Spinal partitions and invariance under re-rooting of continuum random trees
Bénédicte Haas, Jim Pitman, Matthias Winkel

To cite this version:

HAL Id: hal-00149050
https://hal.archives-ouvertes.fr/hal-00149050
Submitted on 24 May 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Spinal partitions and invariance under re-rooting of continuum random trees

Bénédicte Haas† Jim Pitman‡ Matthias Winkel§

Abstract

We develop some theory of spinal decompositions of discrete and continuous fragmentation trees. Specifically, we consider a coarse and a fine spinal integer partition derived from spinal tree decompositions. We prove that for a two-parameter Poisson-Dirichlet family of continuous fragmentation trees, including the stable trees of Duquesne and Le Gall, the fine partition is obtained from the coarse one by shattering each of its parts independently, according to the same law. As a second application of spinal decompositions, we prove that among the continuous fragmentation trees, stable trees are the only ones whose distribution is invariant under uniform re-rooting.

AMS 2000 subject classifications: 60J80.
Keywords: Markov branching model, discrete tree, Poisson-Dirichlet distribution, fragmentation process, continuum random tree, spinal decomposition, random re-rooting

1 Introduction

Starting from a rooted combinatorial tree T_n with n leaves labelled by $\{n\} = \{1, \ldots, n\}$, we call the path from the root to the leaf labelled 1 the spine of T_n. Deleting each edge along the spine of T_n defines a graph whose connected components we call bushes. If as well as cutting each edge on the spine, we cut each edge connected to a spinal vertex, each bush is further decomposed into subtrees. We thus obtain two nested partitions of $\{2, \ldots, n\}$, which naturally extend to partitions of $\{n\}$ by adding the singleton $\{1\}$. We call these partitions of $\{n\}$ the coarse spinal partition and the fine spinal partition derived from T_n.

The aim of this paper is to develop some theory of spinal decompositions of fragmentation trees that arise as genealogical trees of fragmentation processes. We focus on Markovian partition-valued fragmentation processes of the following two types. In a setting of discrete time and partitions of $\{n\}$, we postulate that each non-singleton block splits at each time, which leads to Markov branching models [4, 18, 26]. In a setting of continuous time and partitions of \mathbb{N} we postulate a self-similarity condition, which leads to self-similar continuum random trees [25, 26].

Before giving an overview of this paper in Section 1.3, we formally introduce the discrete setting in Section 1.1 and the continuous setting in Section 1.2.

§This research is supported in parts by EPSRC grant GR/T26368/01 and N.S.F. grant DMS-0405779
1Université de Paris Dauphine; email haas@ceremade.dauphine.fr
1University of California at Berkeley; email pitman@stat.berkeley.edu
3University of Oxford; email winkel@stats.ox.ac.uk; supported by the Institute of Actuaries and Aon Limited
1.1 Discrete fragmentations

We start by introducing a convenient formalism for the kind of combinatorial trees arising naturally in the context of fragmentation processes. Let B be a finite non-empty set, and write $\#B$ for the number of elements of B. Following standard terminology, a partition of B is a collection

$$\Pi_B = \{B_1, \ldots, B_k\}$$

of non-empty disjoint subsets of B whose union is B. To introduce a new terminology convenient for our purpose, we make the following recursive definition. A fragmentation of B (sometimes called a hierarchy or a total partition [34, 35]) is a collection T_B of non-empty subsets of B such that

1. $B \in T_B$
2. if $\#B \geq 2$ there is a partition Π_B of B into at least two parts B_1, \ldots, B_k, called the children of B, with

$$T_B = \{B\} \cup T_{B_1} \cup \cdots \cup T_{B_k}$$

where T_{B_i} is a fragmentation of B_i for each $1 \leq i \leq k$.

Necessarily $B_i \in T_B$, each child B_i of B with $\#B_i > 1$ has further children, and so on, until the set B is broken down into singletons. We use the same notation T_B for both

- such a collection of subsets of B, and
- for the tree whose vertices are these subsets of B, and whose edges are defined by the parent/child relation implicitly determined by the collection of subsets of B.

To emphasize the tree structure we may call T_B a fragmentation tree. Thus B is the first branch point of T_B, and each singleton subset of B is a leaf of T_B, see Figure 1. It is often convenient to plant T_B by adding a root vertex and an edge between the root and the first branch point B. We denote by T_B the collection of all fragmentation trees labelled by B.

![Figure 1: Two fragmentations of [9] represented as trees with nodes labelled by subsets of [9].](image)

For each non-empty subset A of B, the restriction to A of T_B, denoted $T_{A,B}$, is the fragmentation tree whose first branch point is A, whose leaves are the singleton subsets of A, and whose tree structure is defined by restriction of T_B. That is, $T_{A,B}$ is the fragmentation

$$T_{A,B} = \{C \cap A : C \cap A \neq \emptyset, C \in T_B\} \in T_A,$$

corresponding to a reduced subtree as discussed by Aldous [36].
Given a rooted combinatorial tree with no single-child vertices and whose leaves are labelled by a finite set B, there is a corresponding fragmentation tree T_B, where each vertex of the combinatorial tree is associated with the set of leaves in the subtree above that vertex. So the fragmentation trees defined here provide a convenient way to both label the vertices of a combinatorial tree, and to encode the tree structure in the labelling.

A random fragmentation model is an assignment of a probability distribution on \mathbb{T}_B for a random fragmentation tree T_B with first branch point B for each finite subset B of \mathbb{N}. We assume throughout this paper that the model is exchangeable, meaning that the distribution of Π_B, the partition of B generated by the branching of T_B at its root, is of the form
\[
\mathbb{P}(\Pi_B = \{B_1, \ldots, B_k\}) = p(#B_1, \ldots, #B_k)
\] for all partitions $\{B_1, \ldots, B_k\}$ with $k \geq 2$ blocks, and some symmetric function p of compositions of positive integers, called a splitting probability rule. The model is called

- Markovian (or a Markov branching model) if given $\Pi_B = \{B_1, \ldots, B_k\}$, the k subtrees of T_B above B are independent and distributed as T_{B_1}, \ldots, T_{B_k}, for all partitions $\{B_1, \ldots, B_k\}$ of B;
- consistent if for every $A \subset B$, the restriction to A of T_B is distributed like T_A;
- binary if every $A \in T_B$ has either 0 or 2 children with probability one, for all B.

Now we take $B = [n]$. The collection of vertices at graph distance $m \geq 0$ above the first branch point form a partition of a subset of $[n]$ that we extend to a partition $\Pi^{(n)}_m$ of $[n]$ by adding a singleton $\{j\}$ for each leaf j at height below m. We refer to $(\Pi^{(n)}_m, m \geq 0)$ as the partition-valued discrete fragmentation process associated with $T_{[n]}$. See also [4, 18, 26].

1.2 Continuous self-similar fragmentsations

We denote by \mathcal{P} the set of partitions of \mathbb{N} and equip it with the distance $d(\pi, \pi') = 2^{-n(\pi, \pi')}$, where $n(\pi, \pi')$ is the largest integer such that the restrictions of partitions π, π' to $[n]$ coincide. Following Bertoin [3], a continuous-time \mathcal{P}-valued Markov process $(\Pi(t), t \geq 0)$ is called a self-similar fragmentation process with index $\alpha \in \mathbb{R}$ if it is càdlàg and

- $\Pi(0) = \{\mathbb{N}\}$, i.e. Π starts from the trivial partition with a unique block;
- Π is exchangeable, i.e. its distribution is invariant under permutations of \mathbb{N};
- given $\Pi(t) = \pi$, the post-t process $(\Pi(t+s), s \geq 0)$ has the same law as the process whose state at time $s \geq 0$ is the partition of \mathbb{N} whose blocks are those of $\Pi(i)$ for $i \geq 1$.

where $(\pi_i, i \geq 1)$ is the sequence of blocks of π in order of least elements, $(|\pi_i|, i \geq 1)$ is the sequence of their asymptotic frequencies and $(\Pi^{(i)}, i \geq 1)$ is a sequence of i.i.d. copies of Π.

We recall that Kingman’s theorem [27] on exchangeable partitions ensures that for every $t \geq 0$, the asymptotic frequencies $|\pi_i| = \lim_{n \to \infty} n^{-1} \#(\pi_i \cap [n])$ of all blocks π_i of $\Pi(t)$ exist a.s.. Bertoin [3] shows that actually a.s. for every t, these asymptotic frequencies exist.
In [3], Bertoin proved that the distribution of a self-similar fragmentation is entirely characterized by three parameters: the index of self-similarity a, a coefficient $c \geq 0$ that measures the rate of erosion and a dislocation measure on

$$S^\bot = \left\{ (s_i)_{i \geq 1} : s_1 \geq s_2 \geq \ldots \geq 0, \sum_{i \geq 1} s_i \leq 1 \right\},$$

with no atom at $(1,0,...)$ and that integrates $1 - s_1$. This measure ν describes the sudden dislocations of blocks, in the sense that a block $B \subset \mathbb{N}$ splits in some blocks B_1, B_2, \ldots with relative asymptotic frequencies $s \in S^\bot$ at rate $|B|^a \nu(ds)$. When the index $a = 0$, this fragmentation rate does not depend on the size of the blocks and the fragmentation processes is then said to be homogeneous. A crucial point is that a self-similar fragmentation with parameters a, c and ν can always be constructed measurably from a homogeneous fragmentation with same coefficient c and measure ν, using time-changes, and vice-versa. We refer to Bertoin’s book [14] and the above mentioned papers [8, 9] for details on these time-changes and background on homogeneous and self-similar fragmentations.

In this paper, we focus on self-similar fragmentations without erosion ($c = 0$), which are non-trivial ($\nu(S^\bot) \neq 0$) and do not lose mass at sudden dislocations, i.e.

$$\nu \left(\sum_{i \geq 1} s_i < 1 \right) = 0.$$

We call (a, ν) the characteristic pair of such a process.

