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Abstract

It is generally accepted that the Earth’s lower mantle is dominated by two minerals, magnesiowustite

(Mg, Fe)O (Mw) and (Mg, Fe)SiO3 perovskite (Mg-Pv) which are thought to exhibit very different rheo-

logical properties. In order to assess the respective role of those phases in the mechanical properties of the

assemblage, we have carried out 3D finite element modelling of a model two-phase aggregate. An isotropic

random polycrystal has been built from a Voronöı mosaic. Then each grain has been attributed a ”hard”

or ”weak” behavior in such a way that the hard phase represents a volume fraction of 70%. The creep

law introduced for both phases is a simple power law creep without hardening. A contrast of 35 is chosen

between the strain rates of both phases under a shear stress of 10 MPa. A representative volume element of

470 grains has been shown to provide a satisfactory description of the mechanical response of the aggregate

with a relative precision equal to 3%. Numerical creep experiments conducted under a constant macroscopic

shear stress of 10 MPa suggest that the creep rate of lower mantle assemblages would be dominated by

the mechanical behavior of the harder phase (Mg-Pv). The finite element model allows one to extract the

individual behavior of the two phases within the aggregate. It is shown that during creep, the harder Mg-Pv

phase carries most of the stress whereas the softer Mw phase is responsible for most of the accumulated

strain. This result should have implications for the development of shape and lattice preferred orientations

of Mw within the aggregate, thus for seismic anisotropy of the lower mantle.

1 Introduction

Global geodynamics is mostly due to the slow cooling of the Earth which is achieved through largescale

convection of the hot mantle. Understanding the rheological properties of the Earth’s interior is thus a

major goal of modern geophysics. It is a formidable challenge as the deep Earth is largely inaccessible

to direct observation. Whatever the assumption made on the lower mantle bulk composition (pyrolite [1]

or chondritic [2] for instance), it is likely constituted by a rock assemblage dominated by a (Mg, Fe)SiO3

phase with a perovskite structure (hereafter referred to as Mg-perovskite or Mg-Pv) and by (Mg, Fe)O

magnesiowustite (Mw). Some minor amount of a CaSiO3 perovskite phase is also likely to be present

(with possibly some minor silica component: stishovite) although it will not be considered explicitly in the
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following. Mg-perovskite is thus by far the most important constituent with a volume fraction of the order

of 70-80%.

The contrast between the elastic properties of Mw (the softer phase; in this paper, “weak” or “soft”

and “hard” or “strong” will refer to the relative strengths of the two phases at a given strain-rate and

temperature) and Mg-Pv has led some authors to suggest that their plastic behavior might have a similar

contrast [3]. Mw is stable under ambient pressure and appears weaker than most silicates. The rheological

properties of Mg-Pv, which must be studied under extreme P,T conditions, are far less well constrained.

High-pressure, room temperature experiments have supported the hypothesis that Mw is weaker than Mg-

Pv [4, 5]. It is only recently that plastic deformation experiments have been carried out on Mg-Pv at

high-temperature [6], [7]. In situ stress measurements performed at temperatures up to 1073 K further

support the idea that Mg-Pv remains the stronger phase at higher temperature [6]. It is thus commonly

accepted that a representative lower mantle assemblage can be regarded, to a first approximation, as a two-

phase aggregate constituted mostly by a strong Mg-Pv phase combined with 30-40% of a much weaker Mw

phase. Many authors have questioned the respective contributions of these two components to the rheology

of the aggregate. Although it is often assumed that the dominant connected Mg-Pv phase should control

the deformation of the assemblage (e.g. [8]), some authors suggest that the presence of a much weaker phase

might have a significant effect on the rheology of the assemblage [3].

