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Abstract

The Smoluchowski coagulation equation describes the concentration
c¢(t, ) of particles of mass z €]0,00[ at the instant ¢ > 0, in an infinite
system of coalescing particles. It is well-known that in some cases, gelation
occurs: a particle with infinite mass appears. But this infinite particle is
inert, in the sense that it does not interact with finite particles.
We consider the so-called Marcus-Lushnikov process, which is a stochastic
finite system of coalescing particles. This process is expected to converge,
as the number of particles tends to infinity, to a solution of the Smolu-
chowski coagulation equation. We show that it actually converges, for
t € [0,00[, to a modified Smoluchowski equation, which takes into ac-
count a possible interaction between finite and infinite particles.

Key words : Marcus-Lushnikov process, Smoluchowski coagulation equations,
gelation.

MSC 2000 : 45K05, 60H30.

1 Introduction

The Marcus-Lushnikov process [12], [11] describes the stochastic Markov evolu-
tion of a finite system of coalescing particles. The (deterministic) Smoluchowski
coagulation equation describes the evolution of the concentration c(t, z) of par-
ticles of mass z €]0, co[ at the instant ¢ > 0, in an infinite system of coalescing
particles. Both models depend on a “coagulation kernel” K (z,y) which stands
for the rate of coalescence between particles of masses x and y.

We are interested in the convergence of the Marcus-Lushnikov process to the
Smoluchowski equation as the number of particles tends to infinity (Open Prob-
lem 10 of Aldous, [1]). First, this problem is interesting from the numerical point
of view. Indeed, the Marcus-Lushnikov process can be simulated exactly. One
thus would like to use it in order to approximate the solution to the Smol-
chowski equation. Next, it has a physical issue: the Smoluchowski equation is



often derived by passing to the limit in the Marcus-Lushnikov process. Rigorous
justifications seem to be needed.

When K(z,y) > c(z®y® + z°y%), with ¢ > 0, o, 8 € [0,1], it is proved in
Escobedo-Mishler-Perthame [7] that if a + 8 > 1, then gelation occurs in the
Smoluchowski equation: there exists an instant T,,; < oo such that the mass
consisting in infinite particles becomes positive.

Extending some results of Jeon [9], Norris shows in [13] the convergence of
the Marcus-Lushnikov process to the Smoluchowski equation when (essentially)
K(z,y)/y tends to 0 as y tends to infinity, for any fixed z.

In [14], he shows the convergence of the Marcus-Lushnikov process to a modified
Smoluchowski equation when (essentially) K (z,y) = zy as soon as ¢ > A and
y > A for some constant A. The “modified” Smoluchowski equation takes into
account a possible interaction between finite and infinite particles, after the gela-
tion time. This modified Smoluchowski equation had already been introduced
by Flory [8], see also Ernst-Ziff-Hendriks [5] (when K(z,y) = zy), Escobedo-
Laurencot-Mishler [6] (when K (z,y) = (zy® + 2°y), for some 8 €]0,1]).

The aim of the present paper is to extend the results of Norris to (essentially)
any coagulation kernel satisfying: for all > 0, lim,_,, K(,y)/y = l(z) exists
and is finite.

The quantity I(z) will quantify the disappearance rate of particles of mass
because of coalescence with the infinite particle.

Our result will in particular cover the case where K(z,y) = (zy? + 2°y),
for some g € [0,1], which was recently studied by [6], and the case where
K(z,y) = (z + ¢)(y + ¢), for some ¢ > 0, which is known as a Condensa-
tion/Branched Chain Polymerisation kernel, see Aldous [1].

The paper is organized as follows: in Section 2, we state our main result, while
the proof is handled in Section 3. We finally present numerical simulations in
Section 4.

Notation 1.1 A measurable map K :)0,00[x]0, 00[— Ry is called a “coagula-
tion kernel” as soon as it is symmetric (K(z,y) = K(y,x)).

For a measurable space E, we denote by M} (E) the set of nonnegative finite
measures on E, and by P(E) the set of probability measures on E.

For a measure v and a function f, we set (v, f) = (v(dz), f(z)) = [ f(z)v(dz).
For an intervall I of [0, 0o[, we denote by Cy(I), (resp. Cy(I)) the set of bounded
continuous functions (resp. of class C*, bounded with their derivatives); and by
C.(I) (resp. CL(I)) the set of continuous (resp. of class C*) functions on I
with compact support (in I).