A family of combinatorial trees with edge lengths $R_{[n]}$, $n \geq 1$, with n exchangeably labelled leaves, is naturally associated to a self-similar fragmentation process Π by considering the evolution of Π restricted to the first n integers. Specifically, $R_{[n]}$ consists of all blocks B that occur in the evolution of $\Pi \cap [n]$; an edge between the root and the first branch point $[n]$ has as its length the first dislocation time of $\Pi \cap [n]$, and similarly for subtrees with two or more leaves; the edge below leaf j has as its length the time between the last relevant dislocation time of $\Pi \cap [n]$ and the time when $\{ j \}$ becomes a singleton for Π, which may be infinite. This gives a consistent family of trees, in the sense that the subtree of $R_{[n]}$ spanned by $[k]$ is $R_{[k]}$, for all $k \leq n$, where superfluous (i.e. multiplicity 2) vertices are removed and associated edges merged, their lengths summed up. By exchangeability, the same is true in distribution for uniformly chosen k distinct leaves of $R_{[n]}$, relabelled by $[k]$. The coupling of self-similar fragmentations using time-changes entails that the distribution of the combinatorial shapes (say $T_{[n]}$) of $R_{[n]}$, $n \geq 1$, depends only on the dislocation measure ν, and not on the index a. So without loss of generality, we may focus on $a = 0$, the case of homogeneous fragmentations, when working with the shapes $T_{[n]}$, $n \geq 1$. Furthermore, $(T_{[n]}, n \geq 1)$ defines a consistent Markov branching model as in the previous subsection. Reciprocally, each consistent Markov branching model can be constructed similarly from some homogeneous fragmentation (possibly with erosion). See [28].

When the index a is negative, small fragments vanish quickly and it is well-known that the whole fragmentation Π then reaches in finite time the trivial partition composed exclusively of singletons. See e.g. [14]. In terms of trees, this implies that the height of $R_{[n]}$ is bounded uniformly in n. Using the consistency property and Aldous’s results [3], it is then possible to define the projective limit T of the family $(R_{[n]}, n \geq 1)$ and equip it with a probability measure μ, the mass measure, that arises as limit of the empirical measures on the leaves of $R_{[n]}$, $n \geq 1$. Implicitly, the tree T is rooted. The pair (T, μ) is a continuum random tree (CRT) and was
studied in [25] using Aldous’s formalism of trees as compact metric subsets of l_1, cf. [1, 2, 3]. An alternative formalism can be considered, via the set of equivalence classes of compact rooted \mathbb{R}-trees endowed with the Gromov-Hausdorff distance, as developed in [14, 15]. We will not go further into details here and refer to the above-mentioned papers for rigorous definitions and statements. We shall call the CRT (T, μ) a self-similar fragmentation CRT with parameters (a, ν).

A fundamental property of (T, μ) is that a version of $(R[n], n \geq 1)$ can be obtained from a random sampling L_1, L_2, \ldots picked independently according to μ, conditional on (T, μ), by considering for each n the subtree of T spanned by the root and leaves L_1, \ldots, L_n. Consider then the forest $F_T(t)$ obtained by removing in T all vertices at distance less than t from the root and define the random partition $\Pi'(t)$ by letting i and j be in the same block of $\Pi'(t)$ if and only if L_i and L_j are in the same connected component of $F_T(t)$, $t \geq 0$. Clearly the process Π' is distributed as Π. We shall often suppose in the following that the fragmentation process we are working with is constructed in such a manner from some self-similar fragmentation CRT.

Examples of self-similar fragmentation CRTs are the Brownian CRT of Aldous [1, 2, 3] and, more generally, the stable Lévy trees with index $\beta \in (1, 2]$ of Duquesne and Le Gall [13, 14]. For details on their fragmentation properties, see Bertoin [9] for the Brownian case (i.e. when $\beta = 2$) and Miermont [29] for the other stable cases. The parameters of these CRTs are recalled later in the paper.

1.3 Contents and organization of the paper

The structure and contents of this paper are as follows. In Section 2, we study the coarse and fine spinal partitions of some Markov branching model $(T[n], n \geq 1)$ constructed consistently from a self-similar fragmentation process. These partitions of $[n]$ are consistent as n varies, which leads to a nested pair of partitions of \mathbb{N}. Restricted to $\mathbb{N}\backslash\{1\}$, they are jointly exchangeable. In particular, they possess asymptotic frequencies a.s. The decreasing rearrangements of these frequencies are called the coarse spinal mass partitions and fine spinal mass partitions. By decomposing the trees along the spine, we then show that when the parameters a and ν of the fragmentation are known and ν is infinite, we can reconstruct the whole self-similar fragmentation process from the sequence of shapes $(T[n], n \geq 1)$ (Proposition 2). Next, the main result of this section (Theorem 6) states that under some factorization property of the dislocation measure ν (Definition 2), the fine spinal mass partition derived from the sequence of shapes $(T[n], n \geq 1)$ is obtained from the coarse one by shattering each of its fragments in an i.i.d. manner.

In particular, this result applies to a family of fragmentations whose dislocation measures are built from Poisson-Dirichlet partitions (Section 3). The stable fragmentations studied by Miermont [29], built from the stable trees of Duquesne and Le Gall with index in $(1, 2)$, belong to this family. As a consequence, we obtain an extensive description, in terms of Poisson-Dirichlet partitions (Corollary 10), of spinal decompositions of stable trees.

The stable trees (T, μ) are known to possess an interesting symmetry property of invariance under uniform re-rooting (see [2, 14, 15]). Informally, this means that taking a leaf at random according to μ and considering T rooted at this random leaf, gives a CRT with the same distribution as the original CRT with its original root. In Section 4, we give a new proof of this invariance, using combinatorial methods, and show that, up to a scaling factor, stable trees are the only self-similar fragmentation CRTs that are invariant under uniform re-rooting (Theorem 11).

To finish this introduction, let us mention that studies on spinal decompositions of various
trees exist in the literature. See e.g. Aldous-Pitman [1] (for Galton-Watson trees), Duquesne-Le Gall [14] (for stable and Lévy trees). In the fragmentation context, decomposing the trees/processes along the spine is a useful tool, which has been used to obtain results on large time asymptotics [11], small time asymptotics [24] and discrete approximations [26].

2 Spinal partitions of fragmentation trees

Decompose a combinatorial fragmentation tree $T_{[n]}$ with leaves labelled by $[n]$ along the spine from the root to leaf 1 into a collection of bushes by deleting each edge along the spine. By adding a conventional root edge to its base, each bush is identified with an element of T_B for some $B \subseteq [n]$, where T_B is the collection of rooted combinatorial trees with $\#B$ leaves labelled by B. Each such B is associated with a unique vertex on the spine of $T_{[n]}$. We list these sets of leaf labels B in order of the corresponding spinal vertices to obtain an ordered exchangeable random partition of $\{2, \ldots, n\}$. The first set B in this list is the set of elements of $[n]$ not in the block containing 1 after the first fragmentation event involving $[n]$. If after the first fragmentation of $[n]$ the block $[n] - B$ containing 1 is of size 2 or more, the next set is what remains of $[n] - B$ after deleting the block containing 1 in the next fragmentation of $[n] - B$, and so on, until the last set which is the singleton $\{1\}$. If as well as cutting each edge on the spine, we cut each edge connected to a spinal vertex, each bush is further decomposed into subtrees. We thus obtain two nested exchangeable random partitions of $\{2, \ldots, n\}$, which naturally extend to partitions of $[n]$ by adding the singleton $\{1\}$, the coarse and fine spinal partitions derived from $T_{[n]}$. We can include the spinal order in the coarse spinal partition to form the coarse spinal composition.

Assuming that the trees $T_{[n]}, n \geq 1$, are constructed consistently from a homogeneous fragmentation process with values in the partitions of \mathbb{N}, both partitions of $[n]$ are consistent as n varies. Thus the coarse and fine spinal partitions may be regarded as a nested pair of random partitions of \mathbb{N}. These partitions have natural interpretations in terms of associated partition-valued self-similar fragmentations processes $(\Pi(t), t \geq 0)$, of any index a, in which the sequence $(T_{[n]}, n \geq 1)$ is embedded. For each pair of integers i and j let the splitting time $D_{i,j}$ be the first time t that i and j fall in distinct blocks of $\Pi(t)$. Let $i, j \geq 2$. By construction, i and j fall in the same block of the coarse spinal partition if and only if $D_{1,i} = D_{1,j}$, whereas i and j fall in the same block of the fine spinal partition if and only if $D_{i,j} = D_{1,i,j}$ (this clearly implies $D_{1,i} = D_{1,j}$). Assuming further that Π is constructed by random sampling of leaves L_1, L_2, \ldots from some CRT (T, μ) according to μ, i and j fall in the same block of the coarse spinal partition if and only if the paths from L_i to L_i to the root first meet the spine of T, i.e. the path from the root to L_1, at the same point. Besides, i and j fall in the same block of the fine spinal partition if and only if the path from L_i to L_j does not intersect the spine.

The coarse spinal decomposition of T is the collection of equivalence classes for the random equivalence relation $x \sim y$ if and only if the paths from x and y to the root first meet the spine at the same point on the spine. Note that the whole spine itself carries no μ-mass, and spinal non-branchpoints (an uncountable set of singletons in this decomposition of T) will be excluded from further consideration. The restriction of T to a typical equivalence class is a bush which can be further decomposed into trees by deleting the point on the spine, and then giving each connected component its own root where it used to be connected to the spine. The resulting random partition of T into subtrees is the fine spinal decomposition of T.

We measure the size of each component of one of these partitions by its μ-mass, to obtain coarse and fine spinal mass partitions of (T, μ), which we may regard as two random elements of \mathcal{S}. The following proposition summarizes some basic properties of these random partitions, which follow easily from the above discussion.
Proposition 1 The coarse and fine spinal partitions derived from the sequence of shapes \((T[n], n \geq 1) \) embedded in \((T, \mu)\) have the following properties.

(i) The singleton block \(\{1\} \) belongs to both partitions of \(\mathbb{N} \), while the restrictions of these partitions to \(\mathbb{N}\backslash\{1\} \) are jointly exchangeable.

(ii) The sequence of ranked limiting frequencies of each partition of \(\mathbb{N} \) is the sequence of ranked \(\mu \)-masses of the corresponding mass partition of \((T, \mu)\).

We now offer a more detailed study of these two partitions, first considering the coarse spinal partition (and composition), then the fine one and its relation to the coarse one. Obviously, the fine spinal partition is identical to the coarse one if and only if the trees \(T[n] \) are binary for all \(n \geq 1 \).