The rheology of a polyphase assemblage is complex due to stress and strain partitioning between the

individual constituents. It depends on many factors including the rheology contrast between the phases, the

volume fractions and the phase distributions within the aggregate [9, 10, 11, 12, 13, 14]. The rheological

behavior of the polyphase aggregate is not necessarily found by averaging between the rheologies of the

individual phases even when they have very comparable characteristics [15]. The simplest modelling approach

consists in assuming that either strain-rate or stress is homogeneous within the aggregate, corresponding

respectively to the Taylor and Reuss bounds. The actual response of any real aggregate must lie within

these two rigorous upper and lower limits. For microstructures with a high contrast of properties, the

Reuss and Taylor models are too far apart to give a useful estimate of the effective properties. Tharp [16]

suggested that some aggregates with a strong phase forming an interconnected framework and a much weaker

dispersed phase would behave like porous powder metals. More realistic information can be obtained by using

the viscoplastic self-consistent (VPSC) approach in which the behavior of each grain is constrained (stress

equilibrium and strain compatibility) by the aggregate as a whole represented by a homogeneous equivalent

medium. This approach has been shown to provide robust solutions to the prediction of crystal preferred

orientations in rocks (including polyphase aggregates [17, 18]) but correspond to very specific morphology

of the components.

A different approach is to use finite element modelling which introduces explicitely the morphology of

the heterogeneous materials being considered (including phase distributions). Pioneering 2D studies have

already been achieved on polymineralic assemblages showing the efficiency of the method [11]. In case of

metals, Soppa et al. [19] showed a good qualitative agreement between experimental (grating technique)

and 2D calculated distributions of strain fields in Ag/Ni composites. Finite element modelling is now able

to predict the mechanical properties of 3D aggregates with realistic morphologies [20, 21, 22, 23, 24]. A

further advantage is that finite element modelling also highlights the heterogeneities that develop inside

the grains. John et al. [25] have deduced the intra-grain properties in a gamma titanium aliminide alloy
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from an integrated experimental and analytical approach. Hartig et al. [26] have investigated the effects

of plastic interaction between a soft phase (copper) and a hard phase (iron) in two- phase mixtures of

ductile polycristalline particles. The measured quantities (macrocopic stress and strain, elastic strains and

texture) were compared with the results from 3D finite element calculations. Stress and strain fields were in

reasonably good agreement with experiment.

The aim of the present work is to design a generic numerical experiment to address the issue of the relative

importance of Mw and Mg-Pv on the rheology of their aggregate taking advantage of the recent progress of

3D finite element modelling. Our model lower mantle aggregate exhibits the most simple morphology with

both phases having the same grain size and being distributed homogeneously within the aggregate. The two

phases are characterized by a large rheology contrast with the hard phase occupying 70% of the volume.

The creep behavior of this aggregate is calculated using the finite element method. The mechanical response

of the aggregate as well as of individual phases within it are presented to answer the following questions:

which phase dominates the rheology of the aggregate ? How do stress and strain partition between the two

phases ?

2 Computational method

In contrast to the bounding or analytical estimation technique, the computational methods introduce ex-

plicitely the morphology of the random heterogeneous materials being considered [27]. They rely on solving

boundary value problems on volume elements of the material. The finite element method is chosen for the

computations presented in this work. A generic representation of the microstructure of random materials is

chosen, namely the so–called Voronöı mosaics. The corresponding parameters used in the finite element sim-

ulations of the creep behavior of a two–phase aggregate are then identified: mesh size, constitutive equations

of the constituents and boundary conditions.

2.1 Generic representation of the microstructure

Although the aim of this paper is clearly to contribute to a better understanding of the rheology of the lower

mantle, the authors do not pretend to provide a realistic numerical simulation of an actual lower mantle

aggregate. The reason is that too much information is lacking on lower mantle assemblages as well as on

the properties of the constituents minerals. As an illustration, we have no clue as to the microstructures or

grain sizes in the lower mantle. However absolute values of grain sizes are not required here since no intrinsic

length scale is introduced in the simulation. For simplicity, we have decided to start from the simplest

microstructures. The Voronöı mosaic model is a good candidate since it provides a granular representation

of the microstructure and since it introduces a random character in the phase distribution [28]. It is an ideal

representation of isotropic random polycrystals [29, 21]. The Voronöı mosaic model reproduces a random

distribution of grains in space according to a Poisson process, building a Voronöı tesselation of space [29]. It

is also possible to superimpose a constraint of periodicity at the boundary of the volume in the generation

of the Voronöı mosaic as proposed in [30] and used in [31]. Figure 1a shows a realization of a 3D Voronöı

mosaic obtained by the algorithm proposed in [21]. Each color corresponds to a different grain. The phases

(hard and soft) are then distributed randomly on the various grains according to a given volume fraction,
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which leads to the distribution shown in figure 1b. As a result, both phases have the same mean grain size

at the beginning of the calculation. In the present study, we have chosen a volume fraction of 70% for the

hard phase (supposed to represent the Mg-Pv) and 30% for the weak phase (i.e. Mw).