For an intervall I of [0, 00[, a sequence vy, of finite measures on I is said to con-
verge weakly (resp. vaguely) to v if for all functions f € Cy(I) (resp. f € C.(I)),

limy, (vn, f) = (v, f).



2 Main result

In this section, we recall the dynamics of the Marcus-Lushnikov process, and
then we define a modified Smoluchowski equation. We finally state and com-
ment on our main result.

The Marcus-Lushnikov process

We consider a coagulation kernel K (see Notation 1.1) and a finite particle
system initially consisting in n > 2 particles, of masses z; > 0, ..., £, > 0. We
denote by m,, = x1 +... + z, the total mass of the system. Then we assume that
the system evolves according to the following dynamics: each pair of particles
(of masses x and y) may coalesce (i.e. disappear and form a new particle of mass
z + y) with an exponential rate K (z,y)/m,. The Marcus-Lushnikov process

describes the evolution of the empirical concentration p? = m,* Zfz(tl) dxis

where n(t) stands for the number of particles at the instant ¢, and X}, ..., X}’ ®
denote their masses. This simply means that for any ¢ > 0, any z > 0, u?({z})
is the concentration (number per unit of mass) of particles of mass z at instant
t in the system. We now define it rigorously.

Definition 2.1 Consider a coagulation kernel K, and an initial state py =
mpt S Oy, with 1 >0, .., 2y >0, and my = 1 + ... + Ty,

The Marcus-Lushnikov process (uf)e>o0 associated with the pair (K,ug) is a
Markov M]T (]0, oo[)-valued cadlag process satisfying:

(i) (u)eso takes its values in {m;' 3% | 6, k <n, y; > 0}.

it) its generator is given, for all measurable functions i from MJT(]O,OO[) into

R, all states pu = m;l Ele dy;, by

K(yi,y;)
2my,

LE#8p(p) = Z {0 [ +my" (6yiry; — Oy — 8y;)] — ¢ [0}
i#]

(2.1)

This process is well-known to be well-defined and unique, see e.g. Norris [13].
This is anyway immediate, since conditionally to ug, the process (uj')i>o is a
continuous-time Markov chain with finite state space.

Furthermore, it clearly satisfies that for any ¢t > 0, (uf*(dz),z) =1 a.s.

A modified Smoluchowski equation

We now consider an infinite particle system corresponding to the previously
desribed finite particle system. We give our assumptions following the ideas
of Norris, [13] which are particularly well-adapted to the study of coagulation
phenomena.

Let us recall that a map ¢ :]0, 0[]0, o[ is subadditive if for all z > 0, y > 0,
é(z +y) < ¢(x) + ¢(y). For example, any function ¢(z) = 27 +z°, for 3 < 1
and a > 0 is subadditive.

Assumptions (L): The coagulation kernel K is a symmetric nonneg-

ative map on ]0, co[?. There exists a continuous subadditive function



¢ on ]0, 00 such that for all z > 0, all y > 0,
B@) 21, K(ay) < p)oly), and () = lim K(,0)fy (22)

exists and is finite. Finally, the map C(z,y), defined for x > 0 and
y 2 0by

C(z,y) =yKQ1/z,1/y) if y >0 and C(z,0)=1(1/z) (2.3)
is continuous on ]0, co[x [0, 0o].
We note that under (L), there exists a constant A such that for all z > 0,
1+1(@) < Ad(a) (2.4)

Definition 2.2 Assume (L). Let o € M;r(]O,oo[) satisfy {po(dx),xz) =1 and
(o, 9) < 0o. A family (pe)i>o0 of measures of M]T(]O,oo[) is said to solve the
modified Smoluchowski equation (MS) if

(i) for all T < o0, supy 11 (us(dz), p(z)) < 00 and supy 11 (us(dz),z) < 1.

(it) for all test functions g € CL([0,00[), all t > 0,

t
G1:) = (10,9) + 5 | (a(de) @ (). e +) = 9(0) — o] K (5.9) s

—/0 (us(dz), g(2)l(x)) [1 — (us(dx), x)]ds (2.5)

We note that under (L), condition (i), (2.4), and the fact that g is bounded
imply that every term in (2.5) is well-defined.

