LB(b) = †

a[LB(b)] otherwise

One can check that this coincides with the operation of substitution on formulas.

5 The typed model

5.1 Moves and strategies on a game

We are now going to describe how we can play in a game. We will take advantage of the way we have
defined games: whereas in many second order game models like [Hug00] or [dL07] moves have a complex
structure, here they will be easy to derive from OA and LA.

As in [AJ03], the intuition is that a move in A can either be built directly from an occurrence of OA, or
it can be decomposed as m1[m2], where m1 is built from an occurrence of OA and m2 is a move in another
game B which substitutes a quantifier.

Note that the moves and strategies defined this way do not constitute the morphisms of our model, but
they will be used as interpretations of Church-style terms.

We introduce the grammar of typed moves:

m ::= ↑m | ↓m | rm | lm | ⋆Bm | j (B ∈ G, j ∈N)

These moves form the setM.
The operation of anonymityA :M→ A erases the game indication in a typed move:

11

• A(i) = i for i ≥ 0

• A(⋆Am) = ⋆A(m)

• A(αm) = αA(m) for α ∈ {r, l, ↑, ↓}.

For m ∈M and a ∈ A, we define a partial operation of formula extraction m
a by:

• ⋆Bm
⋆0 = B

• if m
a is defined, ⋆

Bm
⋆a =

αm
αa =

m
a where α ∈ {↑, ↓, r, l}

Definition 14 (moves of a game) Let A be a game. Its set of moves MA ⊆ M is given by defining the relation
m ∈ MA by induction on m:

• ifA(m) = a ∈ OA and LA(a) = † then m ∈ MA

• if m = m1[m2], whereA(m1) = a ∈ OA, LA(a) , † and m2 ∈ MB with B = m1

LA(a) , then m ∈ MA.

This definition is well-defined, because in the second case we necessarily have at least one token ⋆B in
m1, so the size of m2 is strictly smaller than the size of m1[m2]: that is why we say that the definition is
inductive.

Example: Let us recall the type A = ∀X1.(X1 → ((∀X2.X2) → (X3 × ⊥))) of the preceding example. One
possible way to “play a move” in this game3 is to instantiate the variable X1 with a type B (take B = ⊥ × X3

for example), then to go on the left side of the first arrow and to play a move of B.
This corresponds to a move like m = ⋆B↓r3. One can check with the definition that this move indeed

belongs toMA: m = m1[m2] with m1 = ⋆B↓0 and m2 = r3. A(m1) = ⋆↓0 ∈ OA, LA(⋆↓0) = ⋆0 and ⋆B↓0
⋆0 = B.

Moreover, A(m2) = r3 ∈ OB and LB(m2) = † so m2 ∈ MB (first case of the definition). So, m ∈ MB (second
case of the definition).

Intuitively, we have the following:

• m1 is the part of the move played in A, and c =A(m1) is the corresponding occurrence

• La(c) indicates where the interesting quantifier has been instantiated

• m1

LA(c) = B indicates by which game it has been instantiated

• m2 is the part of the move played in B.

Definition 15 (justified sequence, play on a game) Let A be a game and s be a play (resp. a justified sequence)
on the grammarM. If every move of s belongs toMA, then we say that s is a play (resp. a justified sequence) on the
game A. The set of plays on the game A is denoted PA.

3This notion is related to the idea of evolving game introduced in [MO01] and reused in [dL07].

12

Example: Let us consider the play s = ⋆B↑↑l3 · ⋆B↓r3 with B = ⊥ × X3. This is of course a play in
A = ∀X1.(X1 → (∀X2.X2)→ (X3 × ⊥)).

What is interesting to notice is that, if for example C = X3 × ⊥, then the sequence s′ = ⋆C↑↑l3 · ⋆B↓r3 is
not a play because it is not a justified sequence: indeed, one must have B = C if we want m2 = ⋆B↓r3 to be
justified by m1 = ⋆C↑↑l3.

More generally, for any move m in a play s which contains the token ⋆B, there is a sequence of moves
m1, . . . ,mn that also contains the token ⋆B at the same place, with mn = m and mi justifies mi+1 for 1 ≤ i < n.
If this sequence is chosen to be of maximal length, then m1 is the minimal hereditarily justifier of m which
contains the token ⋆B: it is the first time that it appears (at the right place). We will say that B is played by
λ(m1) at the level of m1. Note that λ(m1) = pauxA(m).

One can formalise this definition:

Definition 16 (level) If a move m in a play s ∈ PA contains the token ⋆B, then it can be written m = m0 ⋆B [m1].
We say that B is played (by λ(m0)) at the level of m if m1 does not contain the token ↓.

Typed strategies are defined as expected:

Definition 17 (strategy on a game) Let σ be a strategy on the grammarM, we say that σ is a strategy on A and
we note σ :: A if any play of σ belongs to PA. We say that σ is a typed strategy in this case.

Strategies on games have to be understood as interpretations4 of Church-style system F terms; they
will be used in the Curry-style model because we have to express in the model the fact that a well-typed
Curry-style term is the erasure of a well-typed Church-style term.

5.2 Uniformity

In [dL07], we saw that strategies defined as generally as possible were not able to capture exactly the type
isomorphisms of the syntax, because they were generating too many isomorphisms in the model. That
is why we introduced a notion of uniformity, which restrained the behaviour of strategies (in order to
avoid confusion, we will call weak uniformity the notion of uniformity defined in [dL07]; by the way, weak
uniformity plays no role in the present model).

The situation is similar here: we are not able to derive the characterisation of Curry-style type isomor-
phisms if the well-typed Church-style terms are interpreted by the (typed) strategies defined above. So we
introduce a notion of uniformity on these strategies.

The intuition of this notion is the following: consider an η-long, β-normal term t of the Church-style
system F, and suppose ⊢ t : ∀X.A. The term t has the form t = ΛX.t′ with ⊢ t′ : A: so it behaves like if it was
instantiating the quantifier (∀X) with a variable (X). More generally, the terms of the Church-style system
F should be interpreted by strategies where, each time O has to play a game, he gives a variable game Xi.

But these strategies (that we will call symbolic) do not compose: in the Church-style syntax, this
corresponds to the fact that the term ⊢ t : ∀X.A can be instantiated at any type B through the operation
t 7→ t{B}, and so the term t can be extended to any type A[B/X]. In the model, this means that the symbolic
strategy interpreting t must be extensible to a more complete strategy, where O can play any game he wants.
This extension consists in playing copycat plays between the different occurrences of the variables X (like
in the syntax, the η-long β-normal form of t{B} is generated from t through η-expansions), that is why it is
called the copycat extension.

To sum up, a uniform strategy will be a symbolic strategy extended by copycat extension. This idea
has to be related with the strategies of Dominic Hughes [Hug00] and, above all, with Murawski’s notion of
good strategies [MO01]. The notion of weak uniformity discussed above is an analogous, but less restrictive,
condition: uniformity implies weak uniformity. Finally, uniformity has of course a strong connection

4We chose not to explicit this interpretation because we do not need it; one could also prove that we have a model of Church-style
system F, but it is not an important question here.

13

with hyperuniformity: the two notions express analogous ideas, but hyperuniformity applies on untyped
strategies, whereas uniformity is formulated in a typed context, and then requires more cautiousness.

In the following definition, BV(A) stands for the set of bi-views in a game A, and m[B/ j] (resp. s[B/ j])
is obtained from the move m (resp. the play s) by replacing each token of the form ⋆A by ⋆A[B/X j]. Note that
s[B/ j] is a play, but does not necessarily belong to anyMA for some A: actually, this play will only be used
as an intermediate construction.

Definition 18 (copycat extension of a typed play) Let s = m1 . . .mn be a typed play on the game A, let B ∈ G
and j > 0.