The figure 2 shows in 3D the interconnecting character of both the hard and weak phases. The 3D

morphology of each phase in one configuration of the material is shown in figure 2a. In figure 2b (resp. 2c),

the phase Mg-Pv (resp. Mw) only is visible. The figure 2d represents the ensemble of all points in phase

Mw that can be connected to the bottom and top faces of the cube by lines entirely contained in the phase

Mw. As a result, all isolated parts of phase Mw in figure 2c were removed. In this way, we say that a phase

is ”interconnected” if most of the phase volume (here in fact 94%) is geometrically connected to the bottom

and top faces of the cube. In our simulated images of Voronöı mosaics, boths phases are interconnected.

This feature will play a significant role in the deformation of the aggregates.

2.2 Properties of the constituents

The constitutive equations used for modelling the response of the phases Mg-Pv and Mw are based on a

standard elastoviscoplastic framework. The total strain is decomposed into elastic and plastic parts and

Hooke’s law is adopted:

εij = εe
ij + εp

ij , σij = cijklε
e
kl (1)

The creep law introduced for both phases is a simple power law creep without hardening:

ε̇p
ij = ṗ

3
2

sij

J2(σij)
, ṗ =

(
J2(σij)

K

)n

, J2(σij) =

√
3
2
sijsij (2)

J2 denotes the second invariant of the stress tensor and is also called the von Mises equivalent stress. The

deviatoric part of the stress tensor is sij and p is the cumulative equivalent viscoplastic strain. The materials

properties of each phase are thus defined by the two parameters: K and n. As Mw is stable at ambient

pressure, rheological data are available for this material (although the actual behavior under lower mantle

conditions might well differ significantly from ambient pressure behavior). We have thus used existing

mechanical data from [32] to determine Kw and nw for the weak phase. More precisely, Kw was calibrated

using a numerical identification method from the load-stepping tests results performed at 1400K (from 33

MPa to 85 MPa), with increasing and then decreasing loads. These parameters are given in Table 1. The

viscoplastic behavior of the hard phase is then deduced by imposing a viscosity contrast. This contrast has

to be high enough for the two phases to have marked properties, but not too high, otherwise the weak phase

would behave like voids. A contrast of 35 between the strain rates of both phases under a shear stress of 10

MPa represents a satisfactory compromise. No crystallographic character is introduced in the model. The

local behavior of the phases is taken to be isotropic. For Mg-Pv, a stress exponent of n=3.5 is chosen to

account for the behavior observed on analog perovskites [33, 8, 34, 35]. These constitutive equations are

implemented in the finite element program Z-set [36]. They are integrated numerically using an implicit

Newton algorithm. Note that the chosen constitutive model is very simple. In particular, the viscoplastic

power law leads to a locally stable behavior. Such an approach is not able to capture strain localization

phenomena like unstable shear banding or damage, in plastic materials.
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(a)

(b)
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Figure 1: (a) 3D microstructure (Voronöı mosaic containing 470 grains), (b) Meshing of a Two-phase mate-

rial: 3D Voronöı mosaics containing 470 grains with 70% of Mg-Pv and 30% of Mw.
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(a) (b)

(c) (d)

Figure 2: (a) 3D representation of the volume (two-phase material, 470 grains), (b) 3D representation of

the Mg-Pv phase inside the volume, (c) 3D representation of the Mw phase inside the volume, (d) 3D

representation of the interconnected part of the Mw phase

Phase Volume Fraction (%) n K (MPa1/n) E (GPa) ν

Mg-Pv (hard) 70 3.5 5000 441 0.25

Mw (soft) 30 4 950 307 0.25

Table 1: Volume fraction and mechanical data for the two phases. K and n are parameters in the power

law used for the viscoplastic behavior of the two phases.
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Figure 3: Evolution of Ė12 as a function of the number of elements (3D).

