Minimal submanifolds with a parallel or a harmonic p-form.

Jean-Francois Grosjean

To cite this version:

HAL Id: hal-00145758
https://hal.archives-ouvertes.fr/hal-00145758
Submitted on 11 May 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MINIMAL SUBMANIFOLDS WITH A PARALLEL OR A HARMONIC p-FORM

Jean-François GROSJEAN

Address: GROSJEAN Jean-François, Institut Élie Cartan (Mathématiques), Université Henri Poincaré Nancy I, B.P. 239, F-54506 VANDOEUVRE-LES-NANCY CEDEX, FRANCE.

E-mail: grosjean@iecn.u-nancy.fr

2000 Mathematics Subject Classification: 53C42, 53C24.

Abstract

The purpose of this paper is to study the relations between the existence of minimal immersions of a Riemannian manifold M into another and some structural or topological properties of M. The properties on M which we consider are the existence of a parallel or a harmonic p-form.
1 Introduction

The purpose of this paper is to obtain some non existence results about minimal submanifolds. Let (M^m, g) be an m-dimensional Riemannian manifold isometrically immersed by ϕ in an n-dimensional Riemannian manifold (N^n, h) ($n > m$). The Gauss equation allows us to obtain rigidity results in terms of geometry of (M^m, g) and (N^n, h). For example, as a first consequence of the Gauss equation, we get the following well known inequality in each point x of (M^m, g)

$$|H(x)|^2 \geq (1/m)((\text{Scal}(x)/m) - (m - 1)\overline{K}^1(\phi(x)))$$ \hspace{1cm} (1)

where $|H(x)|^2$ and $\text{Scal}(x)$ are respectively the square of the mean curvature of ϕ and the scalar curvature of (M^m, g) at x and $\overline{K}^1(\phi(x))$ is the largest sectional curvature of (N^n, h) at $\phi(x)$. In particular, if \overline{K}^1 has an upper bound and if $\text{Scal} > m(m - 1)\overline{K}^1_{\text{max}}$ (where $\overline{K}^1_{\text{max}} = \max_N(\overline{K}^1)$) for at least a point of (M^m, g), there is no minimal immersion of (M^m, g) into (N^n, h).

Many other results were obtained, by assuming that (M^m, g) is endowed with some particular structures or topological properties (see for instance [1], [12] and [3]). First recall the results of Sampson ([12]) and Dajczer and Rodriguez ([3]). They proved that there is no minimal immersion of an m-dimensional Kaehlerian manifold $(m \geq 4)$ into a Riemannian manifold of negative constant sectional curvature. Later, El Soufi ([5]) obtained a generalization of this result by assuming a pinching of the sectional curvature of (N^n, h) and Hernandez ([9]) obtained the same conclusion under the negativity of the complex sectional curvature of (N^n, h). More recently, Petit and El Soufi ([6]) extend this result in the case where (M^m, g) is not necessarily Kaehlerian but has a parallel 2-form and where the isotropic curvature of (N^n, h) is negative (recall that the isotropic curvature of a Riemannian manifold is the restriction of the complex sectional curvature to isotropic tangent planes ([11])).

The section 1 of the present paper deals with some preliminaries. In the section 2, we consider the general case where (M^m, g) has a parallel p-form and we prove (theorem 3.1) that if (N^n, h) satisfies a curvature pinching condition, then there is no minimal immersion from (M^m, g) into (N^n, h). This is the generalization of the result of El Soufi stated in [5] for the case where (M^m, g) is Kaehlerian. Note that this theorem as well as the other results recalled above are of interest only if the sectional curvature of (N^n, h) is negative. However, in the theorem 3.2, we obtain the same conclusion with a new pinching condition for the case where (N^n, h) is not necessarily of negative sectional curvature but has a negative smallest sectional curvature. In the theorem 3.3, we study the particular case where (N^n, h) is the complex hyperbolic space $\mathbb{C}H^n(c)$ with constant holomorphic curvature equal to c and we prove that there is no totally real minimal immersion of a Riemannian manifold (M^m, g) with a parallel p-form into $\mathbb{C}H^n(c)$.

3
The compact manifolds with a parallel p-form are a particular case of manifolds with a harmonic p-form (or a nonzero p-th Betti number $b_p(M)$). In the section 3, we prove (theorem 4.1 and theorem 4.2) that for any compact manifold (M^m, g) with $b_p(M) \neq 0$ and isometrically immersed in a Riemannian manifold (N^n, h), there exists at least a point x of M so that

$$m \left(\frac{p-1}{p} \right) |B(x)||H(x)| \geq k(x) - \left(\frac{p-1}{p} \right) ((m-1)\bar{K}^1 + \bar{p}^1)(\phi(x))$$

and

$$m \left(\frac{p-1}{\sqrt{p}} + \frac{m-p-1}{\sqrt{m-p}} \right) |B(x)||H(x)| \geq Scal(x) - (m-2)((m-1)\bar{K}^1 + \bar{p}^1)(\phi(x))$$

where $|B(x)|$, $k(x)$ and $\bar{p}^1(\phi(x))$ denote respectively the norm of the second fundamental form of ϕ, the smallest eigenvalue of the Ricci curvature of (M^m, g) at x and the largest eigenvalue of the curvature operator of (N^n, h) at $\phi(x)$. El Soufi proved the first inequality for $p = 2$ in [5] and the second for $p = 2$ but only for $m = 4$. The first is optimal for the usual standard minimal embeddings of the Clifford torus and of the complex projective space in the sphere. These inequalities will be a consequence of a new lower bound of the curvature term in the Weitzenböck formula for p-forms (see the relation (5) and the propositions 4.1 and 4.2).