We first define the flat extension of s: given a sequence of initial moves r = (ri)i∈N inMB, Flsj,B(r) is the play t[B/ j]

where t is obtained from s by replacing each sequence mimi+1 such that ♯(mi) = j and λ(mi) = O by mi[ri]mi+1[ri].
Let mi be an O-move of s such that ♯(mi) = j, suppose Fls

j,B(r) = s1m′
i
[ri]m

′
i+1

[ri]s2 with m′
i
= mi[B/ j] and

m′
i+1
= mi+1[B/ j], and let v = n1 . . .np ∈ BV(B). The B-copycat extension of s at position i along the index j (with

parameters v, r) is the play s′ = CCs
j,B(i, v, r) defined by:

• s′ = s1m′
i
[n1]m′

i+1
[n1]s2 if p = 1

• s′ = s1m′
i
[n1]m′

i+1
[n1]m′

i+1
[n2]m′

i
[n2] . . .m′

i+1
[np]m′

i
[np] if p even

• s′ = s1m′
i
[n1]m′

i+1
[n1]m′

i+1
[n2]m′

i
[n2] . . .m′

i
[np]m′

i+1
[np] if p > 1 and p odd

Definition 19 (symbolic strategy) A play s on the game A is said to be symbolic if, whenever a game is played by
O it is a variable game Xi < FTV(A). These variable games are called the copycat variables of the play.

A symbolic strategy is a strategy which contains only symbolic plays.

Definition 20 (copycat extension of an innocent symbolic strategy) The copycat extension of an innocent sym-
bolic strategy σ̄ : A is the smallest innocent strategy which contains σ̄ and is stable under any copycat extension along
a copycat variable.

Definition 21 (uniform strategy) Let σ be a strategy on the game A. σ is said to be uniform if there exists a symbolic
innocent strategy σ̄ on A such that σ is the copycat extension of σ̄.

Proposition 2 If σ :: A→ B and τ :: B→ C are two uniform strategies then σ; τ :: A→ C is uniform.

The proof of this proposition can be found in appendix A.

6 The Curry-style model

We are now ready to define our model: the key ingredient will be to relate untyped strategies with typed
strategies through a notion of realization. First we relate untyped moves with typed moves through an
operation of erasure erase :M→ X defined by:

erase = E ◦A

Definition 22 (realization) Let σ be an untyped strategy and σ̃ a typed strategy on A. We say that σ̃ is a realization
of σ on A if we have: for every sxy ∈ σ and s′ ∈ σ̃, if s′m′ ∈ PA is such that erase(s′m′) = sx then there exists n′ such
that s′m′n′ ∈ σ̃ and erase(s′m′n′) = sxy.

At present we have all the ingredients to define the model:

• objects are games

• a morphism between A and B is an untyped strategy σ such that:

14

– σ is hyperuniform

– there exists a typed strategy σ̃ which is a realization of σ on A→ B

– σ̃ is uniform.

In this case we note σ : A→ B.

Let us prove that we have a model of Curry-style system F indeed.

Lemma 4 If σ : A→ B and τ : B→ C then σ; τ : A→ C.

P: If we note σ̃ and τ̃ two realizations of σ and τ respectively, we obtain a realization of σ; τ on
A→ C by taking the composite σ̃; τ̃ in the grammarM. Indeed, suppose sxy ∈ σ; τ, s′ ∈ σ̃; τ̃with erase(s′) = s
and s′m′ ∈ PA→C with erase(s′m′) = sx. There exist an untyped justified sequence u such that u↾↓↑,↓↓= s1 ∈ σ,
u↾↑,↓↑= s2 ∈ τ and u↾↑,↓↓= sxy, and a typed justified sequence t such that t↾↓↑,↓↓= t1 ∈ σ̃, t↾↑,↓↑= t2 ∈ τ̃ and
t↾↑,↓↓= s′.

We note u = u0xb1 . . . bq y, with b1, . . . bq of shape ↓↑. Suppose for example that m′ is of shape ↓. Then
there exists n′

1
such that t1m′n′

1
∈ σ̃ and erase(t1m′n′

1
) = s1xb1; we set T1 = tm′n′

1
. Then there exists n′

2
such

that t2n′
1
n′2 ∈ τ̃

5 and erase(t2n′
1
n′2) = s2b1b2; we set T2 = tm′n′

1
n′2, etc. So, we construct step by step a justified

sequence T such that T↾↓↑,↓↓∈ σ̃, T↾↑,↓↑∈ τ̃ and erase(T) = u. This gives us also that T↾↑,↓↓= s′m′n′ is a play,
so it belongs to σ̃; τ̃ and erase(s′m′n′) = sxy.

Finally: σ̃ and τ̃ are innocent and uniform, so σ̃; τ̃ is innocent and uniform by prop. 2; σ and τ are
hyperuniform so σ; τ is hyperuniform by lemma 2. �

Lemma 5 If σ : Γ→ A and X j < Γ then σ : Γ→ ∀X j.A

P: Let us consider σ̃ :: Γ→ A a realization of σ on Γ→ A: if σ̃ is the copycat extension of a symbolic
strategy σ̄, then we define the strategy σ̄′ as the strategy σ̄ where each move written ↑m in a play has been
replaced by ↑ ⋆X j m. This strategy is symbolic on Γ → ∀X j.A, and its copycat extension σ̃′ is a realization
of σ because of hyperuniformity (indeed, the only difference between σ̃ and σ̃′ is a copycat extension along
X j). �

Lemma 6 If σ : Γ→ ∀X j.A and B is a game then σ : Γ→ A[B/X j].

P: If σ̃ is a realization of σ on Γ→ ∀X j.A, a realization σ̃′ on Γ→ A[B/X j] is obtained by taking only
plays where each initial move takes the form ↑ ⋆B m, and by replacing each move ↑ ⋆B m by ↑m.

Let us now prove the uniformity of σ̃′: if σ̃ is the copycat extension of a symbolic strategy σ̄, we consider
a view s of σ̄. Let X j be the first copycat variable appearing in s, we choose a variable Xk < FTV(A)∪ FTV(B)
and we call sk the (unique) Xk-copycat extension of s along j. Let us define E(s) as the smallest set of plays
containing sk and stable by B-copycat extensions along k. The strategy σ̄′ will be the smallest innocent
strategy containing all the sets E(s), for s describing all the views of σ̄. Then one can check that σ̃′ is the
copycat extension of σ̄′. �

Lemma 7 The following holds:

• id : A→ A

• πr : Γ × A→ A

• If σ : Γ→ A and τ : Γ→ B then 〈σ, τ〉 : Γ→ (A × B).

• eval : (A→ B) × A→ B

5More precisely n′
1
= ↑n′′ should be renamed as ↓n′′.

15

• If σ : Γ × A→ B then Λ(σ) : Γ→ (A→ B).

These cases are trivial: for example, a realization of id on A→ A is

ρ = {s ∈ PA→A | s of arrow shape and ∀t ∈ E, t � s⇒ t↾↑= t↾↓}

and it is uniform, with symbolic strategy ρ̄ defined by:

ρ̄ = {s ∈ PA→A | s of arrow shape, s symbolic and ∀t ∈ E, t � s⇒ t↾↑= t↾↓}

If Γ is a typing context of the form Γ = x1 : A1, x2 : A2, . . . , xn : An, we define the sequence of variables

Γ = x1, x2, . . . , xn and the type |Γ| = A1 × A2 × · · · × An, and we have:

Proposition 3 If Γ ⊢ t : A then ~Γ ⊢ t� : |Γ| → A.

This, together with prop. 1, means that we have obtained a model of Curry-style system F.