2.3 Finite element meshing

The finite element mesh associated with the image of the microstructure is obtained using the so–called

multi-phase element technique [37, 21]. A regular 3D finite element grid is superimposed on one image of

the Voronöı mosaics. The material property is attributed to each integration point according to the color

of the nearest voxel of the image. As a result, two phases may be present inside some elements. Figure 1b

shows such a mesh and the distribution of both phases. The elements are quadratic bricks (20 nodes) with

complete integration (27 Gauss points).

The appropriate mesh density, defined as the average number of elements required for ensuring a given

accuracy in the results of the numerical simulations, must be first determined. For that purpose, a specific

microstructure made of 100 grains is used, with a volume fraction equal to 70% Mg-Pv and 30% Mw. Shear

creep tests at 1400 K were simulated by applying a constant macroscopic shear stress Σ12 equal to 10 MPa,

with the boundary conditions as explained in section 2.4. The number of cells and the geometry of the

microstructure are unchanged but different mesh resolutions are used. The number of finite elements was

changed from 100 to 8000 elements. The results given in figure 3 show the convergence of the macroscopic

shear Ė12 of the aggregate as a function of the number of elements. A mesh density of 17 quadratic elements

per grain is necessary to get a precision of 1% on the mean strain rate. We verified that this mesh density

leads to a convergence of the local stress and strain fields with a precision of 5%. The largest computations

presented in this work are based on a mesh containing 20x20x20 elements, with 107163 degrees of freedom

and 216000 integration points. All computations were carried out on a single workstation.
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2.4 Boundary conditions

The computation cost limits the possible number of grains that can be handled in the simulation of one

volume element V. In particular, such a limit size may be smaller than a so–called Representative Volume

Element of the material [31]. In this case, the properties that can be computed are not necessarily the desired

effective properties but merely apparent properties of the investigated volume. Kanit et al. [31] show that

one can estimate the effective properties of heterogeneous materials by computing and averaging the apparent

properties of a sufficient number of volumes containing a given number of grains. This statistical approach

is used in the present work.

The notations used within the context of the mechanics of heterogeneous materials are the following [38]:

the local strain and stress fields inside the considered volume elements are denoted by εij(xk) and σij(xk).

The macroscopic strain and stress tensors are then defined as the corresponding average values over each

considered volume:

Eij =< εij >=
1
V

∫
V

εij , dV, Σij =< σij > (3)

In order to invesigate the creep behavior of the heterogeneous material, one must be able to prescribe a

given macroscopic stress tensor Σij to each considered volume element V. For that purpose, several types

of boundary conditions are available. They are listed and compared in the reference [31]. The boundary

conditions that lead to the smallest boundary layer effects and therefore to smaller representative volume

elements are the periodicity conditions. The displacement field over the entire volume then reads:

ui = Eijxj + vj ∀xi ∈ V (4)

where Eij is the prescribed macroscopic strain tensor. The fluctutation vi is periodic: it takes the same

values at two homologous points on opposite faces. The traction vector σijnj takes opposite values at two

homologous points on opposite faces of V . The numerical resolution of this problem within the finite element

context is such that the dual forces associated to Eij are the components of the macroscopic stress tensor Σij

[39]. Consequently, the periodicity conditions can be used either for prescribing mean strain or mean stress

components. In the present work, all the simulations were performed by applying a constant macroscopic

shear stress Σ12 during the creep tests, the remaining stress components being set to zero.

3 Results and discussion

In order to study local and global heterogeneities of the aggregate during a creep test, we have to consider

a representative volume element of the material. The first aim of this section is to estimate the size of a

representative volume element for the rock assemblage that will contain all the statistical description of the

material. Then, 3D meshed representative microstructures (figure 1b), containing both phases (Mw (30%)

and Mg-Pv (70%)) distributed among 470 grains, are deformed under creep and analysed in the sections 3.2

to 3.4. The creep test is simulated by applying a constant macroscopic shear stress Σ12 = 10 MPa using

periodic boundary conditions. First, the macroscopic response of this aggregate is studied. Second, the local

behavior of the phases is analysed. Heterogeneities of stress and strain fields inside the constituent phases

are analysed quantitatively. The final subsection focuses on the morphological evolution of the phases during

creep in the case of large strain behavior.