Equation (M S) describes the evolution of the concentration measure p;(dz) of
particles of mass z in an infinite system of particles in which particles of mass x
and y coagulate with rate K (z,y), and in which the mass consisting in infinite
particles (given by 1 — (us(dz), z)) interacts with finite particles of mass z, by
“absorbing” them with rate I(x).

We remark that if po is discrete (i.e. po(N*) = 1), then this corresponds to
the usually called “discrete coagulation equations”, while when pg is continuous
(i.e. when po(dx) = co(x)dz), this corresponds to the so-called “continuous
coagulation equations”.

We point out that the Smoluchowski equation is the same as (2.5) without
the last term. The examples below are taken form Escobedo et al. [7]. For
non-gelling kernels (e.g. K(z,y) < A(1 + z + y)) or gelling kernels such that
1 =0 (eg. K(z,y) = 2%y? + y®2P, with a + 8 > 1, o, € [0,1]), the two
equations are equivalent for all times. For gelling kernels such that I(z) > 0
(e.g. K(z,y) = zy* + yz*, with a €]0,1]), the two equations are equivalent for
t € [0, Tyer], but differ on |Tye, 0of.

The convergence result
We can now state our result. For definitions of tightness and Skorokhod spaces,
we refer to Ethier-Kurtz [4].



Theorem 2.3 Consider a coagulation kernel K satisfying assumptions (L), and
an initial condition pg € M]T (]0, 0|) satisfying

(po(dz),z) =1 5 (po(dz), d(x)) < oo (2.6)

Consider, for each n > 2, a Marcus-Lushnikov process (u})¢>0 associated with
K and with an initial condition u§ = my* Y " | 6,,. Assume that

SUPp>2 (Mga ¢) <oo 5 limeo SUPp>2 </J/0n; ¢II'[0,6[> =0
V f € Cc(]0,00]), limy, (g, f) = (po, f) (2.7)

(i) Then the sequence of processes (uy)¢>o is tight inID([0, oo, M)T (]0,0[)). The
space D([0, oo M}" (]0,00[)) is endowed with the Skorokhod topology associated

with the vague topology on M}" (10, o0).
(it) Consider a limit point (as n tends to infinity) (u:)i>0 of a subsequence of
(uf)e>0. Then (ue)e>o satisfies a.s. equation (MS).

While the first and third conditions in (2.7) are fundamental, the second one
is probably technical. We need it to show point (ii) of the theorem, since it
ensures uniform integrability near 0 of the sequence {u}}, for any ¢t > 0. We
believe this technical condition is not restrictive for possible applications.

If one knows about uniqueness for equation (M S) (see Norris, [14] for a spe-
cific almost multiplicative case), then one deduces that the sequence (u})¢>0
converges in probability to the unique solution (y)¢>0 to equation (M S). We
point out that Norris, extending the results of Jeon [9], proves Theorem 2.3
when ! = 0 in [13], and when K(z,y) = xy as soon as ¢ > A,y > A for some
constant A, in [14].

Note that two cases remain open: what happens when I(z) does not exist or is
infinite. When [(z) is infinite, a conjecture (see Aldous [1]) says that T, = 0.
In equation (M.S), it seems clear that if so, a solution (p;)¢>0 will satisfy py =0
for all t > 0. Hence one might conjecture that the Marcus Lushnikov process
converges, as n tends to infinity, to the trivial measure 0.

As a final remark, we note that Theorem 2.3 might suggest that the relevant
equation after gelation is (MS) and not the Smoluchowski equation. However,
Laurencot [10], obtains (in particular) global existence to the Smoluchowski
equation with multiplicative kernel K (x,y) = xy by using the approximating
non-gelling kernels K™(z,y) = 2yll{;<p,y<n}- His result thus suggests that the
Smoluchowski equation still has some sense after gelation, even when [(z) > 0.

3 Proof

We now prove Theorem 2.3. We will first introduce some notations, transfer the
gelation problem from infinity to zero, and recall some martingale properties of
the Marcus-Lushnikov process. Next we will explain the tightness result, and
finally, the convergence result.

We begin by a classical property of the Marcus Lushnikov processes.



Lemma 3.1 Consider a Marcus-Lushnikov process {u}}, and a subbadditive
function f on [0,00[. Then a.s., (uf, f) is non increasing.

The proof is immediate, since the jumps of (u7, f) have the form m![f(z +
y) - f(@) — f)] < 0.