7 Hyperforests

In this section we introduce the notion of hyperforest, an arborescent structure built from games. In [dL07],
following [Hug00], we interpreted second-order types directly as hyperforests (that we called polymorphic
arenas). But the substitution was difficult to define in this context, and moves had a complicated formulation;
that is why in this paper we introduce hyperforests only as an indirect interpretation of types.

Hyperforests will be the fundamental structure for our work on isomorphisms.

7.1 Forests and hyperforests

In what follows, the set of subsets of a set E will be denoted P(E).

Definition 23 (forest) A forest is an ordered set (E,≤) such that, for every y in E, {x | x ≤ y} is finite and totally
ordered by ≤. The forest is finite if E is finite.

Definition 24 (hyperforest) An hyperforest H = (F ,R,D) is a finite forest F together with a set of hyperedges
R ⊆ F × P(F) and a partial function of decorationD : F ⇀ X, where:

• for every (t, S) ∈ R, if s ∈ S then t ≤ s andD(s) is undefined

• for every b = (t, S) and b′ = (t′, S′) in R, S ∩ S′ , ∅ ⇒ b = b′

We note TH = {t ∈ F | ∃S ⊆ F , (t, S) ∈ R} and SH = {s ∈ F | ∃(t, S) ∈ R, s ∈ S}.

Definition 25 (reference, friends) Let H = (F ,R,D) be an hyperforest. For any s ∈ F , if s ∈ SH then there exists

(t, S) ∈ R with s ∈ S: the reference of s is defined as refH(s) = t and the set of friends of s is frH(s) = S\{s}. If s < SH,

refH and frH are not defined in s.

We are now going to exhibit the hyperforest structure associated with a game A.

7.2 From partially ordered sets to forests

Let (E,≤) be a partially ordered set. The relation ⊢⊆ E ∪ (E × E) is given by:














⊢ e iff e′ ≤ e⇒ (e′ = e)

e ⊢ e′ iff e ≤ e′ ∧ ∀ f , e ≤ f ≤ e′ ⇒ (e = f ∨ e′ = f)

One defines the set F of paths in (E,≤), i.e. the set of sequences e1e2 . . . en of elements of E such that ⊢ e1

and ei ⊢ ei+1 for 1 ≤ i ≤ n − 1. If we consider the prefix ordering ≤′ on F, then (F,≤′) is a forest.
We also define the operation or : F→ E by or(f) = en if f = e1 . . . en (or(f) is called the origin of f).

16

7.3 From games to hyperforests

If A is a game,OA is a finite partially ordered set, to which one can associate a forestFA through the preceding
construction. Extending ⊢ to FA generates the enabling relation of the forest: this justifies a posteriori the
definition of an enabling relation for arbitrary moves given in section 2.

Furthermore, one deduces from LA the relation RA ⊆ FA × P(FA) as follows: let L = {a[⋆0] ∈ A | ∃a′ ∈
OA, a[⋆0] ⊑p a′}. Then :

(t, S) ∈ RA iff there exists y ∈ L such that, for every s ∈ S:

• LA(or(s)) = y
• t ≤ s
• y ⊑p or(t)
• for every t′ ≤ t, y ⊑p or(t′) implies t′ = t.

One also defines the partial functionDA : FA ⇀ X by: DA(x) = Xi iff ♯(or(x)) = i (i > 0).

Then we have:

Lemma 8 If A is a game, then HA = (FA,RA,DA) is an hyperforest.

Example: Consider the type A = ∀X1.((X1 × X2)→ (X1 × ⊥)). We have:

OA = {⋆↓l0, ⋆↓r2, ⋆↑l0, ⋆↑r0}

and:






























LA(⋆↓l0) = ⋆0

LA(⋆↓r2) = †

LA(⋆↑l0) = ⋆0

LA(⋆↑r0) = †

The paths are: a = ⋆↑l0, b = ⋆↑l0 · ⋆↓l0, c = ⋆↑l0 · ⋆↓r2, d = ⋆↑r0, e = ⋆↑r0 · ⋆↓l0 and f = ⋆↑r0 · ⋆↓r2.
Besides, L = {⋆0}.

Hence the hyperforest HA is given by:

FA = {a, b, c, d, e, f }

RA = {(a, {a, b}), (d, {e})}

DA(c) = DA(f) = X2

This can be resume in the following representation of HA:

2

a

b c e f

d

X
2

X

One can extend the definition of polarity to the nodes of the hyperforest: if A is a game with associated
hyperforest HA = (FA,RA,DA), then for a ∈ FA we define λ(a) = λ(or(a)). This coincides with an alternative
definition of polarity, which is common in arena games: λ(a) = O (resp. λ(a) = P) if the set {a′ ∈ FA | a′ ≤ a}
has an odd cardinality (resp. an even cardinality). Note also that pauxA(or(a)) = λ(refA(a)).

17

Finally, if A is a game, we note:

frA = frHA refA = refHA SA = S
HA TA = T

HA

Note that the nodes of the forest FA contain “more information” than the occurrences of OA. Indeed,
given a node c ∈ FA, one is able to give the ordered list of its ancestors, whereas for an occurrence we may
have many ancestors that are not compatible one with the order for the ordering. This idea will be used in
the proof of theorem 1 to reason about plays with nodes instead of occurrences.

8 Type isomorphisms

8.1 Isomorphisms in the model

Definition 26 (Church-isomorphism) Let H1 = (F1,R1,D1) and H2 = (F2,R2,D2) be two hyperforests. We say
that H1 and H2 are Church-isomorphic (H1 ≃Ch H2) if there exists a bijection f : F1 → F2 which preserves the
hyperforest structure, i.e. such that:

• a ≤ a′ iff f (a) ≤ f (a′)

• R2 = f (R1)

• D2 ◦ f = D1

Definition 27 (Curry-isomorphism) Let H1 = (F1,R1,D1) and H2 = (F2,R2,D2) be two hyperforests. We say
that H1 and H2 are Curry-isomorphic (H1 ≃Cu H2) if there exists a bijection f : F1 → F2 such that:

• a ≤ a′ iff f (a) ≤ f (a′)

• SH2 = f (SH1)

• for every (t, S) ∈ R1 (resp. (t, S) ∈ R2), if there exists s ∈ S such that λ(s) , λ(t), then (f (t), f (S)) ∈ R2 (resp.
(f−1(t), f−1(S)) ∈ R1)

• D2 ◦ f = D1.

Definition 28 (game isomorphism) A game isomorphism between two games A and B is a couple of untyped
strategies σ : A → B and τ : B → A such that σ; τ = τ; σ = id. We note A ≃g B if there is a game isomorphism
between A and B.

We are now able to formulate the key theorem of our paper. This theorem provides a geometrical
characterisation of isomorphisms in the model, which is the core of the proof of equational characterisation
for the syntax.

Theorem 1 Let A,B ∈ G. If there exists a game isomorphism (σ, τ) between A and B (A ≃g B) then their hyperforests
are Curry-isomorphic (HA ≃Cu HB).

The proof of this theorem can be found in appendix B.

18

8.2 Characterisation of Curry-style type isomorphisms

Proving theorem 1 was the main step towards the characterisation of Curry-style isomorphisms: we are
now able to establish our final result.

Let us recall the equational system ≃ε which we claim to characterise Curry-style type isomorphisms:

A × B ≃ε B × A

A × (B × C) ≃ε (A × B) × C

A→ (B→ C) ≃ε (A × B)→ C

A→ (B × C) ≃ε (A→ B) × (A→ C)

∀X.∀Y.A ≃ε ∀Y.∀X.A

A→ ∀X.B ≃ε ∀X.(A→ B) if X < FTV(A)

∀X.(A × B) ≃ε ∀X.A × ∀X.B

∀X.A ≃ε A[∀Y.Y/X] if X < NegA

Lemma 9 Let A and B be two types such that the hyperforests HA and HB are Curry-isomorphic. Then A and B are
equal up to the equational system ≃ε.