8



V (number of grains) 55 96 150 227 470

n (number of calculations) 120 140 89 78 25

mean value Ė12(x109s−1) 6.18 5.83 5.52 5.45 5.51

variance 2DĖ12
(x109s−1) 1.41 1.19 0.73 0.58 0.32

εrela 4.4% 4.5% 3.5% 2.9% 3.0%

Table 2: Dispersion of the macroscopic shear rate as a function of the volume V .

3.1 Determination of the representative volume element (RVE)

In this work, the definition of the RVE is based on statistical arguments. The RVE must ensure a given

accuracy of the estimated property obtained by spatial averaging of the stress, strain, or the energy fields

in a given domain V . The method of determination of the size of this RVE is the following. The overall

mechanical properties are studied for a large range and number of volume sizes V , given in Table 2. The

convention is made that the mean volume of one Voronöı cell is 1. Accordingly, a volume contains in average

N = V Voronöı cells. The results are given as a function of volume V . The investigated mechanical property

is the macroscopic shear strain rate Ė12 obtained for a prescribed stress component Σ12 = 10 MPa. For each

calculation, the macroscopic shear rate Ė12 is then computed as the spatial average :

Ė12= < ε̇12 >=
1
V

∫
V

ε̇12 dV (5)

For each volume, n different configurations of the random microstructure are simulated, containing in av-

erage N = V grains. Generally, there is a dispersion of the calculated apparent strain rates for all these

configurations since for each volume size the exact morphology differs from one sample to another. For larger

and larger volumes the dispersion of the estimated apparent property tends to vanish. The evolution of the

obtained mean value Ė12 and variance DĖ12
of the apparent macroscopic shear rate as a function of the

volume size V are given in Table 2. The relative error εrel on the mean value is also given. In the statistical

theory of samples that can be found for instance in [40, 31], the absolute error εabs and relative error εrel

on the mean value of a studied property Z, obtained with n independent configurations of volume V , is a

function of the variance DZ(V ) by :

εabs =
2DZ(V )√

n
, εrel =

εabs

Z
(6)

As expected, the dispersion of the results decreases when the size of the domain increases. The calculated

mean values depend on the volume size and converge towards the same limit for large volumes, which can

be regarded as the desired effective response of the material. The microstructure containing 470 grains is

the one for which the dispersion of the results is the weakest. In this case, the relative precision on the mean

value is equal to 3%. We choose this precision for the subsequent analysis of the effective material properties

and the results obtained with 470 grains are analysed systematically in the following of the paper.
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Model Ė12 (x109s−1)

Bulk magnesiowustite ĖMw bulk
12 110

Reuss approach Ė12 35

Magnesiowustite within the aggregate (FE) ĖMw FE
12 8.7

Aggregate (FE) ĖFE
12 5.8

Perovskite within the aggregate (FE) Ė
Mg-Pv FE
12 4.8

Taylor approach Ė12 5.0

Bulk perovskite ĖMg−Pv bulk
12 2.5

Table 3: Average shear strain rates Ė12 for Σ12 = 10 MPa. FE stands for Finite Element simulation.

3.2 Macroscopic creep behavior of the aggregate

For a given aggregate containing 470 grains, the computed shear strain rate ĖFE
12 averaged over the agregate

is given in Table 3 and compared to the available analytical Taylor and Reuss models. The Taylor model

assumes homogeneous strain inside the aggregate whereas the Reuss model assumes homogeneous stress.

For comparison, the expected strain rates in each phase if it were alone and submitted to the same load are

also given. These values are called Ė
Mg-Pv bulk
12 and ĖMw bulk

12 respectively. The numerical result is closer

to the Taylor bound than to the Reuss one. It can be noticed that

ĖFE
12

Ė
Mg-Pv bulk
12

= 2.3,
ĖMw bulk

12

ĖFE
12

= 20 (7)

It turns out that the mechanical behavior of the aggregate is closer to the one of Mg-Pv than to Mw. This

result is due to the fact that the Voronöı model is such that both phases are interconnected inside the volume

for the given volume fractions. 3D representations of the Mg-Pv and Mw phases inside the volume are given

in figure 2. The interconnected part of the Mg-Pv phase represents a hard skeleton which prevents unlimited

deformation according to the loading direction. As a result, deformation in the soft phase remains limited

and does not localize into shear band for instance. The precise contributions of the individual phases to the

mechanical behavior of the aggregate is analyzed in the next section.