2.1 The coarse spinal partition

Assume throughout this section that the trees \(T[n], n \geq 1 \), are constructed consistently from a homogeneous fragmentation process, as when \(T[n] \) is derived from an associated continuum tree \((T, \mu)\) as the shape of the subtree spanned by \(I_i, i \in [n] \) for \(L_1, L_2, \ldots \) an exchangeable sample of leaves with directing measure \(\mu \). To ease notation we work with \(T[n+1] \) instead of \(T[n] \). Let

\[
B_{n,1}, B_{n,2}, \ldots, B_{n,K_n}, \{1\}
\]

be the sets of leaves of the bushes derived from the coarse spinal decomposition of \(T[n+1] \), in order of the corresponding spinal vertices. Then \((B_{n,1}, B_{n,2}, \ldots, B_{n,K_n}) \) is the restriction to \(\{2, \ldots, n+1\} \) of an exchangeable ordered random partition of \(\{2,3,\ldots\} \), as studied in \([12,21]\). Let

\[
C_n := (\#B_{n,1}, \#B_{n,2}, \ldots, \#B_{n,K_n}). \tag{3}
\]

It follows easily from sampling consistency of the sequence \((T[n], n \geq 1)\) that \((C_n, n \geq 1)\) is a regenerative composition structure, as defined in \([19]\). That is to say, \((C_n, n \geq 1)\) is a sampling consistent sequence of random compositions \(C_n \) of \(n \), with the property that conditionally given the first part of \(C_n \) is of size \(i < n \), the remaining parts of \(C_n \) define a random composition of \(n-i \) with the same distribution as \(C_{n-i} \). Let

\[
S_{n,k} := n - \sum_{j=1}^{k} \#B_{n,j}
\]

where \(B_{n,j} \) is empty for \(j > K_n \). So \((S_{n,k} + 1, k \geq 0)\) is the sequence of sizes of the fragment containing 1 as it undergoes successive fragmentations according to \(T[n+1] \), starting with \(S_{n,0} = n \) and terminating with \(S_{n,k} = 0 \) for \(k \geq K_n \), where \(K_n \) is the total number of fragmentation events experienced by the block containing 1 in \(T[n+1] \). According to Gneden and Pitman \([19]\), there is the following almost sure convergence of random sets with respect to the Hausdorff metric on closed subsets of \([0,1]\):

\[
\{S_{n,k}/n, k \geq 0\} \overset{a.s.}{\underset{n \to \infty}{\longrightarrow}} \{\exp(-\xi_t), t \geq 0\}^{cl} \tag{4}
\]

where the left side is the random discrete set of values \(S_{n,k} \) rescaled onto \([0,1]\), and the right side is the closure of the range of the exponential of some subordinator \((\xi_t, t \geq 0)\). The random interval partition of \([0,1]\) defined by interval components of the complement of the closed range of \(1 - e^{-\xi} \) has a natural interpretation in terms of the associated CRT \((T, \mu)\): the lengths of these intervals are the strictly positive masses of components in the coarse spinal decomposition
of \((T, \mu)\), in the order they appear along the spine from the root to leaf 1. We will therefore call this interval partition the coarse spinal interval partition of \([0, 1]\) derived from \((T, \mu)\). In terms of the associated homogeneous fragmentation, the lengths of these intervals are the total masses of fragments thrown off by the mass process of the fragment containing 1, put in the order they split away from this tagged fragment. Otherwise said, \(\exp(-\xi)\) is the mass process of the fragment containing 1. Since the fragmentation process has zero erosion and no sudden loss of mass, the subordinator \(\xi\) has no drift and no killing. Bertoin \cite{Bertoin} proved that the Lévy measure of \(\xi\) is then given by
\[
\Lambda(dx) = \exp(-x) \sum_{i \geq 1} \nu(-\log s_i \in dx), \quad x > 0. \tag{5}
\]

Proposition 2 Let \((\Pi(t), t \geq 0)\) be a self-similar fragmentation process, with index \(a \in \mathbb{R}\) and dislocation measure \(\nu\) with infinite total mass. Then the entire process \((\Pi(t), t \geq 0)\) can be constructed from the consistent sequence \((T_{[n]}, n \geq 1)\) of combinatorial shapes of trees derived from \(\Pi\).

Proof. In view of the time-change relation between fragmentations of different indices, it suffices to consider the homogeneous case. Given the consistent family of trees \((T_{[n]}, n \geq 1)\), we first use \cite{Bertoin} to recover the closure of the range of \(\exp(-\xi)\), hence also the closure of the range of \(\xi\), the subordinator describing the evolution of the mass fragment containing 1. Since the dislocation measure has infinite mass, so does the Lévy measure of \(\xi\). Then it is well known that the entire sample path of \(\xi\) can be measurably reconstructed from its range, up to a constant factor on the time scale (see e.g. \cite{Duquesne}. Since the distribution of \(\xi\) is determined by that of \((\Pi(t), t \geq 0)\), this constant is known. Let \(\Pi_n = (\Pi_n(t), t \geq 0)\) be the restriction of \((\Pi(t), t \geq 0)\) to \([n]\). The path of \(\xi\), and its construction \((\Pi(t), n \geq 1)\), determine almost surely for each \(n\) the sequence of random times \(t\) when transitions of \(\Pi_n\) occur which change the block of \(\Pi_n\) containing 1, and at each of these times \(t\) the block of \(\Pi_n(t)\) containing 1 can be read from \(T_{[n]}\). By exchangeability, the same reconstruction can evidently be done almost surely for the block of \(\Pi_n(t)\) containing \(j\), for each \(1 \leq j \leq n\). But this information determines the entire path of \((\Pi_n(t), t \geq 0)\), for each \(n\), hence that of \((\Pi(t), t \geq 0)\).

Corollary 3 If in the setting of Proposition \cite{Bertoin} we have \(a < 0\), then an associated \((a, \nu)\)-fragmentation CRT \((T, \mu)\) can also be constructed from \((T_{[n]}, n \geq 1)\) on the same probability space.

Proof. While the construction of a self-similar fragmentation CRT in \cite{Duquesne} from a self-similar partition-valued fragmentation process is carried out explicitly only “in distribution”, it is not hard to give an almost sure construction, e.g. via Aldous’s sequential construction in \(l_1\) (see e.g. \cite{Bertoin} p.252). This yields an increasing sequence of trees with edge lengths \(R_{[n]}\) that converges in distribution, hence almost surely, with respect to the Hausdorff metric on closed subsets of \(l_1\). The almost sure convergence of empirical measures on the leaves of \(R_{[n]}\) to a mass measure \(\mu\) is then given by \cite{Bertoin, Lemma 7} (convergence of measures is weak convergence). \(\square\)

We record now an explicit distributional result for the coarse spinal partition of \(T_{[n+1]}\), which can either be read from \cite{Duquesne} or derived directly. Recall that \(n + 1 - \# B_{n,1}\) is the size of the fragment containing 1 at the first branch point of \(T_{[n+1]}\). Let \(\Sigma(ds) := \sum_{j=1}^{\infty} \nu(s_j \in ds)\) and let \(\Lambda\) be the Lévy measure of \((\xi, t \geq 0)\), which, according to \cite{Bertoin}, is the image of \(s \Sigma(ds)\) via \(s \mapsto -\log s\). Then by embedding in the homogeneous fragmentation, we see that
\[
P(\# B_{n,1} = m) = \Phi(n : m)/\Phi(n) \quad (1 \leq m \leq n) \tag{6}
\]
where $\Phi(n)$ is the total rate of fragmentations with some effect on partitions of $[n+1]$, and $\Phi(n:m)$ the rate of such fragmentations in which 1 ends up in a block of size $n+1-m$. These rates are easily evaluated as follows:

$$\Phi(n:m) = \left(\frac{n}{m}\right) \int_0^1 s^{n+1-m} (1-s)^m \Sigma(ds) = \left(\frac{n}{m}\right) \int_0^\infty e^{-(n-m)x} (1-e^{-x})^m \Lambda(dx)$$

and

$$\Phi(n) = \sum_{m=1}^{n} \Phi(n:m) = \int_0^1 (1-s^n)s \Sigma(ds) = \int_0^\infty (1-e^{-nx}) \Lambda(dx).$$

From this and [19], we get the exchangeable partition probability function (EPPF) of the coarse spinal partition $\{B_{n,1}, B_{n,2}, \ldots, B_{n,K_n}\}$, i.e. the probabilities $p(n_1, \ldots, n_k) = \Pr(\{B_{n,1}, \ldots, B_{n,K_n}\} = \pi)$, for each particular partition π of $\{2, \ldots, n+1\}$ in sets of sizes n_1, \ldots, n_k, $\forall n \geq 1, \forall (n_1, \ldots, n_k)$ partition of n. For an explicit formula, see [19], especially formulae (26), (6), (3) and (4). Various further properties of the coarse spinal partition can also be read from [19].

2.2 The fine spinal partition

We start by observing some basic symmetry properties of this partition.

Proposition 4 (i) Conditionally given the sizes of components of the fine spinal decomposition of $T_{[n+1]}$, say n_1, \ldots, n_k with $\sum_{i=1}^{k} n_i = n$, the corresponding collection of subtrees of $T_{[n+1]}$, modulo relabelling by $[n_1], \ldots, [n_k]$, is a collection of independent copies of $T_{[n_1]}, \ldots, T_{[n_k]}$.

(ii) Conditionally given the fine spinal mass partition of a self-similar fragmentation CRT (T, μ) with parameters (a, ν), the corresponding collection of subtrees T of T, with each T of mass m equipped with $m^{-1}\mu$ restricted to T, modulo isomorphism and multiplication of edge lengths by ma^0, is a collection of independent copies of (T, μ).

