An integrated approach for determining the origin of magnetite nanoparticles - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Earth and Planetary Science Letters Année : 2006

An integrated approach for determining the origin of magnetite nanoparticles

Résumé

The criteria to assess the origin of magnetite are of prime importance because of their significance as biomarkers for extraterrestrial life and paleoenvironmental indicators. It is still unclear if morphology and magnetic properties of crystals do quantitatively allow differentiating abiotic from biotic magnetite crystals of nanometer size. In this study, inorganic magnetite nanocrystals synthesized under controlled experimental aqueous conditions are compared with biogenic magnetite of similar size and morphology formed by magnetotactic (intracellular magnetite) and other (extracellular magnetite) bacteria. Structural properties such as oxygen isotope fractionations and crystal size distributions were explored. Not surprisingly, none of the single properties are able to differentiate inorganic crystals from those having a bacterial origin, either specifically extracellular or specifically intracellular. However, oxygen isotope fractionation allows the differentiation between abiotic and biotic magnetite when the temperature of formation is known and when it does not fall into a crossing region (35≤T (°C)≤55) while crystal size distributions discriminate inorganic from intracellular magnetite. Therefore, a combination of these two properties may be a successful tool for an accurate determination of a reliable biogenicity criterion.

Dates et versions

hal-00146037 , version 1 (14-05-2007)

Identifiants

Citer

Damien Faivre, Pierpaolo Zuddas. An integrated approach for determining the origin of magnetite nanoparticles. Earth and Planetary Science Letters, 2006, 243, pp.53-60. ⟨10.1016/j.epsl.2006.01.012⟩. ⟨hal-00146037⟩
113 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More