Next, we modify the Marcus-Lushnikov process (17):¢>0 by using a substitution,
and obtain a new process (R}')>0 which has the advantages that: (a) it is a
probability measure on [0, 00[, (b) the gelation problem, which concerns the
eventual limits of pf* by their values at infinity, will concern the eventual limits
of R} by their values at 0.

Notation 3.2 Assume (L), (2.6) and (2.7). For each n > 2, consider the
Marcus-Lushnikov process u = m,,* Z:L:(tl) dxi. Wedenote R =m," Zznz(tl) X0y xi-
Then (R})¢>o0 is a cddlag process with values in P([0,00[). Note that for all

functions f on J0,00], all t > 0, (RP, f) = (u(de),af(1/2)) and (i, f) =
(Rp(do), = f(1/2))

Next, we introduce an integral operator.

Notation 3.3 Assume (L), and recall the definition of map C (Assumption
(L)). We define the operator L, for any measurable function f on [0,00[, any
z2>0,y2>0,by

2

L) = Losoy |1 (- 72 ) - @) Claw (3.8)

zT+y

We then consider the following deterministic equation, which is obtained from
(MS) by replacing f(z) by zf(1/z).

Definition 3.4 Assume (L) and (2.6). Consider the probability measure Ry on
[0,00[ defined by (Ro, f) = {po(dz),zf(1/x)). A family of probability measures
(R¢)e>0 on [0,00[ is said to solve equation (IM) if

(a) for all T' < oo, supjg 1) (Rs(dz), z¢(1/z) N 4501) < 00,

(b) for all functions f € C1(]0,00[), all t > 0,

t
(i ) = (Ro, f) + / (R (dr) ® Ry (dy), Lf (z,)) ds (3.9)

Note that every term in (IM) is well-defined thanks to the fact that f is
C1(]0, [), assumptions (L), (2.4), and condition (a). We show that a solu-
tion to (IM) leads to a solution to (MS).

Lemma 3.5 Assume (L) and (2.6). Consider a solution (R;);>o to (IM).
Define, for each t > 0, the measure p; on ]0,00[ by: for all bounded funtions f

on 10, 00[, {us, f) = (Re(dz), 2 (1/2)Uips0y). Then the family (ut)i>o satisfies
equation (M S) with initial condition po and coagulation kernel K.



Proof First note that for each t, {1, ¢) = (R¢(dz), 2p(1/2) 1,503 ). We deduce
from (a) that that (u¢)¢>0 is a family of finite measures and that for all T’ < oo,
supyo, 71 (K, $) < 0. Furthermore since R; is a probability measure for each
t, we deduce that (ui(dz),z) = (Ry(dz),Liz501) < 1. Thus conditions (i) of
Deﬁmtron 2.2 holds.

Next, note that for each t > 0, R.({0}) = 1—(Ry(dz), Liz501) = 1— (e (dz), z).
Consider now a function g € C}(]0,00[). A computation, using (3.9) with
f(z) = zg(1/x) (which belongs to C(]0,00[)), splitting (Rs ® Rs, Lf) into
(Rs(dx) ® Rs(dy), Lf(z,y)Liyso0}) and (Rs(dz), Lf (x,0)) R, ({0}) leads to (2.5).
We still have to extend (2.5) to any function g € C1([0,00[). We consider a se-
quence g, of C1(]0,o00[)-functions such that sup,, sup, |gn(z)| < A, and such
that gn(z) = g(z) for all z > 1/n. Then (2.5) holds for each g,, and one can
make n tend to infinity, using the dominated convergence Theorem, thanks to
the fact that (u:(dz), (1 + z + ¢(z) + I(z))) < oo. O

In view of the previous notations and results, we will in fact only have to check
that the following two propositions hold.

Proposition 3.6 Assume (L), (2.6) and (2.7). Then the family of stochastic
processes (R}})i>o is tight in ([0, oof, P([0, 00[)). Here ([0, oo[, P([0, 00])) is
endowed with the Skorokhod topology associated with the weak convergence on

P([0, o0]).

Note that such a weak (and not vague) tightness result can not hold for {u"},
since we expect that lim, (u*,1) # (u¢, 1), for ¢ > Tye.

Proposition 3.7 Assume (L), (2.6) and (2.7). Consider a weak limit (R¢)i>0
of (R})t>0. Then (Ry)¢>o0 satisfies almost surely (IM).