Proof. Part (i) follows easily from the defining Markov (fragmentation/branching) property of $T_{[n]}$. For part (ii), consider Π a partition-valued (a, ν)-fragmentation constructed from (T, μ). Let $\Pi(i)(t)$ denote the block of $\Pi(t)$ containing i, $i \geq 1$, and recall that $D_{1,i}$ denotes the first time at which 1 and i belong to distinct blocks. For all $t \geq 0$, the collection of blocks $(\Pi(i)(D_{1,i}+t), i \geq 1)$ induces a partition of \mathbb{N}. In the terminology of Bertoin ([10], Definition 3.4), the sequence $(D_{1,i}, i \geq 1)$ is a stopping line, and as such, satisfies the extended branching property ([10], Lemma 3.14), which ensures that given $(\Pi(i)(D_{1,i}), i \geq 1)$, the processes $(\Pi(i)(D_{1,i}+t), t \geq 0)$, $i \geq 1$, evolve respectively as $(m_i \Pi(i)(m_i t), t \geq 0)$, where m_i is the asymptotic frequency of $\Pi(i)(D_{1,i}), i \geq 1$, and the $\Pi(i)$s are i.i.d. copies of Π. Now, coming back to the CRT (T, μ), each component of its fine spinal partition corresponds to a fragmentation $(\Pi(i)(D_{1,i}+t), t \geq 0)$ for some i and obviously, can be measurably reconstructed from this fragmentation (see the proof of Corollary 3). Conditionally given the masses $m_i, i \geq 1$, the subtrees of the fine spinal partition are therefore independent, distributed (modulo isomorphisms) respectively as $(m_i^{-a}T, m_i \mu(m_i^{-a}))$, $i \geq 1$, where $m_i^{-a}T$ means that the edge lengths of T have been multiplied by m_i^{-a} and $\mu(m_i^{-a})$ is the image of μ by this transformation. \square

Part (ii) of the proposition is a natural generalization of the spinal decomposition of the Brownian CRT described in [3]. When the Brownian CRT is encoded in a Brownian excursion, this corresponds to a path decomposition whereby a single excursion is decomposed into a countably infinite collection of independent copies of itself.
In view of this symmetry property of the fine spinal partition, it is natural to look for some more explicit description of this decomposition, such as its EPPF or the distribution on S^1 of the corresponding mass partition. While such descriptions are known for the Brownian CRT, and more generally for all binary self-similar fragmentation CRTs according to the previous section, they appear to be difficult to obtain in general. But searching for conditions which simplify the structure of the fine spinal partition of (T, μ) leads naturally to consideration of further symmetry properties, and then to interesting examples with these properties for which explicit computations can be made. Consider first the fine partition of the set of leaves in some block of the coarse spinal decomposition of $T_{[n+1]}$. By recursive arguments, it is enough to discuss the fine partition of the first block of the spinal decomposition.

For each $s \in S^1$ let P_s denote the probability measure governing an exchangeable random partition Π of \mathbb{N} whose ranked frequencies are equal to s, and for a measure ν on S^1 let

$$P_\nu(\cdot) = \int_{S^1} P_s(\cdot) \nu(ds)$$

be the corresponding distribution of Π as a mixture of Kingman’s paintbox partitions. For each n the distribution of Π_n is determined by the formula

$$P_\nu(\Pi_n = \{B_1, \ldots, B_k\}) = p_\nu(#B_1, \ldots, #B_k)$$

for every partition $\{B_1, \ldots, B_k\}$ of $[n]$ into $k \geq 1$ parts, for some function $p_\nu(n_1, \ldots, n_k)$ of compositions (n_1, \ldots, n_k) of positive integers n. We refer here to [31] or [10] for a specific formula for $p_\nu(n_1, \ldots, n_k)$. In particular, $p_\nu(1, 1) = \int_{S^1} (1 - \sum_{i \geq 1} s_i^2) \nu(ds)$. Note that $p_\nu(n_1, \ldots, n_k) < \infty$ for all $n_1, \ldots, n_k \in \mathbb{N}$, $k \geq 2$, if and only if $p_\nu(1, 1) < \infty$, i.e. if and only if $\int_{S^1} (1 - s_1) \nu(ds) < \infty$.

Definition 1 The function p_ν is called the exchangeable partition rate function (EPRF) associated with ν. If ν is a probability measure, then so is P_ν, and P_ν is known as an exchangeable partition probability function (EPPF).

Note that we have the addition rule

$$p_\nu(n_1, \ldots, n_k) = p_\nu(n_1 + 1, n_2, \ldots, n_k) + \ldots + p_\nu(n_1, \ldots, n_{k-1}, n_k + 1) + p_\nu(n_1, \ldots, n_k, 1).$$

The following lemma presents a basic decomposition in some generality.

Lemma 5 Let ν be a dislocation measure on S^1 with associated EPRF p_ν. Then for every $k \geq 2$ and every composition n_1, \ldots, n_k of $n \geq 2$ into at least two parts,

$$p_\nu(n_1, \ldots, n_k) = g(n, n_1)p_{\tilde{\nu}(n, n_1)}(n_2, \ldots, n_k)$$

for some function $g(n, n_1)$ and some family of probability measures $\tilde{\nu}(n, n_1)$ on S^1 indexed by $1 \leq n_1 \leq n - 1$.

Proof. Let Π be a homogeneous fragmentation with dislocation measure ν. The result is obtained by conditioning on the size of the block B_1 containing 1. We (have to) take $g(n, n_1)$ as the total rate associated with the formation of a particular block B_1 of n_1 out of n elements. Then $(n_1-1)g(n, n_1) = \Phi(n-1 : n - n_1)$ as in (8), so that

$$\Phi(n-1) = \sum_{n_1 = 1}^{n-1} \binom{n-1}{n_1-1} g(n, n_1) = P_\nu(\Pi_n \neq \{[n]\}) = \int_{S^1} \left(1 - \sum_{j=1}^{\infty} s_j \right) \nu(ds),$$

as in (9).
as in (8), is the total rate of formation of partitions of $[n]$ with at least 2 parts. Then $p_{\nu(n,n_1)}(n_2,\ldots,n_k)$ is the conditional probability, given the particular set B_1, that the remaining $n-n_1$ elements are partitioned as they must be to make a particular partition of $[n]$ into blocks of sizes n_1,\ldots,n_k. To be more precise, we can take

$$\hat{\nu}(n,n_1)(\mathbf{ds}) = \frac{1}{g(n,n_1)} \int_{S^1} \sum_{i\geq 1} r_i^{n_1}(1-r_i)^{n-n_1} \delta_{\mathbf{r}_i/(1-r_i)}(\mathbf{ds}) \nu(\mathbf{dr}),$$

where \mathbf{r}_i is the vector \mathbf{r} with component r_i omitted. By Kingman’s paintbox representation and conditioning on the colour i of the first block, we then get for all partitions with block sizes (n_1,\ldots,n_k) in order of least element

$$p_{\nu(n,n_1)}(n_2,\ldots,n_k) = \int_{S^1} p_{\mathbf{s}}(n_2,\ldots,n_k) \hat{\nu}(n,n_1)(\mathbf{ds})$$

$$= \frac{1}{g(n,n_1)} \int_{S^1} \sum_{i\geq 1} r_i^{n_1}(1-r_i)^{n-n_1} p_{\mathbf{r}_i/(1-r_i)}(n_2,\ldots,n_k) \nu(\mathbf{dr})$$

$$= \frac{1}{g(n,n_1)} p_{\nu}(n_1,\ldots,n_k),$$

where by convention $p_{\mathbf{s}} = p_{\delta_{\mathbf{r}}}$.

This discussion simplifies greatly for measures ν with the special symmetry property introduced in the following definition:

Definition 2 Let ν be a measure on S^1, and let $\hat{\nu}$ be a probability measure on S^1. Say that ν has $\hat{\nu}$ as its factor, if $\hat{\nu}(n,n_1)$ in (8) can be chosen identically equal to $\hat{\nu}$ for every $1 \leq n_1 < n$, that is

$$p_{\nu}(n_1,\ldots,n_k) = g(n,n_1)p_{\nu}(n_2,\ldots,n_k)$$

(11)

for every composition n_1,\ldots,n_k of $n \geq 2$ into at least 2 parts, and some function $g(n,n_1)$.

Note that ν may be sigma-finite, but that $\hat{\nu}$ is always assumed to be a probability measure. It is obvious that if ν has factor $\hat{\nu}$, then $\hat{\nu}$ is unique. A rich class of measures ν which admit a factor $\hat{\nu}$ is the class of Poisson-Dirichlet measures considered in the next section. It is an open problem [31, Problem 3.7], even for probability measures, to describe all measures ν on S^1 which admit a factor $\hat{\nu}$. Note that all binary dislocation measures trivially admit a factor, as well as ordered Dirichlet (a,\ldots,a) including the Dirac mass at $(1/m,\ldots,1/m)$. The latter are just the remaining members of the Ewens-Pitman two-parameter family.

Following the formalism of [32, Corollary 13], given two random elements V and V' of S^1, and a probability distribution $\hat{\nu}$ on S^1, say that V' is a $\hat{\nu}$-fragmentation of V if the joint distribution of V and V' is the same as if V' is derived from V by shattering each fragment of V independently in proportions determined by $\hat{\nu}$.