3.3 Individual behavior of the two phases within the aggregate

3.3.1 Average response of the phases

The average stress and average strain of each phase in the computed aggregate are respectively denoted by

ΣMg-Pv FE
12 ,ΣMw FE

12 , E
Mg-Pv FE
12 , EMw FE

12 . They are plotted in figure 4 as a function of time. The load

Σ12 = 10 MPa is imposed on the volume within 1 s. Two stress regimes are visible in figure 4a:

• The first one is a transient stage and corresponds to a redistribution of the local stresses in the phases.

The instantaneous response of the phases is elastic so that both phases start with stress values close

to 10 MPa at t = 1s. Afterwards, the shear stress level increases significantly in the hard phase Mg-Pv

and decreases in the soft phase Mw. The duration of the transient is about 3000 s for both phases.

• The second one is a steady-state creep regime characterized by a constant mean shear stress level in
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both phases. This asymptotic mean shear stress is found to be more than twice higher in Mg-Pv than

in Mw.

The time evolution of mean shear strain components is presented in figure 4b. It turns out that the macro-

scopic shear of the aggregate is closer to the response of the Mg-Pv phase than to that of Mw. Primary

creep is very short (< 500s) in Mw and secondary creep is dominant for both phases. The corresponding

steady strain rate values are given in table 3. There is a factor of 13 between the shear strain rate of Mw if

it were alone and its shear strain rate ĖMwFE
12 within the aggregate, whereas for Mg-Pv, this factor is equal

to 2. Furthermore, inside the aggregate, the phase Mw deforms more than twice as fast as the phase Mg-Pv:

ĖMw bulk
12

ĖMw FE
12

= 13,
Ė

Mg-Pv FE
12

Ė
Mg-Pv bulk
12

= 1.9,
ĖMw FE

12

Ė
Mg-Pv FE
12

= 1.8 (8)

As a result, it can be said that, during creep, the Mw phase is responsible for most of the accumulated strain

whereas the phase Mg-Pv carries most of the stress. The main contribution of the model is to estimate the

ratios of the different contributions of the phases to stress and strain.

3.3.2 Statistical analysis of intraphase fields

The Finite Element simulations provide us with a detailed description of local stress and strain inside the

phases, as illustrated by the von Mises equivalent stress maps of figure 5 and the strain map of figure 6.

At the beginning of the transient regime, stress is rather homogeneous in the material (figure 5a). The soft

phase then undergoes significant stress relaxation whereas the hard phase hardens. The steady stress state

is shown on figure 5b and can be compared with the transient one of figure 5a. The fact that the stress is

high in almost all Mg-PV grains is related to the interconnected morphology of the phase which can carry

all the load. The strain map of figure 6 shows that high strain is distributed over all soft grains (see figure

1b). This however cannot be interpreted as strain localization, this term being reserved to unstable behavior

like in shear banding.

An important feature of the simulations is the tremendous local heterogeneities found for both stress

and strain in the aggregate. Indeed, the minimum and maximum local equivalent stress/strain values in the

maps of figures 5 and 6 are respectively 5.7 MPa/10−5 and 33.5 MPa/10−3 for the mean prescribed shear

stress/strain of 10 MPa/2.2x10−4. This heterogeneity can be compared to that computed in the grains of a

polycrystalline FCC metals in [22], where the crystallography was taken into account. In the latter reference,

the polycrystal was deformed in tension at low temperature. Detailed stress and strain distributions inside

individual grains can be found in [22]. In the present work, we concentrate on histograms of stress and strain

that can be deduced from the simulations. The histograms for stress component σ12 in Mg-Pv and in Mw

are given in figures 7a and b, respectively. They are given at different times in the transient and steady state

stages. Such histograms are obtained by storing the σ12/ε̇12 components at all integration points inside one

given phase at a given time. The studied mesh of the microstructure contains 216000 integration points:

155631 in the Mg-Pv phase and 60369 in the Mw phase. These values are then ranked to construct the

desired stress/strain distribution functions for each individual phase. The frequency represents the volume

fraction of each phase where the local shear stress takes the value σ12 ±∆σ12 on the horizontal axis, where

∆σ12 = 0.1 MPa is the class interval size. The corresponding histograms for the strain rate ε̇12 are presented
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(a)

(b)

Figure 4: (a) Applied macroscopic stress and average stress in the phases versus time, (b) Macroscopic shear

strain and average shear strain in the phases versus time.
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Figure 5: Contour of von Mises equivalent stress (in MPa): (a) Transient regime (at t = 400s), (b) steady

state (at t = 30000s). The macroscopic shear stress Σ12 = 10MPa was applied.
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Figure 6: Contour of equivalent plastic strain p at t = 30000s.
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in figure 8. These histograms were obtained with a class interval size of ∆ε̇12 = 10−9s−1. The following

statements can be made from the analysis of the calculated histograms:

• All the curves are bell-shaped, and they are symmetric with respect to the mean value, except the strain

rate distributions at the beginning of the transient regime (figure 8). Each distribution is characterized

by its mean value and its standard deviation. The mean value is almost equal to the corresponding

average field (shear stress or shear rate, see table 3). The Gaussian character of the distribution was

analysed using the kurtosis parameter defined as

k =
E(x− x̄)4

σ4
(9)

where σ is the standard deviation, x̄ is the mean of x. The kurtosis of a normal distribution is 3. The

values found for the distributions presented in this work range from 3.3 to 3.5.

• In the Mg-Pv phase, the local stress distribution progressively spreads out as a function of time and

reaches a steady state distribution that changes only slightly from time t = 5000 s to t = 30000 s. This

is not the case for Mw (see figure 7b) where the shape of the local stress distribution remains almost

invariant.

• The strain rate distribution in both phases evolves considerably from the transient to the steady state.

The initial strain rate distribution is rather flat and non symmetrical. During the transient regime, the

mean value varies only slightly whereas the variance decreases dramatically. The initial flat distribution

goes from negative to positive strain rate values as high as 2.10−7 s−1. In contrast the final distribution

lies in the positive strain rate domain.

In summary, stress tends to become more homogeneous in phase Mg-Pv than in phase Mw. This leads to a

huge scatter of viscoplastic strain rates inside Mw.

We have checked that the calculated distributions do not depend on the specific morphology of a volume

element containing 470 grains. Ten randomly generated aggregates having 470 grains and about the same

volume fractions of constituents were analyzed along the previous lines. The corresponding stress distribu-

tions in both phases are given in figure 9. The distribution functions have the same shape for all simulations.

The transient regime depends on the specific morphology and shows some scatter. However, the final stress

distribution is robust as it does not differ from one aggregate to the other.

Such histograms obtained experimentally based on strain field measurement methods are available in

literature only for polycrystals at low temperature [41]. They confirm the bell-shaped distributions found in

this work.

3.4 Large strain behavior

Some finite element simulations of compression on the previous aggregates were also performed using a large

strain formulation of the elastoviscoplastic equations. In order to reduce cost calculations, we decided to

work on a microstructure containing 227 grains. Hooke’s law (1) is replaced by a Jaumann rate equation for

the stress [42]:

σJ
ij = σ̇ij + σikWkj −Wikσkj = cijklD

e
kl (10)
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(a)

(b)

Figure 7: Distribution of local stress versus time: (a) Mg-Pv, (b) Mw. The frequency represents the volume

fraction of each phase where the local shear stress takes the value σ12 ±∆σ12 on the horizontal axis. These

histograms were obtained with a class interval size of ∆σ12=0.1 MPa.
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(a)

(b)

Figure 8: Distribution of local strain-rate versus time: (a) Mg-Pv, (b) Mw. The frequency represents the

volume fraction of each phase where the local shear strain rate takes the value ε̇12 ±∆ε̇12 on the horizontal

axis. These histograms were obtained with a class interval size of ∆ε̇12 = 10−9s−1.
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(a)