To prove these results, we will use the following martingale properties.

Lemma 3.8 For each n > 2, consider the process (R})¢>0 defined in Notation
3.2. Then for all functions f € C.(]0,00[), the process

t
0PF = (R, f) — (R, ) — / (R @ R, Lf) ds

Lot
s [ (R, 11/ — @) K (12,1 /) d (3.10)
is a martingale with (predictable) quadratic variation
01y, = 5o [ (Ritas) @ Byt [ie 401 (22
—a1(0) - uf(@)] FOLELD g,
¢
gz | (Retao). s/ - 25 FEEA) e bas @



Proof Noting that (R, f) = ¢¥(p}), with ¢¥(u) = (u(dx),zf(1/z)), we obtain,
using Definition 2.1, that

B(u) — D (g) / LIRS () ds (3.12)

is a martingale. Rewriting this formula in terms of R}, using (2.1), leads to
(3.10). To compute the bracket of O™7, we use the fact that

¢
V) = ) — [ T ) ds (313)
is a martingale. Rewriting this expression in terms of R}, and comparing the
obtained formula to (3.10) leads to (3.11). O

We now can give the

Proof of Proposition 3.6 First of all we introduce a distance on P([0, col).
It is easily checked that there exists a sequence of Cf ([0, 00[) functions (gp)p>1
satisfying ||gp||co + ||gp|lco < 1 such that the distance d defined by

P,Q € P([0,00]), d(P,Q)=_27"|(gp, P) — (g, Q)| (3.14)

p>1

gives rise to the topology of weak convergence on P([0, 00[). Indeed, one may
set fa,b,c = 45 * G, for a < bin Q; and ¢ in Q; /{0}. Here G. stands for
the density of the Gaussian law with mean 0 and variance ¢, while x stands
for the convolution product. Of course, fqp, is Cf for all a,b,c. Then, one
may set fa,b,c = fa,b,c/(”fa,b,c“oo + ||f(;,,b,c||00)7 and consider a sequence {gP}P21
such that {gp}p>1 = {fa,b,c }a<beq,,cc0y/{0}- See Billingsley [2] for the proof of
similar results.

It now suffices to check that { R"}, > satisfies the Aldous criterion for tightness,
see Ethier-Kurtz [4], Theorem 8.6 p 137. It suffices to check the two following
points:

(i) There exists a compact susbset I' of P ([0, +00[) such that for all ¢ > 0, all
n>2, as., R €.

(if) For all T < oo, if A(T") stands for the set of stopping times bounded by T,

limsup sup sup E(d(Rs,R5,.,)) =0. (3.15)
020 n>2 §e A(T) 0<u<é

Point (i) is immediate. Indeed, thanks to condition (2.7), A = sup,, (ug,1) < co.
Hence we deduce, denoting by u? = m;! E:”:(tl) dx;, recalling that n(t) is non-
increasing (and thus smaller than n for all ¢), and using Notation 3.2, that for

any a < 00, any t > 0, any n > 2, a.s.,

n(t) n(t)
n — i — — 1 n
R ([a,oo[):mnIE X1/ xisa) Smn1§ at<a 1—m (3.16)

i=1 i=1 n



But nm,! = (uf,1) and thus is smaller than A. Hence, for all ¢, all n, R}
belongs a.s. to

I'={r e P([0,00]); Va, r(fa,00]) <a~ "4} (3.17)

which is a compact subset of P([0, oo[) for the weak topology.
We now check point (ii). We fix T > 0 and 0 < u < J, and we consider a
stopping time S € A(T). Then we use Lemma 3.8, and (3.14) to obtain

E(d(RE, RE,,)) <D 277 [A, + 47 + A3] (3.18)
p>1
where

S+6 2

a=5[ [ (mran) @ R o (- ) - o)
yK (1/2,1/y))|ds]

1 S+45

A =E [— / (R, (9p(2/2) = gp(2) K (1/,1/))] ds]

My s
A3 = (E[|{0™9) 545 — (O™9)5]])? (3.19)

Using (L), the fact that g;, is bounded uniformly by 1, the inequality #*/(z+y) <
z, and then the relation between R} and u}, we obtain that

S+45
—E [ /5 (s 9) ds] (3.20)

But ¢ is subadditive, thus by Lemma 3.1, we deduce using (2.7) that for some
constant A, AL < 5 (uf, ¢)> < Ad.
Next, we obtain with similar arguments

S+45
/ (RE ® BT oy(1/)8(1/y))]| ds

1
AL<E
S

Mn S n

1
Azg—E[
S

S+46 1 S+46
/ <R2<dx>,x¢2(1/w)>ds]:m—ml / <u27¢2>ds] (3.21)

. n .12 .
But my (ut, %) = mp2 SE9 (X)) < [mat SR ()] = (ung) <
(g, ¢)*. Thus we also obtain A2 < Ad.

