J. Aurnou, S. Andreadis, L. X. Zhu, and P. Olson, Experiments on convection in Earth?s core tangent cylinder, Earth and Planetary Science Letters, vol.212, issue.1-2, pp.119-134, 2003.
DOI : 10.1016/S0012-821X(03)00237-1

J. Bloxham, The effect of thermal core-mantle interactions on the palaeomagnetic secular variation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.358, issue.1768, pp.1171-1179, 2000.
DOI : 10.1098/rsta.2000.0579

J. Bloxham, Sensitivity of the geomagnetic axial dipole to thermal core?mantle interactions, Nature, vol.405, issue.6782, pp.63-65, 2000.
DOI : 10.1038/35011045

J. Bloxham, Time-independent and time-dependent behaviour of highlatitude flux bundles at the core-mantle boundary, Geophys. Res. Lett, vol.29, pp.10-1029, 1854.

J. Bloxham, D. Gubbins, and A. Jackson, Geomagnetic Secular Variation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.329, issue.1606, pp.415-502, 1989.
DOI : 10.1098/rsta.1989.0087

J. Bloxham and A. Jackson, Time-dependent mapping of the magnetic field at the core-mantle boundary, Journal of Geophysical Research, vol.351, issue.B13, pp.19-537, 1992.
DOI : 10.1038/351309a0

S. I. Braginsky, Nearly axisymmetric model of the hydromagnetic dynamo of the Earth I., Geomag. Aeron, pp.122-128, 1975.

B. A. Buffett, Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo, Geophysical Research Letters, vol.121, issue.12, pp.10-1029, 2002.
DOI : 10.1111/j.1365-246X.1979.tb02553.x

B. A. Buffett, GEOPHYSICS: The Thermal State of Earth's Core, Science, vol.299, issue.5613, pp.1675-1677, 2003.
DOI : 10.1126/science.1081518

B. A. Buffett, H. E. Huppert, J. R. Lister, and A. W. Woods, On the thermal evolution of the Earth's core, Journal of Geophysical Research: Solid Earth, vol.236, issue.B4, pp.7989-8006, 1996.
DOI : 10.1126/science.236.4798.181

F. H. Busse, E. Grote, and A. Tilgner, On convection driven dynamos in rotating spherical shells, Studia Geoph. et Geod, vol.42, pp.1-6, 1998.

P. Cardin, D. Brito, D. Jault, H. Nataf, and J. Masson, Towards a rapidly rotating liquid sodium dynamo experiment, Magnetohydrodynamics, pp.177-189, 2002.

U. R. Christensen, Zonal flow driven by strongly supercritical convection in rotating spherical shells, Journal of Fluid Mechanics, vol.470, pp.115-133, 2002.
DOI : 10.1017/S0022112002002008

U. Christensen, P. Olson, and G. A. Glatzmaier, A dynamo model interpretation of geomagnetic field structures, Geophysical Research Letters, vol.274, issue.10, pp.1565-1568, 1998.
DOI : 10.1126/science.274.5294.1883

U. Christensen, P. Olson, and G. A. Glatzmaier, Numerical modelling of the geodynamo: a systematic parameter study, Geophysical Journal International, vol.138, issue.2, pp.393-409, 1999.
DOI : 10.1046/j.1365-246X.1999.00886.x

U. R. Christensen and P. Olson, Secular variation in numerical geodynamo models with lateral variations of boundary heat flow, Physics of the Earth and Planetary Interiors, vol.138, issue.1, pp.39-54, 2003.
DOI : 10.1016/S0031-9201(03)00064-5

U. R. Christensen and A. Tilgner, Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos, Nature, vol.329, issue.6988, pp.439-169, 2004.
DOI : 10.1038/nature01560

J. E. Connerney, The magnetic field of Jupiter: A generalized inverse approach, Journal of Geophysical Research: Space Physics, vol.10, issue.A9, pp.7679-7693, 1981.
DOI : 10.1029/RG010i001p00251

G. A. Glatzmaier, Numerical simulations of stellar convective dynamos. I. the model and method, Journal of Computational Physics, vol.55, issue.3, pp.461-484, 1984.
DOI : 10.1016/0021-9991(84)90033-0