P: Let A′ and B′ be the normal forms of A and B for the following rewriting system:

∀X.C⇒ C[∀Y.Y/X] if X < NegC and C , X

If D1 = ∀X.C and D2 = C[∀Y.Y/X] with X < NegC, then HD1
≃Cu HD2

: indeed, the bijection f : FD1
→ FD2

which preserves the ordering and such that SD2
= f (SD1

) andDD2
◦ f =D1 is easy to define (in factOD1

and
OD2

are already in bijection). The fact that X < NegC precisely implies that, for any (t, S) ∈ RD1
corresponding

to the quantification ∀X (i.e. such thatL∀X.A(or(s)) = ⋆0 for every s ∈ S), there is no s ∈ S such that λ(s) , λ(t).
Reciprocally, if for any (t, S) ∈ RD2

corresponding to a quantification ∀Y.Y, S = {t} so there is no s ∈ S such
that λ(s) , λ(t). Any other hyperedge is preserved by f .

Moreover, being Curry-isomorphic is a congruence (i.e. it is preserved by context), so HA ≃Cu HA′ ,
HB ≃Cu HB′ , and hence HA′ ≃Cu HB′ . HA′ and HB′ are such that for every (t, S) ∈ RA′ (or (t, S) ∈ RB′), either
S = {t} or S contains a node s with λ(t) , λ(s). Because of the definitions of ≃Cu and ≃Ch, this implies
HA′ ≃Ch HB′ .

It has already been proved in [dL07]6 that in this case A′ ≃′ε B′, where ≃′ε is the same equational system
as ≃ε, except that it does not make use of the last equation. Hence, we have A ≃ε B. �

Theorem 2 Two types A and B are isomorphic in Curry-style system F if and only if A ≃ε B.

P: The implication comes from the fact that we have a model (so, each type isomorphism in
Curry-style system F implies a game isomorphism) and from theorem 1 and lemma 9.

For the reciprocal, we already know from [DC95] the existence in the Church-style system F of the
isomorphisms corresponding to each equation of ≃ε, except the last one (∀X.A ≃ε A[∀Y.Y/X] if X < NegA).
This implies their existence in the Curry-style system F.

Hence, we need, given a type A such that X < NegA, to find two Curry-style terms t : ∀X.A→ A[∀Y.Y/X]
and u : A[∀Y.Y/X]→ ∀X.A which compose in both ways to give the identity. We suppose Y does not appear
at all in A, even as a bounded variable.

We take t = λx.x: indeed, the identity can be shown to be of type ∀X.A → A[∀Y.Y/X] through the
following type derivation:

x : ∀X.A ⊢ x : ∀X.A
x : ∀X.A ⊢ x : A[∀Y.Y/X]

⊢ λx.x : ∀X.A→ A[∀Y.Y/X]

6In [dL07] the interpretation of types was directly hyperforests.

19

t is easy to build: consider the Church-style term M = λx∀X.A.(x){∀Y.Y}. We have ⊢M : ∀X.A→ A[∀Y.Y/X]
in Church-style system F, and t is the λ-term obtained by erasing each type indication in M. Then we
necessarily have ⊢ t : ∀X.A→ A[∀Y.Y/X], and besides t = λx.x.

To define u, let us consider the Church-style term P which is the η-long normal form of the identity on
A[∀Y.Y/X]. This term takes the form P = λxA[∀Y.Y/X].P′. Now consider the Church-style term Q obtained
from P′ by replacing each occurrence of y{Z}, where Z is some type variable and y has the type ∀Y.Y
coming from the substitution of X, by y{X}. For example, if A = X → ⊥ → ⊥, this would give us
Q = (x)λy(∀Y.Y)→⊥.(y)λz∀Y.Y.(z){X}

Then we introduce the Church-style term N = λxA[∀Y.Y/X].ΛX.Q, and we can check that ⊢ N : A[∀Y.Y/X]→
∀X.A in Church-style system F. u is now defined to be the erasure of N. Then we necessarily have ⊢ u :
A[∀Y.Y/X] → ∀X.A, and besides u = λx.x (modulo η-reductions) because we only modified the type
indications when going from P to N.

Finally, t and u trivially compose to give the identity in both directions. �

Conclusion

We have proved that type isomorphisms in Curry-style system F can be characterised by adding to the
equational system of Church-style system F isomorphisms a new, non-trivial equation: ∀X.A ≃ε A[∀Y.Y/X]
if X < NegA. Otherwise said, this equation characterises all the new type equivalences one can generate by
erasing type indications in Church-style terms.

We used a game semantics model in order to take advantage of its dynamical and geometrical properties.
The main features of the model were however often inspired by a precise analysis of the syntax: indeed, an
interpretation of the quantifier as an intersection (or a lower bound like in [Chr03]) was not precise enough
to be able to characterise type isomorphisms.

One can notice that our type system does not contain the type ⊤; correspondingly, our model has no
empty game. This is because the rule generally associated to ⊤ takes the form: t = ⋆ if Γ ⊢ t : ⊤. This rule is
of course difficult to insert in a Curry-style setting, where terms are not typed a priori, and we have no clue
whether such a rule can be adapted to this context. Anyway, the introduction of an empty game in the model
would break the proof and, more interestingly, give raise to new isomorphisms like ∀X.(X→ ⊥) ≃g ⊥. The
characterisation of isomorphisms in this model, and the possible connection with an actual syntax, have to
be explored.

But the main trail of future exploration concerns parametric polymorphism. The notion of relational
parametricity, introduced by Reynolds [Rey83], comes historically from the idea that a second-order function
shall not depend on the type at which it is instantiated. This has led first to a semantic definition of
parametricity, then to a syntactic formalisation of this notion, first by Abadi-Cardelli-Curien [ACC93] and
then by Plotkin-Abadi [PA93]. Dunphy [Dun02] recently gave a categorical characterisation of parametric
polymorphism.

The great advantage of parametric models is that second-order enjoys nice and natural properties in
these models. For example:

• ∀X.X→ X is a terminal object

• ∀X.(A→ B→ X)→ X is a product of A and B

• ∀X.X is an initial object

• ∀X.(A→ X)→ (B→ X)→ X is a coproduct of A and B.

All these properties are of course wrong in the model described in the present paper.
Trying to build a parametric game model is a highly appealing challenge: one would be glad to extend the

concrete notions and flexible features of games into a context where parametricity is understood. Studying
isomorphisms in this context would be a natural question, considering the particularly powerful ones
corresponding to the above properties.

20

Finally, relational parametricity seems to be related to Curry-style system F, if we believe in a conjecture
of Abadi-Cardelli-Curien which says the following: suppose you have two terms of type A whose type
erasures are the same. Then they are parametrically equal (the converse is false). This means that the
parametric equality is (strictly) stronger than the Curry-style equality: the study on both Curry-style system
F and parametricity in the context of games may help to explore this question.

References

[ACC93] Martin Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric polymorphism. Theo-
retical Computer Science, 121:9–58, 1993.

[AJ03] Samson Abramsky and Radha Jagadeesan. A game semantics for generic polymorphism. In
Andrew D. Gordon, editor, Foundations of Software Science and Computational Structures, volume
2620 of LNCS, pages 1–22. Springer, 2003.

[AJM00] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF. Infor-
mation and Computation, 163(2):409–470, December 2000.

[AM99] Samson Abramsky and Guy McCusker. Full abstraction for idealized algol with passive expres-
sions. Theoretical Computer Science, 227:3–42, September 1999.

[BP01] Gilles Barthe and Olivier Pons. Type isomorphisms and proof reuse in dependent type theory.
In F. Honsell and M. Miculan, editors, Foundations of Software Science and Computation Structures,
volume 2030 of LNCS, 2001.