(b)

Figure 9: Local stress distribution at different times for 10 different aggregates: (a) in the Mg-Pv phase, (b)

in the Mw phase. The frequency represents the volume fraction of each phase where the local shear stress

takes the value σ12±∆σ12 on the horizontal axis. These histograms were obtained with a class interval size

of ∆σ12=0.1 MPa.
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The exponent J denotes the Jaumann derivative. The spin tensor Wij is the anti-symmetric part of the

velocity gradient. De
ij is the tensor of elastic strain rate. The aim is to determine the evolution of morphology

changes during compression creep starting from the previous isotropic Voronöı phase distribution. After 15%

overall compression strain, local strains inside the soft phase are as high as 53%. The corresponding geometry

of the phase in figure 10 clearly shows that the soft grains tend to deform into pancakes. Systematic analysis

at larger strains is necessary to predict the final morphology of the deformed two-phase material which may

well be strongly anisotropic. If such high strain morphologies can be determined, the previous analysis of

stress/strain distribution should be performed again using more realistic microstructures than the generic

one used in the present work.

4 Conclusions and prospects

This paper presents 3D simulations of creep in a two-phase aggregate, aimed at casting light on the mechan-

ical behavior of a model lower mantle assemblage. Our goal was to perform a generic numerical experiment

to assess the role of the hard (and major) and soft (and minor) phases. It appears that the rheology of

the aggregate is dominated by the hard phase which forms a load-bearing framework. A consequence of the

existence of a hard Mg-Pv skeleton is that the hard phase limits the overall deformation. It is interesting to

note that the behavior of the aggregate is closer to the Taylor bound than to the Reuss one. The present

study concludes that the rheology of Mg-Pv is the key parameter that controls the rheology of a lower mantle

assemblage. On the other hand, most strain is produced within the weak phase (Mw). Hence, our starting

microstructure (with both phases having the same morphologies and grain sizes) is not stable to high strains.

Our preliminary large strain calculations suggest that Mw grains undergo significant flattening which tends

to produce layering. This is an important result as shape preferred orientation can induce seismic anisotropy

[43].

The question of a possible additional contribution of lattice preferred orientation to seismic anisotropy

depends on the actual deformation mechanism activated into Mw (diffusion-or dislocation-creep). Without

any reliable information on the grain sizes in the mantle, it is not possible so far to make any conclusion

on this issue. It is also necessary in the future to incorporate additional mechanisms like grain boundary

migration or dynamic recrystallization to account for the microstructure evolution in a more realistic way.
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Mw, Grey color: Mg-Pv, (a) initial state, (b) deformed state.
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(Mg0.8Fe0.2O), Earth Planet. Sci. Lett. 194 (2001) 229–240.

[33] J. Poirier, S. Beauchesne, S. Guyot, Deformation mechanisms of crystal with perovskite structure, in:

A. Navrotsky, D. Weidner (Eds.), Perovskite: A Structure of Great Interest to Geophysics and Material

Science, Geophys. Monogr. Ser.16. American Geophysical Union, 1989.

[34] S. Beauchesne, J. Poirier, In search of a systematics for the viscosity of perovskite: creep of potassium

tantalate and niobate, Phys. Earth Planet. Inter. 61 (1990) 182–198.

[35] Z. Wang, S. Karato, S., K. Fujino, High temperature creep of single crystal strontium titanate (SrTiO3):

a contribution to creep systematics in perovskite, Phys. Earth Planet. Inter. 79 (1993) 299–312.

[36] Z–set package, www.nwnumerics.com, www.mat.ensmp.fr (2001).

[37] N. Lippmann, T. Steinkopf, S. Schmauder, P. Gumbsch, 3d-finite-element-modelling of microstructures

with the method of multiphase elements, Comput. Mater. Sci. 9 (1997) 28–35.

22



[38] P. Suquet, Continuum micromechanics, Springer Verlag, Berlin, 1997, CISM Courses and Lectures No.

377.

[39] J. Besson, G. Cailletaud, J.-L Chaboche, S. Forest, Mécanique non linéaire des matériaux, Hermès,
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