As a consequence of the previous inequalities, we deduce (corollary 4.2) that if (M^m, g) is minimally immersed in (N^n, h), if \bar{p}^1 is bounded above and if

$$\min_M (Scal) > (m-2) \left((m-1) \max_N (\bar{K}^1) + \max_N (\bar{p}^1) \right)$$

then (M^m, g) is a sphere of homology. This result can be viewed as a generalization of a theorem of Leung ([10]) which has shown that if a compact Riemannian manifold (M^m, g) is minimally immersed in a unit sphere and if the scalar curvature satisfies $Scal > m(m-2)$ then it is homeomorphic to an m-dimensional sphere.

2 Preliminaries and notations

Let (M^m, g) be an m-dimensional Riemannian manifold and let ϕ be an isometric immersion of (M^m, g) into an n-dimensional Riemannian manifold (N^n, h) ($n > m$). The inner product and the norm induced by g and h on the tensors will be denoted respectively by $\langle \, , \, \rangle$ and $\| \|^2$. Moreover, we denote respectively by R, ρ, Ric and $Scal$ the curvature tensor, the curvature operator, the Ricci tensor and the scalar curvature of (M^m, g) and by \overline{R}, \overline{K}, $\overline{\rho}$ and \overline{Scal} the curvature tensor, the sectional curvature, the curvature operator and
the scalar curvature of \((N^n, h)\). We recall that for all vector field \(X, Y, Z, W \in \Gamma(TN)\), \(\overline{p}\) is defined by

\[
\langle \overline{p}(X \wedge Y), Z \wedge W \rangle = R(X, Y, Z, W)
\]

Moreover, for all vector field \(X, Y \in \Gamma(TM)\), the tensor \(\overline{R}_\phi\) will be given by

\[
\overline{R}_\phi(X, Y) = \sum_{i \leq m} \overline{R}(d\phi(X), d\phi(e_i), d\phi(Y), d\phi(e_i))
\]

where \((e_i)_{1 \leq i \leq m}\) is an orthonormal frame on \(M\). On the other hand, for all \(x \in N\), we denote respectively \(K^1(x)\) and \(K^0(x)\) the largest sectional curvature and the smallest sectional curvature at \(x\) and \(\overline{p}^1(x)\) and \(\overline{p}^0(x)\) the largest eigenvalue and the smallest eigenvalue of the curvature operator. Then, it is easy to see that

\[
\overline{p}^0(x) \leq K^0(x) \leq K^1(x) \leq \overline{p}^1(x) \quad (2)
\]

Now, let \(B\) be the second fundamental form of the immersion \(\phi\) and let \(H\) be the mean curvature vector defined by:

\[
H = \frac{1}{m} \text{trace} \, B
\]

The Gauss equation tells us that for any vector field \(X, Y, Z, W \in \Gamma(TM)\), we have

\[
R(X, Y, Z, W) = \overline{R}(X, Y, Z, W) + \langle B(X, Z), B(Y, W) \rangle - \langle B(X, W), B(Y, Z) \rangle \quad (3)
\]

For the sake of completeness, we need now to recall briefly some definitions and properties about \(p\)-forms. Let \((e_i)_{1 \leq i \leq m}\) be a local orthonormal frame. Throughout this paper, for all \(q\)-tensor \(T\), we will write \(T_{i_1 \ldots i_q}\) instead of \(T(e_{i_1}, \ldots, e_{i_q})\) and then the inner product of two \(p\)-forms \(\omega\) and \(\theta\) of \((M^m, g)\) will be

\[
\langle \omega, \theta \rangle = \frac{1}{p!} \sum_{1 \leq i_1 \ldots i_p \leq m} \omega_{i_1 \ldots i_p} \theta_{i_1 \ldots i_p}
\]

The inner product (or contraction) \(i(X)\omega\) of a \(p\)-form \(\omega\) with a vector field \(X\) on \(M\) is a \(p-1\)-form, defined by

\[
(i(X))\omega(X_1, \ldots, X_{p-1}) = \omega(X, X_1, \ldots, X_{p-1}), \quad \forall X_1, \ldots, X_{p-1} \in \Gamma(TM)
\]