[Chr03] Julius Chroboczek. Game Semantics and Subtyping. Ph.D. thesis, University of Edinburgh, 2003.

[DC95] Roberto Di Cosmo. Isomorphisms of Types. Progress in Theoretical Computer Science. Birkhäuser,
1995.

[dL07] Joachim de Lataillade. Second-order type isomorphisms through game semantics. To appear
in Annals of Pure and Applied Logic, Special Issue on Game Semantics, 2007. Available at
http://www.pps.jussieu.fr/∼delatail/isotypes.pdf .

[Dun02] Brian Patrick Dunphy. Parametricity as a notion of uniformity in reflexive graphs. Ph.D. thesis,
University of Illinois, 2002.

[HO00] Martin Hyland and Luke Ong. On full abstraction for PCF. Information and Computation, 163(2):285–
408, December 2000.

[Hug00] Dominic Hughes. Hypergame semantics: full completeness for system F. D.Phil. thesis, Oxford
University, 2000.

[Lai97] James Laird. Full abstraction for functional languages with control. In Proceedings of the twelfth
annual symposium on Logic In Computer Science, pages 58–67, Warsaw, June 1997. IEEE, IEEE
Computer Society Press.

[Lau05] Olivier Laurent. Classical isomorphisms of types. Mathematical Structures in Computer Science,
15(5):969–1004, October 2005.

[MO01] Andrzej Murawski and Luke Ong. Evolving games and essential nets for affine polymorphism.
In Samson Abramsky, editor, Typed Lambda Calculi and Applications ’01, volume 2044 of LNCS.
Springer, 2001.

21

[PA93] Gordon Plotkin and Martín Abadi. A logic for parametric polymorphism. In M. Bezem and J. F.
Groote, editors, International Conference on Typed Lambda Calculi and Applications, pages 361–375,
Utrecht, The Netherlands, 1993. Springer-Verlag.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In International Federation
for Information Processing Congress, pages 513–523, 1983.

[Rit91] Mikael Rittri. Using types as search keys in function libraries. Journal of Functional Programming,
1(1):71–89, 1991.

22

A Uniform strategies compose

Proposition 2 If σ :: A→ B and τ :: B→ C are two uniform strategies then σ; τ :: A→ C is uniform.

P: Consider the following strategy

ρ̄ = {u↾↑,↓↓| u ∈ Int ∧ u↾↓↑,↓↓∈ σ ∧ u↾↑,↓↑∈ τ ∧ u↾↑,↓↓ symbolic play}

It is an innocent strategy on A→ C (the proof is the same as in HON models), and it is of course symbolic.
We call ρ its copycat extension, and we want to prove that ρ = σ; τ.

First we prove that ρ ⊆ σ; τ: as ρ̄ ⊆ σ; τ, we need to show that σ; τ is stable by any copycat extension
along any index j. Note that, if the variable game X j is played by O in A → C, it is also played by O in
A → B or B → C. Consider the play s′ = Flsj,D(r) for s = m1 . . .mn ∈ σ; τ, D ∈ G and r sequence of initial

move inMD. One shows that s′ ∈ σ; τ: indeed there exist a justified sequence u and two plays s1 ∈ σ and
s2 ∈ τ such that u↾↓↑,↓↓= s1, u↾↑,↓↑= s2 and u↾↑,↓↓= s. Let us consider the justified sequence U0 obtained
from u by replacing each sequence mib1 . . . bqmi+1 by mi[ri]b1[ri] . . . bq[ri]mi+1[ri], and set U = U0[D/ j]. Then
U↾↓↑,↓↓= s′

1
∈ σ (it is a flat extension, hence a copycat extension, of s1), U↾↑,↓↑∈ τ (it is a flat extension, hence

a copycat extension, of s2) and U↾↑,↓↓= s′ ∈ σ; τ.
Now consider a move mi of s such that ♯(mi) = j and a bi-view v = n1 . . .np in the game D, and set

S = CCs
j,D(i, v, r). If U = U1m′

i
[ri]b1[ri] . . . bq[ri]m

′
i+1

[ri]U2 with m′
i
= mi[D/ j] and m′

i+1
= mi+1[D/ j], one can

build another justified sequence U′, depending on the value of p:

• if p = 1, U′ = U1m′
i
[n1]b1[n1] . . . bq[n1]m′

i+1
[n1]U2

• if p even,
U′ = U1m′

i
[n1]b1[n1] . . . bq[n1]m′

i+1
[n1]m′

i+1
[n2]bq[n2] . . . b1[n2]m′

i
[n2]m′

i+1
[np]bq[np] . . . b1[np]m′

i
[np]

• if p odd and p > 1,
U′ = U1m′

i
[n1]b1[n1] . . . bq[n1]m′

i+1
[n1]m′

i+1
[n2]bq[n2] . . . b1[n2]m′

i
[n2]m′

i
[np]b1[np] . . . bq[np]m′

i+1
[np]

U′↾↓↑,↓↓ is a copycat extension of s1 (s′
1

was the flat extension) so U′↾↓↑,↓↓∈ σ, and similarly U′↾↑,↓↑∈ τ.
U′↾↑,↓↓ is a play so U′↾↑,↓↓= S ∈ σ; τ.

The last thing to prove is that σ; τ ⊆ ρ. We suppose that σ and τ are the copycat extensions of the
symbolic strategies σ̄ and τ̄ respectively. Consider a play s ∈ σ; τ, there exists a justified sequence u for
which u↾↓↑,↓↓= s1 ∈ σ, u↾↑,↓↑= s2 ∈ τ and u↾↑,↓↓= s.

Let D1, . . . ,DN be the sequence of games played by O in u at the level of moves of shape ↑ or ↓↓. Suppose
for simplicity that X1, . . . ,XN < FTV(A). Consider a subsequence U = m[m1]b1[m2] . . . bq[mq+1]n[mq+2] of u
such that: A(m),A(b1), . . . ,A(bq),A(n) ∈ O(A→B)→C, paux(A→B)→C(c) = O if c = A(m), and b1, . . . , bq are of
shape ↓↑ whereas m, n are not of this shape. Suppose U is the first such sequence in u and m is of shape ↑
(the case where m is of shape ↓↓ is similar). Then m

L(A→B)→C(c) = D j for some 1 ≤ j ≤ N (it is a game played by

O, because paux(A→B)→C(c) = O).
If u = u1Uu2, we build a new sequence u′ as follows:

• t1 = (u1m[m1]b1[m2]) ↾↓↑,↓↓∈ σ is a D j-copycat extension of some s̄1 ∈ σ: indeed, σ is the smallest
innocent strategy that contains O and is stable by copycat extension, so t1 must be composed of many
views that are obtained from σ̄ by copycat extensions; besides, U is the first subsequence of its kind,
so there is in fact only one of these copycat extensions that applies on a variable played at the level of
a move of shape ↑ or ↓↓ (so, only one B j-extension). s̄1 takes the form s̄1 = (u′

1
m[j]b1[M1])↾↓↑,↓↓ where

u′
1

is obtained by replacing each occurrence of D j in u1 by X j

• t2 = (u1b1[m2]b2[m3])↾↑,↓↑∈ τ is a D j-copycat extension of some s̄2 ∈ τ: indeed, τ is the smallest innocent
strategy that contains O and is stable by copycat extension, so t2 must be composed of many views
that are obtained from τ̄ by copycat extensions; besides, U is the first subsequence of its kind, so there
is in fact only one of these copycat extensions that applies on a variable played at the level of a move
of shape ↑ or ↓↓ (so, only one B j-extension). s̄2 takes the form s̄2 = (u′

1
m[j]b1[M1])↾↑,↓↑

23

• we iterate this process until we get to n[Mq+1] for some Mq+1: this gives us a justified sequence u′ on
(A→ B)→ C which can be copycat extended to u1U, and such that u′↾↓↑,↓↓∈ σ, u′↾↑,↓↑∈ τ.