Theorem 6 Let ν be a dislocation measure on S^1, let (T,μ) be some self-similar CRT derived from fragmentation according to ν, and let $\hat{\nu}$ be a probability distribution on S^1. Then the following two conditions are equivalent:

(i) the measure ν has $\hat{\nu}$ as a factor;

(ii) the fine spinal mass partition of (T,μ) is a $\hat{\nu}$-fragmentation of the coarse spinal mass partition of (T,μ).
Proof. According to [32, Lemma 35], the fine spinal partition is a ν-fragmentation of the coarse spinal partition if and only if, for all $n \geq 1$, in passing from the coarse spinal partition of $[n]$ generated by $T_{[n]}$ to the fine one, within each block of the coarse partition the fine partition is distributed according to P_ν, independently between blocks of the coarse partition. But due to the fragmentation property of the trees $T_{[n]}, n \geq 1$, this amounts to the relation (11) between ν and $\hat{\nu}$.

\[\square\]

3 Poisson-Dirichlet fragmentations

We now turn to a particular family of fragmentation processes, namely the Poisson-Dirichlet fragmentations, characterized by dislocation measures of type $PD^*(\alpha, \theta), 0 < \alpha < 1, \theta > -2\alpha$, as defined below by [18]. This family generalizes the family of previously studied stable fragmentations (29, 30), constructed from the stable trees (T_β, μ_β) with index $\beta, 1 < \beta < 2$. These stable CRTs were introduced and studied by Duquesne and Le Gall [13, 14] to which we refer for a rigorous construction. Roughly, the fragmentation property of the trees T_β was introduced and studied by Duquesne and Le Gall [13, 14] to which we refer for a rigorous construction. Roughly, T_β arises as the limit in distribution as $n \to \infty$ of rescaled critical Galton-Watson trees T_n, conditioned to have n vertices, with edge-lengths $n^{1/\beta-1}$, and an offspring distribution $(\eta_k, k \geq 0)$ such that $\eta_k \sim Ck^{-1-\beta}$ as $k \to \infty$. It is endowed with a (random) probability measure μ_β which is the limit as $n \to \infty$ of the empirical measure on the vertices of T_n. Miermont [29] shows that the partition-valued process constructed by random sampling of leaves L_1, L_2, \ldots from (T_β, μ_β) according to μ_β is a self-similar fragmentation with index $1/\beta - 1$, and dislocation measure ν_β defined for all non-negative measurable function f on S^1 by

\[
\int_{S^1} f(s)\nu_\beta(ds) = \frac{\beta^2 \Gamma(2 - 1/\beta)}{\Gamma(2 - \beta)} \mathbb{E} \left[T f \left(\frac{\Delta_1}{T}, \frac{\Delta_2}{T}, \ldots \right) \right]
\]

(12) (and no erosion). Here $T = \sum_{i=1}^{\infty} \Delta_i$ where $\Delta_1 > \Delta_2 > \cdots$ are the points of a Poisson process on $(0, \infty)$ with intensity $(2\Gamma(1-1/\beta)^{-1} x^{-1/\beta-1} dx$. Besides, cutting the stable tree T_β at nodes (see [30]), Miermont obtained a self-similar fragmentation with index $1/\beta$ and the same dislocation measure ν_β.

3.1 Definition and factorization property

For $0 < \alpha < 1, \theta > -\alpha$, let $PD(\alpha, \theta)$ denote the two-parameter Poisson-Dirichlet distribution on S^1, defined as the distribution of the decreasing rearrangement of its size-biased presentation, which is

\[
W_1, (1 - W_1)W_2, (1 - W_1)(1 - W_2)W_3, \ldots
\]

(13) for W_i which are independent beta$(1 - \alpha, i\alpha + \theta)$ variables. The formula for the corresponding EPPF is [31, Th.3.2.]

\[
p_{PD(\alpha, \theta)}(n_1, \ldots, n_k) = \frac{\alpha^{k-1}[1 + \theta/\alpha]^{k-1}}{[1 + \theta]_{n-1}} \prod_{i=1}^{k} [1 - \alpha]_{n_i-1}
\]

(14) for every composition (n_1, \ldots, n_k) of n, where $[x]_n = \Gamma(x + n)/\Gamma(x)$ is a rising factorial. It is evident by inspection of this formula and (11) that the probability measure $PD(\alpha, \theta)$ admits $PD(\alpha, \theta + \alpha)$ as a factor for every $0 < \alpha < 1$ and $\theta > -\alpha$. Following Miermont [29] we now consider the rescaled measure

\[
PD^*(\alpha, \theta) := \frac{\Gamma(1 + \theta/\alpha)}{\Gamma(1 + \theta)}PD(\alpha, \theta)
\]

(15)
which is defined in the first instance for $0 < \alpha < 1$ and $-\alpha < \theta$. It is known \cite[Corollary 3.9.]{31} that for $0 < \alpha < 1$ there is the absolute continuity relation

$$\text{PD}^*(\alpha, \theta)(ds) = (S_\alpha(s))^{\theta/\alpha} \text{PD}(\alpha, 0)(ds) \quad (16)$$

where $S_\alpha(s)$ is the α-diversity which is almost surely associated to a sequence $s = (s_1, s_2, \ldots)$ with distribution $\text{PD}(\alpha, 0)$ by the formula

$$S_\alpha(s) := \Gamma(1-\alpha) \lim_{j \to \infty} j s_\alpha^\alpha.$$

The $\text{PD}(\alpha, \theta)$ distribution is recovered from (16) for $-\alpha < \theta$ by normalization as in (15). The α-diversity S_α, which has a Mittag-Leffler distribution (see e.g. \cite[formula 0.43]{31}), appears variously disguised in different contexts, for example as a local time variable, or again as $S_\alpha = T^{-\alpha}$ for a positive stable variable T of index α. Indeed, if such a T is constructed as $T = \sum_{i=1}^{\infty} \Delta_i$ where $\Delta_1 > \Delta_2 > \cdots$ are the points of a Poisson process on $(0, \infty)$ with intensity $\alpha(\Gamma(1-\alpha))^{-1} x^{-\alpha-1} dx$, then

$$(\Delta_1/T, \Delta_2/T, \ldots) = d\text{PD}(\alpha, 0)$$

and, according to \cite[formula 4.45]{31},

$$S_\alpha(\Delta_1/T, \Delta_2/T, \ldots) = T^{-\alpha} \text{ a.s.}$$

so that for every non-negative measurable function f of $s = (s_1, s_2, \ldots) \in S^1$,

$$\int_{S^1} f(s) \text{PD}^*(\alpha, \theta)(ds) = E \left[T^{-\theta} f(\Delta_1/T, \Delta_2/T, \ldots) \right]. \quad (17)$$

Lemma 7 For each $0 < \alpha < 1$, let $\text{PD}^*(\alpha, \theta)$ be the measure defined on S^1 for each real θ by either (14) or (17). Then for $-2\alpha < \theta$, this measure $\text{PD}^*(\alpha, \theta)$ is also the unique measure with no mass at $(1, 0, 0, \ldots)$ whose EPRF is given for $k \geq 2$ by

$$p_{\text{PD}^*(\alpha, \theta)}(n_1, \ldots, n_k) = \frac{\alpha^{k-1}\Gamma(k + \theta/\alpha)}{\Gamma(n + \theta)} \prod_{i=1}^{k}[1-\alpha]_{n_i-1} \quad (18)$$

and for $k = 1$ by the same formula for $-\alpha < \theta$, and by ∞ for $-2\alpha < \theta \leq -\alpha$. Basic integrability properties of this extended family of Poisson-Dirichlet measures are

$$\int_{S^1} \text{PD}^*(\alpha, \theta)(ds) < \infty \iff \theta > -\alpha; \quad (19)$$

$$\int_{S^1} (1-s_1) \text{PD}^*(\alpha, \theta)(ds) < \infty \iff \theta > -2\alpha. \quad (20)$$

For each choice of (α, θ) with $\theta > -2\alpha$ the measure $\text{PD}^*(\alpha, \theta)$ has the probability distribution $\text{PD}(\alpha, \theta + \alpha)$ as its factor.

Proof. Following Miermont \cite{29}, we observe from (14) and (17) that the formula (18) holds in the first instance for all $\theta > -\alpha$, and that the right side of (18) is analytic in θ for $\theta > -2\alpha$. It follows easily that (18) holds for all such θ. The fact \cite{14} is elementary. As for (20), we have seen in Section \cite{22} that this integrability condition holds if and only if the expressions in (18) are finite for every choice of n_1, \cdots, n_k with $k \geq 2$, and this is clear by inspection of (18). \end{proof}
The infinite measure $\text{PD}^*(\alpha, -\alpha)$ was already used and studied by Basdevant [7] in the context of Ruelle’s probability cascades.

Remarks. 1). For $0 < \alpha < 1, \theta > -\alpha$, the EPPF (14) gives

$$\mathbb{P}_{\text{PD}(\alpha, \theta)}(\Pi_n \neq \{[n]\}) = 1 - \frac{[1 - \alpha]_{n-1}}{[1 + \theta]_{n-1}}$$

and hence

$$\mathbb{P}_{\text{PD}^*(\alpha, \theta)}(\Pi_n \neq \{[n]\}) = \frac{\Gamma(1 + \theta/\alpha)}{\Gamma(1 + \theta)} \left(1 - \frac{[1 - \alpha]_{n-1}}{[1 + \theta]_{n-1}}\right)$$

in the first instance for $0 < \alpha < 1, \theta > -\alpha$, and then by analytic continuation for $0 < \alpha < 1, \theta > -2\alpha$, with values of the right side defined by continuity for $\theta = -\alpha$ or $\theta = -1$. To see that the left side of (22) is analytic in this range, observe that for each n this function of (α, θ) is just a finite sum of the functions in (18) weighted by combinatorial coefficients.

2). From the fact (13) that a size-biased pick from $\text{PD}(\alpha, \theta)$ has beta$(1 - \alpha, \alpha + \theta)$ distribution, we can write down

$$s \sum_{j=1}^{\infty} \text{PD}(\alpha, \theta)(s_j \in ds) = \frac{\Gamma(1 + \theta)}{\Gamma(1 - \alpha)\Gamma(1 + \alpha + \theta)} s^{-\alpha}(1 - s)^{\alpha + \theta - 1} ds \quad (0 < s < 1)$$

and hence for $-2\alpha < \theta$ by analytic continuation

$$s \sum_{j=1}^{\infty} \text{PD}^*(\alpha, \theta)(s_j \in ds) = \frac{\alpha \Gamma(2 + \theta/\alpha)}{\Gamma(1 - \alpha)\Gamma(1 + \alpha + \theta)} s^{-\alpha}(1 - s)^{\alpha + \theta - 1} ds \quad (0 < s < 1). \quad (23)$$

The image of this measure by the change of variable $x = -\log s$ is the corresponding Lévy measure

$$\Lambda_{\alpha, \theta}(dx) = \frac{\alpha \Gamma(2 + \theta/\alpha)}{\Gamma(1 - \alpha)\Gamma(1 + \alpha + \theta)} e^{-x(1-\alpha)}(1 - e^{-x})^{\alpha + \theta - 1} dx \quad (0 < x < \infty). \quad (24)$$

From Theorem 3 we now deduce:

Corollary 8 For each $0 < \alpha < 1, \theta > -2\alpha$, let $(\mathcal{T}_\alpha, \mu)$ be some CRT derived from fragmentation process with dislocation measure $\text{PD}^*(\alpha, \theta)$. The sequence of discrete fragmentation trees $(T_{[n]}, n \geq 1)$ embedded in $(\mathcal{T}_\alpha, \mu)$ is governed by fragmentations of $[n]$ according the EPPF obtained by normalization of formula (18) by formula (22). The fine spinal mass partition of $(\mathcal{T}_\alpha, \mu)$ is a PD$(\alpha, \alpha + \theta)$-fragmentation of the coarse spinal mass partition of $(\mathcal{T}_\alpha, \mu)$, which is derived from the range of $1 - e^{-\xi}$ for the pure jump subordinator ξ with Lévy measure (24) and Laplace exponent

$$\Phi_{\alpha, \theta}(z) = \left\{ \begin{array} {ll}
\frac{\alpha \Gamma(2 + \theta/\alpha)}{(\alpha + \theta)\Gamma(1 - \alpha)} \left(\frac{(1 + \theta)\Gamma(1 - \alpha)}{\Gamma(2 + \theta)} - \frac{(z + 1 + \theta)\Gamma(z + 1 - \alpha)}{\Gamma(z + 2 + \theta)}\right), & \theta \neq -\alpha, \\
\frac{\alpha \Gamma(z + 1 - \alpha)}{\Gamma(1 - \alpha)} \left(\frac{\Gamma(z + 1 - \alpha)}{\Gamma(z + 1)} - \frac{\Gamma'(1 - \alpha)}{\Gamma(1 - \alpha)}\right), & \theta = -\alpha.
\end{array} \right. \quad (25)$$

Last, for $\theta \in (-2\alpha, -\alpha)$ we have an interesting regime where Proposition 4 applies along with the asymptotic theory of consistent Markov branching models in [26]. Specifically,
Corollary 9 For \(\theta \in (-2\alpha, -\alpha) \), let \((T_{[n]}, n \geq 1)\) be a Markov branching model derived from a self-similar fragmentation with dislocation measure \(\text{PD}^\ast(\alpha, \theta) \). Adding unit edge lengths to \(T_{[n]} \), there is the convergence in probability

\[
\frac{[\alpha + \theta]\Gamma(1 - \alpha)}{\alpha \Gamma(2 + \theta/\alpha)} \times \frac{T_{[n]}}{n^{\theta + \alpha}} \rightarrow T_{(\theta + \alpha, \text{PD}(\alpha, \theta))}
\]

for the Gromov-Hausdorff topology, where the limit is a self-similar fragmentation \(\text{CRT} \) of index \(\theta + \alpha \) and dislocation measure \(\text{PD}^\ast(\alpha, \theta) \).

Proof. Note from (23) that

\[
\text{PD}^\ast(\alpha, \theta)(x_1 \leq 1 - \varepsilon) \sim \frac{\alpha \Gamma(2 + \theta/\alpha)}{|\alpha + \theta| \Gamma(1 - \alpha) \Gamma(1 + \alpha + \theta)} \varepsilon^{\alpha + \theta} \text{ as } \varepsilon \downarrow 0.
\]

Then Theorem 2 of (29) applies \((\Lambda_{\alpha, \theta} \text{ clearly also satisfies } \int \infty x^\rho \Lambda_{\alpha, \theta} (ds) < \infty \text{ for some } \rho > 0)\), which gives (26). \(\square \)

3.2 Stable fragmentations

The case \(1/2 < \alpha < 1 \) is of special interest. Then \(-2\alpha < -1 < -\alpha\), so we can take \(\theta = -1 \) in (23), and then the Lévy measure (24) is of the form

\[
\Lambda(dx) = c_b (1 - e^{-x})^{-b-1} e^{-bx} dx,
\]

for some constant \(c_b > 0 \) and \(b = 1 - \alpha \). It is known [19] that if \(\xi \) is a subordinator with this Lévy measure, for any \(b \in (0, 1) \), then the closure of the range of \(e^{-\xi} \) is reversible and identical in law with the zero set of a Bessel bridge of dimension \(2 - 2b \). The corresponding distribution of ranked lengths of intervals is then known to be \(\text{PD}(b, b) \) ([14], Corollary 4.9]). Miermont [29, p. 444] found the same Lévy measure, up to a scaling constant, for the subordinator associated with the self-similar fragmentation of index \(\alpha - 1 \in (-1/2, 0) \) that he derived from the stable CRT \(T_\beta \) of index \(\beta = 1/\alpha \in (1, 2) \). Here we have reversed this line of reasoning, and constructed \(T_\beta \) directly from combinatorial considerations, without relying on the relation between the height process of \(T_\beta \) and the stable process of index \(\beta \), which was the basis of the work of Duquesne and Le Gall [13, 14]. As byproducts of this argument, we have a number of refinements of earlier work on \(T_\beta \), which we summarize in the following corollary of previous results.

Corollary 10 For each \(\alpha \in (1/2, 1) \), corresponding to \(\beta = 1/\alpha \in (1, 2) \) the dislocation measure \(\text{PD}^\ast(\alpha, -1) \) derived from the two-parameter Poisson-Dirichlet family as in [18] has \(\text{PD}(\alpha, \alpha - 1) \) as a factor. Let \((T_{[n]}, n = 1, 2, \ldots)\) be a consistent family of combinatorial trees governed by fragmentation according to \(\text{PD}^\ast(\alpha, -1) \). Then

1. The tree \(T_{[n]} \) is identical in law to the combinatorial tree with \(n \) leaves derived by sampling according the mass measure in the stable tree \(T_\beta \) of index \(\beta \), and \(T_\beta \) may be constructed from the sequence of combinatorial trees \((T_{[n]}, n \geq 1)\), as indicated in [24, Theorem 2], or Corollary [1].

2. The distribution of the coarse spinal mass partition of \(T_\beta \) is \(\text{PD}(1 - \alpha, 1 - \alpha) \).

3. The coarse spinal interval partition of \([0, 1]\) derived from \(T_\beta \) is exchangeable, with the same distribution as the collection of excursion intervals of a Bessel bridge of dimension \(2\alpha \). The \((1-\alpha)\)-diversity of this interval partition is a multiple of the height of a leaf picked at random from the mass measure of \(T_\beta \). This height has the same tilted Mittag-Leffler distribution as the local time at 0 of the Bessel bridge of dimension \(2\alpha \).
4. The corresponding fine spinal mass partition of T_β is a $PD(\alpha, \alpha - 1)$-fragmentation of the coarse spinal mass partition.

5. The unconditional distribution of the fine spinal mass partition of T_β is $PD(\alpha, 1 - \alpha)$.

6. The conditional distribution of the coarse spinal mass partition of T_β given the fine one is provided by the operator of $PD(\gamma, \gamma)$ coagulation, as defined in [32], for $\gamma = (1 - \alpha)/\alpha$.

7. Conditionally given the fine spinal mass partition of T_β, the corresponding collection of subtrees obtained by removing the spine, modulo isomorphism and rescaling trees T of mass m to $m^{-(1-\alpha)}T$, is a collection of independent copies of T_β.

Proof. All but items 5 and 6 follow immediately from the previous development. Those two items are read from item 4 by the more general coagulation/fragmentation duality relation for the PD family provided by [32, Theorem 12].

For more information about the distribution of random partitions in the PD family, see [33] and [20]. In the limiting case when $\beta \uparrow 2$, the above results reduce to the description of the interval partition derived from the spinal decomposition of the Brownian CRT, which is well known to be distributed like the partition generated by excursions of a Brownian bridge. See [5] for applications of this decomposition to the asymptotics of random mappings. The structure of the fine spinal partition of T_β for $1 < \beta < 2$ has no analogue for $\beta = 2$, because in the Brownian tree all splits are binary.

4 Invariance under uniform re-rooting

It is of particular interest to consider fragmentation trees with additional symmetry properties. A well-known property of the stable tree T_β with index $\beta \in (1, 2]$, established by Aldous [2] for the Brownian CRT with $\beta = 2$, and by Duquesne and Le Gall [14, Prop.4.8] for $\beta \in (1, 2)$, is invariance under uniform re-rooting. See also [15]. Let us first introduce the discrete analogue of this property.

For a tree T_n with leaves labelled by $[n]$, let $T_n^{(\text{root} \leftrightarrow 1)}$ denote the tree with leaves labelled by $[n]$ obtained by re-rooting T_n at 1 and re-labelling the original root by 1. See for instance the following picture.

![Figure 2: A fragmentation tree T_9 and its re-rooted counterpart $T_9^{(\text{root} \leftrightarrow 1)}$.](image)

Definition 3 Let $(T_n, n \geq 1)$ be a consistent Markov branching model. We say that the Markov branching model is invariant under uniform re-rooting if for all $n \geq 1$

$$T_n \xrightarrow{\text{law}} T_n^{(\text{root} \leftrightarrow 1)}.$$
Note that due to the exchangeability of leaf labels, leaf 1 is indeed a uniformly picked leaf of the de-labelled combinatorial tree shape. Due to the exchangeability of leaf labels, invariance under uniform re-rooting is in fact a property of de-labelled combinatorial tree shapes.

Definition 4 Let \((T, \mu)\) be a CRT rooted at \(\rho\) and conditionally on \((T, \mu)\), let \((L_1, L_2, \ldots)\) be a sample of leaves i.i.d. with distribution \(\mu\). Let then \(T^{[L_1]}\) denote the tree \(T\) re-rooted at \(L_1\). We say that \((T, \mu)\) is invariant under uniform re-rooting if for all \(n \geq 1\), the law of the reduced subtree \(R(T, L_1, \ldots, L_n)\) of \(T\) spanned by the root \(\rho\) and \(L_1, \ldots, L_n\) is invariant under re-rooting at \(L_1\), i.e.

\[
R(T^{[L_1]}, \rho, L_2, \ldots, L_n) \overset{\text{law}}{=} R(T, L_1, L_2, \ldots, L_n)
\]

as an identity in law of combinatorial tree shapes with assignment of edge lengths.

Clearly, the invariance under uniform re-rooting of \((T, \mu)\) implies the invariance under uniform re-rooting of the sequence \((T_{[n]}, n \geq 1)\) of combinatorial trees associated with \((T, \mu)\). We will see that the converse is false (see the arguments after (35)).