G. A. Glatzmaier and P. H. Roberts, A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle, Physics of the Earth and Planetary Interiors, vol.91, issue.1-3, pp.63-75, 1995.
DOI : 10.1016/0031-9201(95)03049-3

G. A. Glatzmaier and P. H. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, vol.377, issue.6546, pp.203-209, 1995.
DOI : 10.1038/377203a0

G. A. Glatzmaier, R. S. Coe, L. Hongre, and P. H. Roberts, The role of the Earth's mantle in controlling the frequency of geomagnetic reversals, Nature, vol.401, issue.6756, pp.885-890, 1999.
DOI : 10.1038/44776

E. Grote, F. H. Busse, and A. Tilgner, Convection-driven quadrupolar dynamos in rotating spherical shells, Physical Review E, vol.101, issue.5, pp.5025-5028, 1999.
DOI : 10.1029/95JE03437

E. Grote, F. H. Busse, and A. Tilgner, Regular and chaotic spherical dynamos, Physics of the Earth and Planetary Interiors, vol.117, issue.1-4, pp.259-272, 2000.
DOI : 10.1016/S0031-9201(99)00101-6

D. Gubbins, The Rayleigh number for convection in the Earth?s core, Physics of the Earth and Planetary Interiors, vol.128, issue.1-4, pp.3-12, 2001.
DOI : 10.1016/S0031-9201(01)00273-4

D. Gubbins, D. Alfè, G. Masters, G. D. Price, and M. J. Gillan, Gross thermodynamics of two-component core convection, Geophysical Journal International, vol.157, issue.3, pp.1407-1414, 2004.
DOI : 10.1111/j.1365-246X.2004.02219.x

T. Guillot, A comparison of the interiors of Jupiter and Saturn, Planetary and Space Science, vol.47, issue.10-11, pp.1183-1200, 1999.
DOI : 10.1016/S0032-0633(99)00043-4

T. Guillot, D. J. Stevenson, W. B. Hubbard, and D. Saumon, The interior of Jupiter, pp.35-37, 2005.

M. H. Heimpel, J. M. Aurnou, F. M. Al-shamali, and N. Gomez-perez, A numerical study of dynamo action as a function of spherical shell geometry, Earth and Planetary Science Letters, vol.236, issue.1-2, pp.542-557, 2004.
DOI : 10.1016/j.epsl.2005.04.032

G. Hulot, C. Eymin, B. Langlais, M. Mandea, and N. Olsen, Smallscale structure of the geodynamo inferred from Oersted and Magsat satellite data, Nature, pp.416-620, 2002.

N. Ishihara and S. Kida, Dynamo mechanism in a rotating spherical shell: competition between magnetic field and convection vortices, Journal of Fluid Mechanics, vol.465, pp.1-32, 2002.
DOI : 10.1017/S0022112002008935

C. A. Jones, A. M. Soward, and A. I. Mussa, The onset of thermal convection in a rapidly rotating sphere, Journal of Fluid Mechanics, vol.405, pp.157-179, 2000.
DOI : 10.1017/S0022112099007235

A. Kageyama and T. Sato, Computer simulation of a magnetohydrodynamic dynamo. II, Physics of Plasmas, vol.2, issue.5, pp.1421-1431, 1995.
DOI : 10.1098/rspa.1966.0173

M. Kono and P. H. Roberts, Recent geodynamo simulations and observations of the geomagnetic field, Reviews of Geophysics, vol.59, issue.4, pp.10-1029, 1013.
DOI : 10.1111/j.1365-246X.1970.tb06056.x

W. Kuang and J. Bloxham, An Earth-like numerical dynamo model, Nature, vol.389, pp.371-374, 1997.

W. Kuang and J. Bloxham, Numerical Modeling of Magnetohydrodynamic Convection in a Rapidly Rotating Spherical Shell: Weak and Strong Field Dynamo Action, Journal of Computational Physics, vol.153, issue.1, pp.51-81, 1999.
DOI : 10.1006/jcph.1999.6274