Now we iterate this process for each subsequence of u having the same properties as U, and what we obtain
is a justified sequence u′′ on (A→ B)→ C such that u′↾↓↑,↓↓∈ σ, u′↾↑,↓↑∈ τ and t = u′′↾↑,↓↓ is a play. Moreover
each D j has been replaced by X j (it might actually not be the case if some D j did not correspond to any of
our sequences, but in this case we just replace D j by X j harmlessly), so t ∈ ρ̄.

Finally, u can be obtained from u′′ by copycat extension, so s can be obtained from t by copycat extension.
Hence, s ∈ ρ. �

B Proof of A ≃g B⇒ HA ≃Cu HB

Definition 29 (zig-zag play) A play s of arrow shape is said to be zig-zag if
• each Player move following an Opponent move of the form ↑m (resp. ↓m) has the form ↓m′ (resp. ↑m′)
• each (Player) move which follows an (Opponent) initial move is justified by it
• s↾↑ and s↾↓ have the same pointers.

If s is a zig-zag even-length play, we note s̆ the unique zig-zag play such that s̆↾↑= s↾↓ and s̆↾↓= s↾↑.

Theorem 1 Let A,B ∈ G. If there exists a game isomorphism (σ, τ) between A and B (A ≃g B) then their hyperforests
are Curry-isomorphic (HA ≃Cu HB).

P: For the sake of simplicity, we will throughout this proof identify the nodes of FA (resp. of FB)
with the corresponding nodes of FA→B.

Zig-zag property

Let σ : A→ B and τ : B→ A be the untyped strategies which form the game isomorphism, and let σ̃ :: A→ B
and τ̃ :: B→ A be two realizations of σ and τ, respectively on A→ B and B→ A.

We begin with the following:
• every play of σ or τ is zig-zag
• τ = {s̆ | s ∈ σ}
• σ and τ are total on the shape {↑, ↓}.
This has been proven in a simply typed context, i.e. with strategies playing on forests, in [Lau05]. The

present situation is actually a particular case of the simply typed one where the two forests to consider
are universal (in the sense that they contain any move). Totality for universal forests immediately implies
totality on the arrow shape.

One consequence of totality on the arrow shape is that, whenever s ∈ σ̃, we have erase(s) ∈ σ.

Copycat property

We now prove the following:

if sm1[m′
1
]m2[m′2] ∈ σ̃ withA(m1),A(m2) ∈ OA→B, then erase(m′

1
) = erase(m′2)

We call it the copycat property. Note that this property will hold only because (σ, τ) is a game isomor-
phism, it is not true in general.

24

First consider the case where S = sm1[m′
1
]m2[m′2] is symbolic. We note u = erase(S) and we have u ∈ σ

and v = ŭ ∈ τ. We will prove by recurrence that erase(m′
1
) = erase(m′2), and that it is possible to build a play

T ∈ τ̃ such that erase(T) is a copycat extension of v. So, suppose this is true for every t ∈ E such that t � s.

We set















x1 = erase(m1)

x2 = erase(m2)
,















a1 =A(m1)

a2 =A(m2)
,















x′
1
= erase(m′

1
)

x′2 = erase(m′2)
and















a′
1
= A(m′

1
)

b′2 =A(m′2)

We have three cases:

• if pauxA→B(a1) is undefined (so that m′
1
= 0), suppose m′

2
, 0: then pauxA→B(a2) = P (because ♯(m′

2
) = 0

and O has only played symbolically), so pauxB→A(a2) = O. As we have T′ ∈ τ̃ such that t′ = erase(T′)
is a copycat extension of t (so t′ ∈ τ by hyperuniformity), one can build T′m2[j] ∈ PB→A for some j , 0
(remember O plays symbolically), so by definition of the realization there exists N ∈ MB→A such that
T′m2[j]N ∈ τ̃. Then t′x2[j]y ∈ τwith y = erase(N) and ♯(y) = j, so by hyperuniformity t′x2[x′2]y[x′2] ∈ τ:
this breaks determinacy since tx2[x′2]x1[0] ∈ τ implies t′x2[x′2]x1[0] ∈ τ by hyperuniformity, so m′2 , 0
is impossible. Finally, we have T′′ = T′m2[0]m1[0] ∈ τ̃ with erase(T′′) copycat extension of v.

• if pauxA→B(a1) = O, then sm1[j]m2[M[j]] ∈ σ̃ for some j such that X j < FTV(A), so pauxA→B(a2) is
defined. The case pauxA→B(a2) = P implies pauxB→A(a2) = O; as we have T′ ∈ τ̃ such that t′ = erase(T′)
copycat extension of t (so t′ ∈ τ by hyperuniformity), there exists k such that T′m2[k] ∈ PB→A so
T′m2[k]N[N′] ∈ τ̃ for some typed moves N,N′ with A(N) ∈ OB→A. Hence t′x2[k]y[y′[k]] ∈ τ with
y = erase(N) and y′ = erase(N′), and by hyperuniformity t′x2[x′2]y[y′[x′2]] ∈ τ. But tx2[x′2]x1[j] ∈ τ
implies t′x2[x′

2
]x1[j] ∈ τ by hyperuniformity, so y′[x′

2
] = j (hence x′

2
= j) and y[j] = x1[j].

The case pauxA→B(a2) = O directly implies M[j] = j. One still has to build in this case the play T ∈ τ̃
such that erase(T) is a copycat extension of v: we have T′ ∈ τ̃ such that t′ = erase(T′) copycat extension
of t (so t′ ∈ τ by hyperuniformity); moreover, if D = m2

LA(a2) then there is at least one initial move

M[j] ∈ MD. So, T′m2[M[j]] ∈ PB→A, and then T = T′m2[M[j]]N[N′] ∈ τ̃ for some typed moves N,N′

with A(N) ∈ OB→A. Hence t′x2[z]y[y′] ∈ τ with z = erase(M), y = erase(N) and y′ = erase(N′). But
tx2[j]x1[j] ∈ τ implies t′x2[z]x1[z] by hyperuniformity, so by determinacy erase(T) = t′x2[z]x1[z]: it is a
copycat extension of v.

• if pauxA→B(a1) = P, then pauxB→A(a1) = O. As we have T′ ∈ τ̃ such that t′ = erase(T′) copycat extension
of t, one can build as above T′m2[M] ∈ PB→A for some typed move M (if D = m2

LA(a2) then there is at

least one initial move M ∈ MD), so T′m2[M]N[N′] ∈ τ̃ for some N,N′ with A(N) = c ∈ OB→A. We
set y = erase(M), z = erase(N) and z′ = erase(N′). There are two possibilities: if pauxA→B(a2) = O,
then M = j for some j. As tx2[j]x1[x′

1
] ∈ τ, one has t′x2[y]x1[x′

1
[y]] ∈ τ by hyperuniformity, so

x1[x′
1
[y]] = z[z′] by determinacy. This means z[j] = x1[j], so pauxB→A(c) = O. Hence z′[k] = k, and so

y[k] = x′
1
[k] = k. If pauxA→B(a2) = P, then pauxB→A(a2) = O so y = j for some j. As tx2[k]z[z′[k]] ∈ τ,

one has t′x2[x′2]z[z′[x′2]] ∈ τ by hyperuniformity, so z[z′[x′2]] = x1[x′
1
] by determinacy. This means

z[k] = x1[k], so pauxB→A(c) = O. Then z′[k] = k, so x′
1
= x′2.