Remark. In [2], [13] a different formalism is used for the definition of invariance under uniform re-rooting, via height functions of ordered CRTs. Briefly, assuming that the CRT \((T, \mu)\) can be encoded into a continuous real-valued function \(H\) on \([0, 1]\), with \(H(0) = H(1) = 0\), such that

- \(T\) is isometric to the quotient space \(((0, 1), d_H)/ \sim_H\) where
 \[
d_H(x, y) := H(x) + H(y) - 2 \min_{z \in [x, y]} H(z) \quad \text{and} \quad x \sim_H y \iff d_H(x, y) = 0
\]
 with the convention \([x, y] = [y, x]\) when \(y < x\)

- \(\mu\) is the measure induced by the projection of the Lebesgue measure on this quotient space

then the invariance under uniform re-rooting is defined via \(H^{[U]} \overset{\text{law}}{=} H\) where \(U\) if uniformly distributed on \([0, 1]\) independently of \(H\) and

\[
H^{[u]}(x) := H(u) + H(u + x) - 2 \min_{z \in [u, x+u]} H(z), \ u, x \in [0, 1], \quad (28)
\]

with the convention \(u + x = u + x - 1\) when \(u + x > 1\). It was proved in [23] that the structures of the combinatorial subtrees \(R(T, L_1, \ldots, L_n), n \geq 1\), derived from some self-similar fragmentation CRT \((T, \mu)\) can be enriched with a consistent “uniform” order so as to encode the fragmentation CRTs into a continuous height function as described above, provided the dislocation measure is infinite. In that context, it is not hard to check that the height function definition and Definition 4 above are equivalent. Details are left to the reader.

The goal of this section is twofold: first to give a combinatorial proof, different from that given in [2], [14], [15], of the fact that the stable trees are invariant under uniform re-rooting; second to prove that among the self-similar fragmentation CRTs, the stable trees are the only ones, up to a scaling factor, to satisfy this invariance property.

For the Brownian CRT \((T_2, \mu_2)\), we recall that the partition-valued process constructed by random sampling of leaves \(L_1, L_2, \ldots\) according to \(\mu_2\) is a self-similar fragmentation with index \(a = -1/2\) and dislocation measure \(\nu_2\) defined by \(\nu_2(s_1 + s_2 \neq 1) = 0\) and

\[
\nu_2(s_1 \in dx) = (2/\pi)^{1/2} x^{-3/2}(1 - x)^{-3/2} dx, \ 1/2 \leq x < 1
\]

(see [3]). The dislocation measure \(\nu_\beta\) associated to the stable tree \(T_\beta\), \(1 < \beta < 2\) is given by [12] and its self-similar index is \(1/\beta - 1\).
Theorem 11 (i) \[4, 14\] For all $\beta \in (1, 2]$, the stable tree (T_β, μ_β) is invariant under uniform re-rooting.

(ii) Let (T, μ) be a self-similar fragmentation CRT with parameters (a, ν) and suppose it is invariant under uniform re-rooting. Then there exists some $\beta \in (1, 2]$ and some constant $C > 0$ such that $\nu = C \nu_\beta$ and $a = 1/\beta - 1$.

Remark. According to [15], a stronger invariance result is available for the height functions H of stable trees (and more generally Lévy trees), which is that $H^{[u]}$, as defined in (28), is distributed as H for each fixed $u \in [0, 1]$. See also [28] for the Brownian CRT.

The rest of this section is devoted to the proof of Theorem 11.

4.1 Spinal decomposition and proof of Theorem 11 (i)

The first step is to consider the spinal decomposition of trees invariant under uniform re-rooting: one consequence of this invariance is that the coarse spinal interval partition of $[0, 1]$ derived from the tree is reversible (in fact an exchangeable interval partition of $[0, 1]$, see [19]). The class of trees with this property is significantly restricted by the following proposition.

Proposition 12 Let $(T_{[n]}, n \geq 1)$ be a sequence of combinatorial trees associated with some self-similar fragmentation CRT (T, μ) with dislocation measure ν, and let ξ be the subordinator describing the evolution of the mass fragment containing 1 in an associated homogeneous fragmentation process (cf. Section 2.1).

(i) The coarse spinal composition of n derived from $T_{[n+1]}$ (as defined in (3)) is reversible for each n if and only if ξ has a Lévy measure of the form

$$\Lambda(dx) = c(1 - e^{-x})^{-b-1} e^{-bx} dx,$$

for some $0 < b < 1$ and some constant $c > 0$.

(ii) There cannot exist a self-similar fragmentation CRT with a Lévy measure of this form when $b > 1/2$.

Proof. Part (i) is read from [19, Theorem 10.1], just using the regenerative property of the coarse spinal compositions. For part (ii), from [5]

$$\Lambda(dx) = e^{-x} \sum_{i \geq 1} \nu(-\log s_i \in dx), x > 0,$$

and [29] we deduce by the transformation $z = e^{-x}$, $x = -\log(z)$, $dx = -dz/z$

$$\sum_{i \geq 1} \nu(s_i \in dz) = c(1 - z)^{-b-1} z^{-b-2} dz, \quad z \in (0, 1).$$

Since ν is supported by decreasing sequences with $\sum_{i=1}^\infty s_i = 1$, $s_i \leq 1/i$ for all $i \geq 1$. In particular,

$$\nu(s_1 \in dz) = c(1 - z)^{-b-1} z^{-b-2} dz, \quad z \in (1/2, 1).$$

Using the fact that for $z \in (0, 1/2)$

$$z^{-b}(1 - z)^{b-2} > (1 - z)^{-b-1} z^{b-1} \iff (1 - z)^{2b-1} > z^{2b-1} \iff b > 1/2,$$
we see that for \(b > 1/2 \)

\[
\int_{(0,1)} (1 - z)^{-a} z^{-2} d\nu(s_1 \in dz) \geq c \int_{(0,1/2)} (1 - z)^{-b} \nu(s_1 \in dz)
\]

by (30). On the other hand, we have

\[
\int_{(0,1)} (1 - z)\nu(s_1 \in dz) = \int_{(0,1)} z\nu \left(\sum_{i \geq 2} s_i \nu(ds) \right)
\]

which contradicts the inequality obtained in the preceding calculation. \(\square\)

The Lévy measure associated with the tagged fragment of some fragmentation tree invariant under uniform re-rooting is therefore of the form (29) for some \(0 < b \leq 1/2 \). We recall that the Lévy measures associated to \(\beta \)-stable trees are of this form for \(b = 1 - 1/\beta \) (see Section 3.2 for \(1 < \beta < 2 \) and \(\beta = 2 \)) which covers the range \((0,1/2]\) when \(\beta \) varies in \((1,2]\).

Proof of Theorem 11 (i). Let \((T_\beta, \mu_\beta)\) be some stable CRT with index \(\beta \in (1,2] \). According to the previous proposition, its coarse spinal interval partition of \([0,1]\) is reversible. We then conclude with Items 4 and 7 of Corollary 10. \(\square\)

4.2 Characterization of the dislocation measure and Proof of Theorem 11(ii)

In general the Lévy measure does not characterize the dislocation measure of the fragmentation tree, i.e. two different dislocation measures may lead to the same Lévy measure \(\Lambda \), see Haas \[23\] for an example. However, this complication no longer arises when the set of fragmentation trees is restricted to the ones invariant under uniform re-rooting.

Proposition 13 Let \((T, \mu)\) be a self-similar fragmentation CRT with parameters \((a, \nu)\) and suppose it is invariant under uniform re-rooting. Then the dislocation measure \(\nu \) can be reconstructed from the Lévy measure \(\Lambda \) associated to the tagged fragment.

Together with Proposition 12, this implies that

Corollary 14 The dislocation measure of a self-similar fragmentation CRT invariant under uniform re-rooting is proportional to \(\nu_\beta \) for some \(\beta \in (1,2] \).
In order to prove Proposition 13, we first set up two lemmas. In the rest of this subsection, the CRT \((T, \mu)\) with parameters \((a, \nu)\) is fixed and supposed to be invariant under uniform re-rooting. A sample of leaves \(L_i, i \geq 1\) is given and we consider the associated partition-valued fragmentation \(\Pi\). We call \(p_n\) the probabilities

\[
p_n(n_1, ..., n_k) = \frac{\mathbb{P}(\Pi_n(t_n) = \{1, ..., n_1\}, \{n_1 + 1, ..., n_1 + n_2\}, ..., \{n_1 + ... + n_{k-1} + 1, ..., n\})}{\Phi(n-1)}
\]

where \(t_n\) is the first time when \(\Pi_n\) differs from \([n]\) and \((n_1, ..., n_k)\) denotes any composition of \(n\) with \(k \geq 2\) (in other words, the probabilities \(p_n\) are the EPPFs obtained by conditioning \(\mathbb{P}_\nu\) on \(\{\Pi_n \neq [n]\}\)) in the proof of Lemma 13. Note in particular that

\[
\sum_{k=2}^{n} \sum_{(n_1, ..., n_k)} \frac{n!}{n_1!...n_k!k!} p_n(n_1, ..., n_k) = 1, \tag{31}
\]

where the sum is over all compositions of \(n\), see [11, Exercise 2.1.3].

Lemma 15 For all compositions \((n_1, ..., n_k)\) of \(n\) with \(k \geq 2\)

\[
p_n(n_1, ..., n_k)p_n(1, n_1 - 1) = p_n(n_2 + ... + n_k + 1, n_1 - 1)p_{n-n_1+1}(1, n_2, ..., n_k), \tag{32}
\]

with the convention, when \(n_1 = 1\), that the probabilities involving expressions with a term \(n_1 - 1 = 0\) are all equal to 1.