C. Kutzner and U. R. Christensen, effects of driving mechanisms in geodynamo models, Geophysical Research Letters, vol.101, issue.1, pp.29-32, 2000.
DOI : 10.1029/96JB02700

C. Kutzner and U. R. Christensen, From stable dipolar towards reversing numerical dynamos, Physics of the Earth and Planetary Interiors, vol.131, issue.1, pp.29-45, 2002.
DOI : 10.1016/S0031-9201(02)00016-X

URL : http://doi.org/10.1016/s0031-9201(02)00016-x

C. Kutzner and U. R. Christensen, Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths, Geophys, J. Int, vol.157, pp.1105-1118, 2004.
DOI : 10.1111/j.1365-246x.2004.02309.x

S. Labrosse, Hotspots, mantle plumes and core heat loss, Earth and Planetary Science Letters, vol.199, issue.1-2, pp.147-156, 2002.
DOI : 10.1016/S0012-821X(02)00537-X

URL : https://hal.archives-ouvertes.fr/hal-00599647

S. Labrosse, J. P. Poirier, and J. L. Lemouël, The age of the inner core, Earth and Planetary Science Letters, vol.190, issue.3-4, pp.111-123, 2001.
DOI : 10.1016/S0012-821X(01)00387-9

D. P. Lathrop, W. L. Shew, and D. R. Sisan, Laboratory experiments on the transition to MHD dynamos, Plasma Physics and Controlled Fusion, vol.43, issue.12A, pp.151-160, 2001.
DOI : 10.1088/0741-3335/43/12A/311

D. E. Loper, Some thermal consequences of a gravitationally powered dynamo, Journal of Geophysical Research: Solid Earth, vol.7, issue.77, pp.5961-5970, 1978.
DOI : 10.1016/0031-9201(73)90039-3

U. Müller, R. Stieglitz, and S. Horanyi, A two-scale hydromagnetic dynamo experiment, Journal of Fluid Mechanics, vol.498, pp.31-71, 2004.
DOI : 10.1017/S0022112003006700

F. Nimmo, G. D. Price, J. Brodholt, and D. Gubbins, The influence of potassium on core and geodynamo evolution, Geophysical Journal International, vol.156, issue.2, pp.363-376, 2004.
DOI : 10.1111/j.1365-246X.2003.02157.x

P. Olson and J. Aurnou, A polar vortex in the Earth's core, Nature, vol.404, pp.170-173, 1999.

P. Olson, U. R. Christensen, and G. A. Glatzmaier, Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration, Journal of Geophysical Research: Solid Earth, vol.24, issue.B5, pp.383-393, 1999.
DOI : 10.1029/97GL02955

P. Olson and U. R. Christensen, The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow, Geophysical Journal International, vol.151, issue.3, pp.809-823, 2002.
DOI : 10.1046/j.1365-246X.2002.01818.x

Y. Ponty, P. D. Mininni, D. C. Montgomery, J. F. Pinton, H. Politano et al., Numerical Study of Dynamo Action at Low Magnetic Prandtl Numbers, Physical Review Letters, vol.18, issue.16, p.164502, 2005.
DOI : 10.1007/s100510170103

URL : https://hal.archives-ouvertes.fr/hal-00163671

J. Rotvig and C. A. Jones, Rotating convection-driven dynamos at low Ekman number, Physical Review E, vol.79, issue.5, pp.66-056308, 2002.
DOI : 10.1080/03091929508228994

C. T. Russell, Z. J. Yu, K. K. Khurana, and M. G. Kivelson, Magnetic field changes in the inner magnetosphere of Jupiter, Advances in Space Research, vol.28, issue.6, pp.897-902, 2001.
DOI : 10.1016/S0273-1177(01)00513-0

A. A. Schekochihin, S. C. Cowley, J. L. Maron, and J. C. Mcwilliams, Critical Magnetic Prandtl Number for Small-Scale Dynamo, Physical Review Letters, vol.5, issue.5, p.54502, 2004.
DOI : 10.1046/j.1365-246X.1999.00886.x