Finally, if S is not symbolic, there exists a symbolic play S′ = s′M1[M′
1
]M2[M′

2
] ∈ σ̃ whose S is a copycat

extension. So erase(M′
1
) = erase(M′

2) and erase(m′
1
) = erase(m′2) because of the definition of the copycat

extension.

Construction of the untyped copycat play

Let a be a node of FA and a1, . . . , ap be the sequence of nodes of FA such that ⊢ a1, ai ⊢ ai+1 and ap = a. We are
going to construct a function f : FA → FB such that, for any i ∈N:

E′(f (a1))[i]E′(a1)[i]E′(a2)[i]E′(f (a2))[i]E′(f (a3))[i]E′(a3)[i] · · · ∈ σ

where E′ = E ◦ or : FA ∪ FB → X.

25

The construction of f will use the determinacy of σ and τ, which generates a unique move starting from
a play with its complete history (not just the last move). That is why we could not work with a function
f ′ : OA → OB, because in that case, the choice of f ′(a) would depend not only on a, but also on the choice
of the ancestors. As said at the end of section 7, the information contained in a node c ∈ FA is precisely
the node or(c) ∈ OA plus its ancestors: so, the forests are the good structure to ensure that the function f
is well-defined. Having this in mind, one can identify or(ai) (resp. or(f (ai))) with ai (resp. f (ai)), and try to
prove: E(f (a1))[i]E(a1)[i]E(a2)[i]E(f (a2))[i]E(f (a3))[i]E(a3)[i] · · · ∈ σ.

Moreover, by the property of non-ambiguity (cf. def. 11), one has, for any b in FA (resp. in FB):
E(ai) = E(b) ⇒ b = ai (resp. E(f (ai)) = E(b) ⇒ b = f (ai)). That is why we will also identify ai (resp. f (ai))
with E(ai) (resp. E(f (ai))). What has to be proved is then:

f (a1)[i]a1[i]a2[i] f (a2)[i] f (a3)[i]a3[i] · · · ∈ σ

If p = 1, we build a symbolic play s = m1 ∈ PB→A such that erase(m1) = a1[i] for Xi =
m1

LB→A(a1) . Let b be the

only untyped move such that a1[i]b ∈ τ (which exists by totality of τ). τ̃ being a realisation of τ, there must
be a play m1M ∈ τ̃ with erase(M) = b, and we have a decomposition M = m2[m′

2
] with A(m2) = c ∈ OB→A.

We choose f (a1) = c, and we have erase(m′2) = i because of the copycat property.

If p = p′ + 1 with p′ odd, we have by induction hypothesis: f (a1)[i]a1[i]a2[i] f (a2)[i] . . . f (ap′)[i]ap′[i] ∈ σ,
and by totality of σ there exists a unique move x such that f (a1)[i]a1[i]a2[i] f (a2)[i] . . . f (ap′)[i]ap′[i]ap[i]x ∈ σ.
One is able to build inductively a play S ∈ σ such that erase(S) = f (a1)[y1]a1[y1] . . . f (ap′)[yp′]ap′[yp′] for a
good choice of the moves yk: indeed, if S′ ∈ σ with erase(S′) = f (a1)[y1]a1[y1] . . . f (ak)[yk]ak[yk] (the case
erase(S′) = f (a1)[y1]a1[y1] . . . ak[yk] f (ak)[yk] is similar), we choose a move M = m1[m2] withA(m1) = ak+1 and
m2 initial move ofMD where D = m1

LA→B(ak+1) ; we note erase(mk+1) = yk+1. σ̃ being a realisation of σ, we have

S′MM′ ∈ σ̃ for some typed move M′, and erase(M′) = ak+1[yk+1] by hyperuniformity of σ. Hence we have
obtained S = S′MM′ ∈ σ̃ such that erase(S) = f (a1)[y1]a1[y1] . . . ak+1[yk+1] f (ak+1)[yk+1] for some yk+1

7.
Then one chooses a typed move N such that tN ∈ PA→B and erase(M) = ap[yp] for some initial move yp

(it suffices once again to choose yp as initial inMD for the appropriate game D).
As f (a1)[y1]a1[y1] . . . f (ap′)[yp′]ap′[yp′]ap[yp]x[yp] ∈ σ by hyperuniformity, we have tNN′ ∈ σ̃ for some N′

with erase(N′) = x[yp]. So x = b[z] with b ∈ OA→B, and we choose f (ap) = b. By the copycat property
z[yp] = yp, so z[i] = i: this means f (a1)[i]a1[i]a2[i] f (a2)[i] . . . ap[i] f (ap)[i] ∈ σ.

If p = p′ + 1 with p′ even, one can do the same reasoning by using τ instead of σ.

In the same way, one can associate a function g with τ and easily verify that f ◦ g is the identity on OB

and g ◦ f is the identity on OA, so f is a bijection. Moreover, by construction, if a ≤ a′ then f (a) ≤ f (a′).

Construction of the typed copycat play

To prove that f satisfies the requirements of a Curry-isomorphism, we will construct a play sp ∈ σ̃ such that

erase(sp) = tp, where tp =















f (a1)[y1]a1[y1]a2[y2] f (a2)[y2] . . . f (ap)[yp]ap[yp] if p odd

f (a1)[y1]a1[y1]a2[y2] f (a2)[y2] . . . ap[yp] f (ap)[yp] if p even

for an appropriate choice of the moves yi. Moreover, one will have sp = sp−1m1[m2]M′ where A(m1) = c ∈
OA→B and erase(m2) = yp uniquely determined by D = m1

LA→B(c) .

In the plays sp, we will use the games (C j) j∈N defined by: C1 = ⊥ ×⊥ and C j+1 = C j × C j. Note that each
initial move of C j takes the form b1(b2(. . . (b j(0)) . . .)), where each bi can be either r or l. We call r j the initial
move of C j where each bi is equal to r. These games will be used in order to have “fresh” moves, i.e. moves
that cannot come from a game defined before C j is played. In what follows, the integer np is made to ensure
that no game defined before step p can belong to Cq for q ≥ p.

We now build the triple (sp, yp, np) inductively:
7In the next part of the proof we will also build a typed play sp ∈ σ̃ such that erase(sp) = f (a1)[y1]a1[y1] . . . f (ap)[yp]ap[yp], but there

will be more constraints on sp.

26

• If p = 1, we define the typed move M1 = m1[m2] such that: A(m1) = f (a1), the d1 games played at
the level of m1 are C1, . . . ,Cd1

and we choose m2 = ♯(f (a1)) if pauxA→B(f (a1)) is undefined, m2 = r j if
m1

LA→B(f (a1)) = C j. As M1 ∈ PA→B and σ̃ is a realization of σ, there exists M′
1

such that M1M′
1
∈ σ̃ and

erase(M1M′
1
) = f (a1)[y1]a1[y1], where y1 = erase(m2). We choose s1 = M1M′

1
. Let us define N as the

biggest number of tokens r in any initial occurrence of a game D defined at the level of M′
1
. We choose

n1 = max(d1,N) + 1.

• If p = p′ + 1 with p′ odd, we define the typed move Mp = m1[m2] such that: erase(m1) = f (ap), the dp

games defined at the level of m1 are Cnp′
, . . . ,Cnp′+dp

and m2 is chosen as follows:

– if pauxA→B(f (ap)) is undefined, m2 = ♯(f (ap))

– if pauxA→B(f (ap)) = O, m2 = r j if m1

LA→B(f (ap)) = C j

– if pauxA→B(f (ap)) = P, let D = m1

LA→B(f (ap)) . Either there exists c ∈ OD such that ⊢ c and LD(c) , †,

and in this case one chooses m2 = m′2[m′3] with A(m′2) = c,
m′

2

LD(c) = ⊥ × ⊥ and m′3 = l0; we note

rD = erase(m2) 8, and we require that rD is a function of D; or there exists no such c and in this
case we choose m2 such thatA(m2) is one of the initial occurrences of D: we just require that this
choice is a function of D, and note it rD.