Proof. Consider the following fragmentation scheme: the first time at which the block \(\{1, ..., n\}\) splits, it splits in blocks \(\{1, ..., n_1\}, \{n_1 + 1, ..., n_1 + n_2\}, ..., \{n_1 + ... + n_{k-1} + 1, ..., n\}\): then the first of these blocks splits in \(\{1\}, \{2, ..., n_1\}\). We are not really interested in the further evolution of \(\{2, ..., n_1\}, \{n_1 + 1, ..., n_1 + n_2\}, ..., \{n_1 + ... + n_{k-1} + 1, ..., n\}\), let us just say that it is in a configuration which happens with a (strictly) positive probability, say \(r_n(n_1, ..., n_k)\) (e.g., evolutions as in Figure 3). Consider then the discrete tree with leaf labels obtained from this fragmentation scheme. The probability that the tree with \(n\) leaves \(\mathcal{R}(T, L_1, L_2, ..., L_n)\) has this labelled shape is exactly

\[
p_n(n_1, ..., n_k)p_n(1, n_1 - 1)r_n(n_1, ..., n_k). \tag{33}
\]

Now, look at the same tree rooted at \(L_1\), i.e. \(\mathcal{R}(T_{L_1}, \rho, L_2, ..., L_n)\), cf. Figure 3. Starting from the root \(L_1\), the corresponding fragmentation scheme evolves as follows: \(\{\rho, 2, ..., n\}\) first splits in \(\{2, ..., n_1\}, \{\rho, n_1 + 1, ..., n\}\). Then \(\{\rho, n_1 + 1, ..., n\}\) splits in \(\{\rho\}, \{n_1 + 1, ..., n_1 + n_2\}, ..., \{n_1 + ... + n_{k-1} + 1, ..., n\}\). And the blocks \(\{2, ..., n_1\}, \{n_1 + 1, ..., n_{1} + n_2\}, ..., \{n_1 + ... + n_{k-1} + 1, ..., n\}\) then all split according to the same configuration as in the previous scheme. By invariance under uniform re-rooting, the subtree \(\mathcal{R}(T_{L_1}, \rho, L_2, ..., L_n)\) is distributed as \(\mathcal{R}(T, L_1, L_2, ..., L_n)\), and therefore, the probability that \(\mathcal{R}(T_{L_1}, \rho, L_2, ..., L_n)\) has this labelled shape is

\[
p_n(n_1 - 1, n_2 + ... + n_k + 1)p_{n-n_1+1}(1, n_2, ..., n_k)r_n(n_1, ..., n_k). \tag{34}
\]

By invariance under re-rooting, the probabilities in (33) and (34) are equal. This yields (32), since \(r_n(n_1, ..., n_k) \neq 0\).

Remark. It is easy to check that the probabilities \(p_n\) associated to the stable trees, which are obtained by normalization of formula (18) by (22) with \(\theta = -1\), satisfy the relations (32).

20
Figure 3: This configuration always happen with positive probability

Figure 4: By the invariance under re-rooting assumption, these two configurations are equally likely to occur
Lemma 16. The probabilities \(p_3(2, 1), p_3(1, 1, 1) \) and \(p_n(1, n - 1), \forall n \geq 2 \), are determined by the Lévy measure \(\Lambda \).

Proof. Consider \(\Pi^0 \), the homogeneous fragmentation constructed from \(\Pi \) by time-changes. The probabilities \(p_n \) describe the ordered sizes of blocks of \(\Pi^0 \) at the first time when it differs from \([n]\). Let \(D_{1,i}, 2 \leq i \leq n \), be the first time in this homogeneous fragmentation at which 1 and \(i \) belong to separate fragments. Let \((\lambda^0(t), t \geq 0) \) be the decreasing process of masses of fragments containing 1. The law of \(\lambda^0 \) is determined by \(\Lambda \), as well as that of \((\lambda^0, D^0_{1,2}, ..., D^0_{i,n}) \) since

\[
\mathbb{P}(D^0_{1,2} > s_2, ..., D^0_{i,n} > s_n \mid \lambda^0) = \lambda^0(s_2)...\lambda^0(s_n),
\]

for all sequences of times \((s_2, ..., s_n)\). In particular, knowing \(\Lambda \), we know the probabilities \(\mathbb{P}(D^0_{1,2} < \min_{3 \leq i \leq n} D^0_{i,1}) = p_n(1, n - 1) \). In the particular case when \(n = 3 \), this gives \(p_3(1, 2) \) and then \(p_3(1, 1, 1) \), since \(3p_3(1, 2) + p_3(1, 1, 1) = 1 \).

\(\square \)

Remark. It is not hard to see, with a specific example, that in general \(\Lambda \) does not characterize the probabilities \(p_4(n_1, ..., n_k) \), \(n_1 + ... + n_k = 4 \).

Proof of Proposition 13. The dislocation measure is determined, up to a scaling constant, by the probabilities \(p_n(n_1, ..., n_k) \), \(\forall n \geq 2, \forall(n_1, ..., n_k) \) composition of \(n \) with \(k \geq 2 \). The scaling constant is then obtained from \(\Lambda \), using (9). The goal here is therefore to check that under the re-rooting assumption, all the probabilities \(p_n \) can be recovered from \(\Lambda \). Suppose \(\Lambda \) is known. We proceed by induction on \(n \). For \(n = 2 \), \(p_2(1, 1) = 1 \). For \(n = 3 \), the probabilities \(p_3 \) are known, by Lemma 16. Suppose now that the \(p_n \)'s are known, \(\forall n \leq n - 1 \). By Lemma 16, \(p_n(1, n - 1) \) is also known. Then, by Lemma 14, \(\forall(n_2, ..., n_k) \) composition of \(n - 2 \),

\[
p_n(2, n_2, ..., n_k)p_2(1, 1) = p_n(1, n - 1)p_{n-1}(1, n_2, ..., n_k),
\]

which gives \(p_n(2, n_2, ..., n_k) \). The probabilities \(p_n(n_1, ..., n_k) \), with \(n_1 \geq 3 \), are obtained in the same manner, by induction on \(n_1 \), thanks to Lemma 16 (note that \(p_{n_1}(1, n_1 - 1) \neq 0, \forall n_1 \)). Therefore, for all compositions \((n_1, ..., n_k) \neq (1, ..., 1), k \geq 2, \) of \(n \), we have \(p_n(n_1, ..., n_k) \), since there is at least one \(n_i \neq 1 \) and, by symmetry, one can suppose it is \(n_1 \). It remains to get \(p_n(1, 1, 1) \), which can be done by using the equality (11).

\(\square \)

Proof of Theorem 11 (ii). By Corollary 14, since the law of the CRT \((T, \mu)\) is invariant under uniform re-rooting, there exists some \(\beta \in [1, 2] \) and some constant \(C \) such that \(\nu = C\nu_\beta \). It remains to prove that the index of self-similarity is \(a = 1/\beta - 1 \). Up to now, we only used the combinatorial properties of reduced trees encoded in the dislocation measure \(\nu \), and not the further structure of the CRT \((T, \mu)\) that involves the edge lengths and depends on the scaling parameter \(a \). To conclude that \(a = 1/\beta - 1 \), we must consider edge lengths.

Given the CRT \((T, \mu)\) rooted at \(\rho \) and the leaves \(L_1, L_2 \), the reduced tree \(R(T, L_1, L_2) \) can be described by the edge-lengths \(D_{1,2}, D_1 - D_{1,2}, D_2 - D_{1,2} \), where \(D_{1,2} \) is the separation time of 1 and 2 in \(\Pi \) and \(D_i \) the first time at which the block containing \(i \) is reduced to a singleton, \(i = 1, 2 \). By invariance under re-rooting, \(D_{1,2} \) must have the same law as \(D_1 - D_{1,2} \). We already know that this is true for the index \(1/\beta - 1 \), from Duquesne-Le Gall’s Theorem 4.8 in [14].

Using time-changes relating \(\Pi \) and its homogeneous counterpart \(\Pi^0 \) (these time-changes are given specifically in [14]), we have

\[
D_{1,2} = \int_0^{D^0_{1,2}} |\Pi^0_{1,1}(t)|^{-a} dt = \int_0^\infty |\Pi^0_{1,1}(t)|^{-a} dt - \int_0^{D^0_{1,2}} |\Pi^0_{1,1}(t)|^{-a} dt = D_1 - \int_0^{D^0_{1,2}} |\Pi^0_{1,1}(t)|^{-a} dt,
\]

22
and
\[D_1 - D_{1,2} = \int_{D_{1,2}^0}^{\infty} |\Pi_{(1)}^0(t)|^{-a} dt , \quad (35) \]
where \(D_{1,2}^0 \) is the first separation time of 1 and 2 in \(\Pi^0 \). By the strong Markov property of \(\Pi \) (see Table 1), \(|\Pi_{(1)}^0(t + D_{1,2}^0)| \) has same distribution as \(|\Pi_{(1)}^0(D_{1,2}^0)| \cdot |\Pi_{(1)}^0(t)| \), where \(\Pi^0 \) is an independent copy of \(\Pi^0 \). Therefore,
\[\int_{D_{1,2}^0}^{\infty} |\Pi_{(1)}^0(t)|^{-a} dt = |\Pi_{(1)}^0(D_{1,2}^0)|^{-a} \int_{0}^{\infty} |\Pi_{(1)}^0(t)|^{-a} dt = |\Pi_{(1)}^0(D_{1,2}^0)|^{-a} \tilde{D}_1 , \]
where \(\tilde{D}_1 \) has same distribution as \(D_1 \) and is independent of \(|\Pi_{(1)}^0(D_{1,2}^0)|^{-a} \). Assuming that \(D_{1,2} \) has same distribution as \(D_1 - D_{1,2} \) and taking expectations in (35), we obtain
\[\mathbb{E}[|\Pi_{(1)}^0(D_{1,2}^0)|^{-a}] \mathbb{E}[D_1] = \mathbb{E}[D_1 - D_{1,2}] = \mathbb{E}[D_{1,2}] = \mathbb{E}[D_1](1 - \mathbb{E}[|\Pi_{(1)}^0(D_{1,2}^0)|^{-a}]) . \]

For \(a < 0 \) we may cancel the common factor of \(\mathbb{E}[D_1] < \infty \) (\(D_1 \) is an exponential functional of a subordinator). It remains to notice that the function \(f(a) = \mathbb{E}[|\Pi_{(1)}^0(D_{1,2}^0)|^{-a}] \) is a strictly monotone function with limit 0 at \(-\infty\) and 1 at 0, so that the equation \(f(a) = 1 - f(a) \) has a unique solution \(a \), which has to be the index \(a = 1/\beta - 1 \).

\[\square \]

Acknowledgements. We thank Grégory Miermont for many interesting discussions.

References