URL : http://arxiv.org/abs/astro-ph/0308336

A. A. Schekochihin, N. E. Haugen, A. Brandenburg, S. C. Cowley, J. L. Maron et al., The Onset of a Small-Scale Turbulent Dynamo at Low Magnetic Prandtl Numbers, The Astrophysical Journal, vol.625, issue.2, pp.115-118, 2005.
DOI : 10.1086/431214

R. Simitev and F. H. Busse, Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells, Journal of Fluid Mechanics, vol.532, pp.365-388, 2005.
DOI : 10.1017/S0022112005004398

S. V. Starchenko and C. A. Jones, Typical Velocities and Magnetic Field Strengths in Planetary Interiors, Icarus, vol.157, issue.2, pp.426-435, 2002.
DOI : 10.1006/icar.2002.6842

S. Stanley and J. Bloxham, Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields, Nature, vol.428, issue.6979, pp.151-153, 2004.
DOI : 10.1038/nature02376

S. Stanley, J. Bloxham, W. E. Hutchison, and M. Zuber, Thin shell dynamo models consistent with Mercury's weak observed magnetic field, Earth and Planetary Science Letters, vol.234, issue.1-2, pp.341-353, 2005.
DOI : 10.1016/j.epsl.2005.02.040

B. Sreenivasan and C. Jones, The role of inertia in the evolution of spherical dynamos, Geophys, J. Int, vol.164, pp.467-476, 2006.

D. J. Stevenson, Turbulent thermal convection in the presence of rotation and a magnetic field: A heuristic theory, Geophysical & Astrophysical Fluid Dynamics, vol.58, issue.1, pp.139-169, 1979.
DOI : 10.1007/3-540-08532-7_42

D. J. Stevenson, Interiors of the Giant Planets, Annual Review of Earth and Planetary Sciences, vol.10, issue.1, pp.257-295, 1982.
DOI : 10.1146/annurev.ea.10.050182.001353

D. J. Stevenson, Reducing the non-axisymmetry of a planetary dynamo and an application to saturn, Geophysical & Astrophysical Fluid Dynamics, vol.8, issue.1-2, pp.113-127, 1982.
DOI : 10.1029/GL008i005p00505

D. J. Stevenson, Planetary magnetic fields, Earth and Planetary Science Letters, vol.208, issue.1-2, pp.1-11, 2003.
DOI : 10.1016/S0012-821X(02)01126-3

R. Stieglitz and U. Müller, Experimental demonstration of a homogeneous two-scale dynamo, Physics of Fluids, vol.19, issue.3, pp.561-564, 2001.
DOI : 10.1103/PhysRevE.61.5287

F. Takahashi, A. Matsushima, and Y. Honkura, Simulations of a Quasi-Taylor State Geomagnetic Field Including Polarity Reversals on the Earth Simulator, Science, vol.309, issue.5733, pp.459-461, 2005.
DOI : 10.1126/science.1111831

A. Tilgner and F. H. Busse, Finite-amplitude convection in rotating spherical fluid shells, Journal of Fluid Mechanics, vol.228, pp.359-376, 1997.
DOI : 10.1126/science.260.5108.661

URL : http://arxiv.org/pdf/0906.1124v1.pdf

A. Tilgner, Spectral methods for the simulation of incompressible flows in spherical shells, International Journal for Numerical Methods in Fluids, vol.160, issue.6, pp.713-724, 1999.
DOI : 10.1007/978-3-642-84108-8

C. V. Voorhies, Steady flows at the top of Earth's core derived from geomagnetic field models, Journal of Geophysical Research: Solid Earth, vol.65, issue.B12, pp.12-444, 1986.
DOI : 10.1111/j.1365-246X.1981.tb04877.x

J. Wicht, Inner-core conductivity in numerical dynamo simulations, Physics of the Earth and Planetary Interiors, vol.132, issue.4, pp.281-302, 2002.
DOI : 10.1016/S0031-9201(02)00078-X

S. Zatman and J. Bloxham, Torsional oscillations and the magnetic field inside the Earth's core, Nature, vol.388, issue.6644, pp.760-763, 1997.
DOI : 10.1038/41987