As sp′Mp ∈ PA→B and σ̃ is a realization of σ, there exists M′
p such that sp′MpM′

p ∈ σ̃ and erase(sp′MpM′
p) =

tp if yp = erase(m2). We choose sp = sp′MpM′
p. Let us define N as the biggest number of tokens r in any

initial occurrence of a game D defined at the level of M′
p. We choose np = max(np′ + dp,N) + 1.

• If p = p′ + 1 with p′ odd, we do the same choices as in the preceding case, except that f (ap) must be
replaced by ap, and conversely.

Suppose pauxA→B(ap) is defined, then refA→B(ap) = b is also defined. It is important for the next section
of the proof to understand the link between b and the play sp. First, note that b = ai for some 1 ≤ i ≤ p;
then, because of the definition of the set RA→B of hyperedges, we know that ai is the minimal occurrence c of
OA→B such that LA→B(ap) is a prefix of c. Hence, if Mi (resp. Mp) is the move in sp such that erase(Mi) = ai[yi]

(resp. erase(Mp) = ap[yp]) and if D =
Mp

LA→B(ap) , then the game D is played by pauxA→B(ap) at the level of Mi.

So, in the construction of sp, D has been played at step i.

We also need to build a play up ∈ τ̃ such that erase(up) = vp, where

vp =















a1[y′
1
] f (a1)[y′

1
] f (a2)[y′2]a2[y′2] . . . ap′[yp′] f (ap′)[yp′] if p odd

a1[y′
1
] f (a1)[y′

1
] f (a2)[y′2]a2[y′2] . . . f (ap)[y′p]ap[y′p] if p even

for an appropriate choice of the moves

y′
i
.

The procedure is similar (we just need to swap σ and τ). Note that we do not have in general up = s̆p, or
even erase(up) = w̆p with wp = erase(sp), because the untyped moves yi and y′

i
may differ.

Curry-isomorphism

We are now going to prove that the bijection f satisfies each requirement of a Curry-isomorphism.

We first prove that DB ◦ f = DA: suppose DA(ap) = Xi, then sp = sp−1MM′ with erase(M) = ap[i] and
erase(M′) = f (ap)[i]; likewise, up = up−1NN′ with erase(N) = f (ap)[i] and erase(M′) = ap[i]. If pauxA→B(f (ap)) =
O then one should have i = r j for some j by construction of sp, which is impossible. If pauxA→B(f (ap)) = P
then pauxB→A(f (ap)) = O and one should have i = r j for some j by construction of up, which is impossible.
Then pauxA→B(f (ap)) is not defined, and ♯(f (ap)) = i which means DB(f (ap)) = Xi. Similarly, DB(f (ap)) = Xi

impliesDA(ap) = Xi as well.

8In this case, m2 is precisely built in such a way that we cannot have rD = r j for any j.

27

We then prove that f (SA) = SB: if ap ∈ S with (t, S) ∈ RA for some t, suppose LA→B(f (ap)) = †. If
pauxA→B(ap) = O then sp = sp−1MM′ with erase(M) = ap[yp] and erase(M′) = f (ap)[yp], and one should
have yp = r j for some j by construction of sp. But this is impossible since LA→B(f (ap)) = † implies
A(M′) ∈ OA→B, so yp ∈ N. If pauxA→B(ap) = P then pauxB→A(ap) = O, up = up−1NN′ with erase(N) = f (ap)[yp]
and erase(N′) = ap[yp] and one should have yp = r j for some j by construction of up. But this is impossible
since LA→B(f (ap)) = † impliesA(N) ∈ OA→B, so yp ∈N.

Finally, we need to prove the following: for every (t, S) ∈ RA, if there exists c ∈ S such that λ(c) , λ(t),
then (f (t), f (S)) ∈ RB (the reciprocal would be done similarly). Let us take a1, . . . , ap the sequence of nodes
such that: ⊢ a1, ai ⊢ ai+1 and ap = c. We necessarily have t = ai for some i ≤ p.

First we prove that refB(f (ap)) = f (ai): suppose that it is false, then refB(f (ap)) = f (a j) with j , i. First
take j < i: if pauxA→B(ap) = O, then f (ap) is an O-move on A → B, so sp = SMpM′

p where: Mp = m1[m2],

A(m1) = f (ap) and m1

LA→B(f (ap)) = D for some D chosen at step j; and M′
p = m′

1
[m′2],A(m′

1
) = ap and

m′
1

LA→B(ap) = Ck′

for some k′ ≥ ni−1. So we should have yp = rk to be the move we choose in D, which is impossible by
construction of ni−1. If pauxA→B(ap) = P, we simply note that pauxB→A(ap) = O and do the same reasoning
with up in B→ A. In the case where i < j, the reasoning is similar: if pauxA→B(ap) = P, then sp = SMpM′

p where:

Mp = m1[m2],A(m1) = ap and m1

LA→B(ap) = D for some D chosen at step i; and M′
p = m′

1
[m′2],A(m′

1
) = f (ap) and

m′
1

LA→B(f (ap)) = Ck′ for some k′ ≥ n j−1. This leads to a contradiction. If pauxA→B(f (ap)) = P, we work on B→ A.

Let us now have b ∈ frA(ap), and suppose that f (b) < frB f (ap). By what has been proved before we know
that pauxA→B(f (b)) is defined, but also that refB(f (b)) has the same polarity as refA(b): indeed, if pauxA(b) , λ(b)
then refB(f (b)) = f (refA(b)), so λ(refB(f (b))) = λ(f (refA(b))) = λ(refA(b)); similarly, if pauxB(f (b)) , λ(f (b)) then
refA(b) = f−1(refB(f (b))), so λ(refA(b)) = λ(f−1(refB(f (b)))) = λ(refB(f (b))). Finally, if pauxA(b) = λ(b) and
pauxB(f (b)) = λ(f (b)) then pauxA(b) = pauxB(f (b)) because b and f (b) have the same polarity. Then, in all
cases, paux(b) = paux(f (b)).

We consider that pauxA→B(f (b)) = O (if not, one works with up on B → A), so pauxA→B(ap) = P and

sp = sp−1m1[m2]m′
1
[m′

2
] with

m′
1

LA→B(f (ap)) = Ck for some k. Let D = m1

LA→B(ap) , we necessarily have that yp =

rk = erase(rD). But a problem arises with b and f (b): as a first case, suppose that b has the polarity
P in A. Then there is a play s′q = s′

q−1
M1[M2]M′

1
[M′

2] in σ̃ constructed the same way as sp, such that

erase(s′q) = erase(s′
q−1

)b[y′q] f (b)[y′q], and where M1

LA→B(b) = D and
M′

1

LA→B(f (b)) = Ck′ with k′ , k. Then we should

have y′q = erase(rD) occurrence of Ck′ , so rk = rk′ which is impossible.
The second case is where b has the polarity O in A. Then there is a play s′q = M1[M2]M′

1
[M′

2] in σ̃

constructed the same way as sp, such that erase(s′q) = s′ f (b)[y′q]b[y′q], and where M1

LA→B(f (b)) = Ck′ with k′ , k

and
M′

1

LA→B(b) = D. Then we should have y′q = rk′ = erase(d′) with d′move in D. But in this caseA(d),A(d′) ∈ OD

(if not we have a token l in d or d′), so E(d) = rk and E(d′) = rk′ , hence k = k′ because D is unambiguous. This
is impossible.

f (b) ∈ frB(f (ap)) similarly implies b ∈ frA(ap), so f (S) = {b | s ∈ frB(f (ap))}. This allows us to conclude that
(f (t), f (S)) ∈ RB. �

28