Writting 2% as z — oy Orasy— %, and using the fact that g, is smaller
than 1, we o%taln:
Ty 2
e+ (S —s00) —uno)| <dw? @22



By (3.22), (3.11), and assumption (L), we deduce:

2
A2 < =
(4,) _mnEl

S+46
/ <R2<dw),m¢<1/w)>2ds]

S

S+4d
+2;Lgb E l /5 (R} (dz), x¢” (1/z))ds
St S+46
= Zp| [ pan @) + gzt | [ ). @] 629

We obtain, exactly as in the cases of Al and A2, that (43)> < Ad. This
concludes the proof of (ii). O

In order to prove Proposition 3.7, we state the following Lemma.

Lemma 3.9 Assume (L), (2.7). Consider o weak limit (Ry)¢>0 of (R})¢>o0-
Then for any f € CL([0,00[), the process ({Ry, f))i>o0 is a.s. continuous.

Proof The jumps of (R}, f) are of the form

A A T ( 1 >_ (L
(Xi+X1)f (X;-JFXg) NI \x) % (Xj )1
(3.

But for all # >0, y >0, (¢ +y)f(1/(z +y)) —2f(1/2) —yf(1/y) < 2[|f']|eo-
We deduce that lim, sup;»q |A(R}, f})| = 0. This concludes the proof, since for
all T > 0, the map x € D([0, o[, R) + sup,<7 |Az(s)| is continuous. O

-1
my,

We carry on with a lemma concerning the martingale (O}')¢>o.
Lemma 3.10 Assume (L) and (2.7). Then for all T < oo, all f € C} ([0, 00[),
HmE [(O™f) ] =0 (3.25)

Proof Exactly as in the proof of Proposition 3.6, we obtain

E[(0"),] <E l/OT {minw;‘,aﬁf + <u2,¢2>} ds]

2
2m2,

3 T
< 2g| [ (ug.07ds| < aT/m, (3.26)
n |Jo
where A = 3sup,,{uf, $)? < oo thanks to (2.7). O

Lemma 3.11 Assume (L), (2.7). Then for all T < oo, all f € CL(]0,]),
Supjo, 7 |D7| tends to 0 a.s. and in L' as n tends to infinity, where

ppf = L / (RM(dz), K (1/2,1/2) [f (2/2) — £(x)]) ds (3.27)

mny
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Proof Since f € C!(]0,0[), we deduce thanks to (L) that for all z €]0, o],
K(1/z,1/x) [f(x/2) — f(2)] < ¢(1/x)xlis¢[a,4]}, Where 0 < a < A < 0.
Hence, K(1/z,1/x) [f(x/2) — f(x)] < Cf for some constant C'y depending only
on f. Since R} is a probability measure for each n, each s, the conclusion is
straightforward. O

Proof of Proposition 3.7 We consider a weak limit (R;);>o of a subsequence
of (R})¢>0 that we still denote by (R})¢>0-

Step 1 Since for each ¢, R; is the weak limit of probability measures on
[0,00[, we deduce that R; is a probability measure on [0,00[. We now check
that R satisfies condition (a) of Definition 3.4. But for every n, every ¢,
<R?(d$)a .’L’(ﬁ(l/ﬁ&')]l{$>0}> = <,U'?(dm)a ¢(m)l{m<oo}> = <:u?a d)) Since ¢ is subad-
ditive, Lemma 3.1 yields (R} (dz), 2¢(1/z)Lz501) < (uff,$) which is uniformly
bounded by some A thanks to (2.7). Hence for all t, (Ry(dz), 2p(1/x)Liz501) <
A.

Step 2 For some fixed ¢t > 0 and f € C2(]0, oc[), we define a map I' =T — I’y
from D([0, oo[, P([0, 00[)) into R by

t
Ty(v) = (i, f) — (W0, f) 5 Ta(v) = /0 (vs @ vy, L) ds (3.28)

We have to show that a.s., I'(R) = 0. First note that thanks to (3.10), Lemmas
3.10 and 3.11,
lim E[|T(R™)|] = 0 (3.29)
n

Next, we deduce from Lemma, 3.9 that I'; is a.s. continuous at R. One can check
that Lf is continuous on [0, c0[?, using (L) and the fact that f € CL(]0, 00[).
Furthermore, L (2,y) < ||f'||ocL s>} [Liy>0)2y6(L/)$(1/y) + ol(1/)]. Since
¢ is continuous and subadditive, for all n > 0, there exists () such that
for all z > 7, ¢(z) < Cpz. Hence, using (2.4), for all ¢ > 0, the map
Lef(z,y) = Lf(z A (1/e),y A (1/€)) is continuous and bounded on [0, cc[?.
We thus deduce that the function I'j(v) = fot (vs ® vs, L f) ds is continuous on
D([0, oo[, P([0, o0[)). Setting I'® =T’y — I'5, we obtain, for each £ > 0,

I“(R) = imT*(R,) in law (3.30)

Finally, a computation using (2.7) shows that a.s.,

t
lim sup |[T'(R,) — '*(R, <A1imsu/ 2(dz), p(z)Lipce ? ds
lim sup D) — ()| < Alimsup [ (u ) 6(0) o))

< At lim sup (u (dz), ¢(3:)]1{m<5}>2 =0 (3.31)

e—0 n>2

where the last inequality comes from Lemma 3.1, since ¢lljg [ is subadditive.
One can show in the same way that a.s.,

lim |T(R) — T(R)| = 0 (3.32)

e—0
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—— simulation
solution to (S)

T T
—— simulation B

solutionto (S) 7

solutionto (MS) 0.07 |- ," - solutionto (MS)

We finally may conclude: using (3.29), (3.30) and (3.31), we deduce that a.s.,
lim,_,o I'*(R) = 0. Using (3.32) concludes the proof. O

We finally give the

Proof of Theorem 2.3 We have to check that for any subsequence {u™* };>1
of {#"}n>1, one can find a subsequence {u™* };>; converging weakly to some
1, a.s. solution to (MS), for the Skorokhod topology on ([0, o[, Mf+ (]0, o)),
the set MJT(]O,OO[) being endowed with the vague topology. But thanks to
Propositions 3.6 and 3.7, this property holds for the sequence {R"},, replacing
equation (M S) by equation (IM). Lemma 3.5 allows us to conclude. O

4 Numerical simulations

We now would like to illustrate our result with numerical simulations. We
consider the monodisperse initial condition py = 41, and the multiplicative
kernel K(z,y) = zy. Then there exists an explicit solution to the Smolu-
chowski equation (S) (that is, equation (M.S) with [ = 0), see [3]. It is given by
fe(dz) = 3>, &(t, k)dk (dz), with

kF—2 k—2

&t k) = ——th"le M if t € ]0,1); é(t,k) = k—t_le_k ift>1

k! k! (4.1)

We also have an explicit solution to (M.S), see [3]. It can be written as u(dx) =
> k>1 ¢(t, K)ok (dz), with

kk—2
k!

c(t k) = th=le=k for t > 0 (4.2)
On figures a and b, the dashed (resp. dotted) line represents the evolution
of ¢(t,2) (resp. ¢é(t,2)) for ¢ in [0,3]. Figure a shows in full line the evolu-
tion of uP({2}), for n = 5000, obtained with one simulation using the ker-
nel K(z,y) = zy and the initial condition u§ = py = n='>1'6;. We ob-
serve that pf*({2}) is close to ¢(¢,2). Figure b shows in full line the evolu-
tion of p({2}), for n = 5000, obtained with one simulation using the kernel
K'Yz y) = zyll{,4y<1000} and the initial condition pu§ = po = n~1 Y 7 d;.
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We realize that pf({2}) is close to é(t,2).

Our result shows that the Marcus-Lushnikov process does not converge to the
Smoluchowski equation, but to (M S). This is due to the emergence of a giant
particle, on which other particles coagulate quite quickly. Figure b suggests
that if we forbid coalescence between the giant particle and other particles, the
Marcus-Lushnikov process does converge to the Smoluchowski equation. This
is not surprising, since the term involving [ in (M S) represents the coalescence
between the giant particle and finite particles.
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