More generally, if \(X_1, \ldots, X_q \in \Gamma(TM)\), then the inner product of the \(p\)-form \(\omega\) with the \(q\)-tensor \(X_1 \wedge \ldots \wedge X_q\) is the \(p-q\)-form defined by

\[
(i(X_1 \wedge \ldots \wedge X_q))\omega(Y_1, \ldots, Y_{p-q}) = \omega(X_1, \ldots, X_q, Y_1, \ldots, Y_{p-q}), \quad \forall Y_1, \ldots, Y_{p-q} \in \Gamma(TM)
\]

Recall some elementary facts about inner and exterior products. Let \(\omega\) and \(\theta\) be respectively a \(p\)-form and a \(q\)-form and let \(X\) be a vector field on \(M\), then
\[i(X)(\omega \wedge \theta) = i(X)\omega \wedge \theta + (-1)^p \omega \wedge i(X)\theta \]

and if \(X^* \) is the dual 1-form of the vector field \(X \) with respect to \(g \), then \(i(X) \) is in fact the adjoint of left exterior multiplication by \(X^* \), that is

\[\langle i(X)(\omega), \theta \rangle = \langle \omega, X^* \wedge \theta \rangle \]

If \(M \) is orientable, we also need the following relation between the inner product and the Hodge operator \(\star \) on \((M^m, g)\) (see for instance \([4]\))

\[i(X)(\star \omega) = (-1)^p \star (X^* \wedge \omega) \]

On the other hand, if \(\alpha \) is a 1-form which is real valued and \(\beta \) is a 1-form which is valued in a vector bundle, we define the 2-tensor \(\alpha \vee \beta \) by

\[(\alpha \vee \beta)(X, Y) = \alpha(X)\beta(Y) + \alpha(Y)\beta(X) \quad (4) \]

We denote now by \(d, d^*, \nabla \) and \(\nabla^* \) respectively the exterior differential and the codifferential acting on \(p \)-forms, the covariant derivative of \((M^m, g)\) extended to \(p \)-forms and its adjoint with respect to \(g \). The Hodge-de Rham Laplacian \(\Delta \) acting on \(p \)-forms is given by

\[\Delta \omega = dd^* \omega + d^* d\omega \]

To compare this Laplacian to the “rough” Laplacian \(\nabla^* \nabla \), one has the Weitzenböck formula, reading as

\[\Delta \omega = \nabla^* \nabla \omega + R_p(\omega), \quad \forall \omega \in \Lambda^p(M) \]

Here \(R_p \in End(\Lambda^p(M)) \) is a bundle endomorphism, given by

\[R_p(\omega)(X_1, ..., X_p) = \sum_{ij} (-1)^i [R(e_j, X_i)\omega](e_j, X_1, ..., \widehat{X_i}, ..., X_p), \quad \forall X_1, ..., X_p \in \Gamma(TM) \]

where \((e_i)_{1 \leq i \leq m}\) is a local orthonormal frame and

\[R(X, Y)\omega = \nabla_{[X,Y]}\omega - [\nabla_X, \nabla_Y]\omega \quad \forall X, Y \in \Gamma(TM) \]

An easy consequence of the Weitzenböck formula is the following

\[\frac{1}{2} \Delta |\omega|^2 = \langle \Delta \omega, \omega \rangle - |\nabla \omega|^2 - \langle R_p(\omega), \omega \rangle \quad (5) \]
In the sequel, we need to explicit the expression of \mathcal{R}_p. A straightforward calculation gives us

$$
\langle \mathcal{R}_p(\omega), \omega \rangle = \sum_{i,j} \text{Ric}_{ij} \langle i(e_i)\omega, i(e_j)\omega \rangle - \frac{1}{2} \sum_{i,j,k,l} R_{ijkl} \langle i(e_j \wedge e_i)\omega, i(e_l \wedge e_k)\omega \rangle
$$

(6)

and the last term is zero when $p = 1$.

3 Geometry of submanifolds having a parallel p-form

The first result of this section is the following theorem

Theorem 3.1 Let (M^m, g) be an m-dimensional Riemannian manifold admitting a non-trivial parallel p-form ($1 \leq p \leq m$) and let (N^n, h) be an n-dimensional Riemannian manifold ($n > m$). If for any $x \in (N^n, h)$, we have

$$(m - 1)\overline{K}^1(x) < (p - 1)\overline{p}^0(x)$$

(7)

then, there is no minimal immersion from (M^m, g) into (N^n, h).

Remark 3.1:

1. For $p = 2$ and for even dimensional manifold (M^m, g), the pinching condition (7) can be reformulate as the negativity of the isotropic curvature ([6]). If (M^m, g) is Kaehlerian, this condition (7) is nothing but that obtained by El Soufi in [5] (theorem 2.2).

2. From the relation (2), we see that this theorem is of interest only if the sectional curvature of (N^n, h) is negative. For the hyperbolic space \mathbb{H}^n, the condition (7) is always satisfied for $p < m$ and then there is no minimal immersion of a manifold having a parallel p-form ($1 \leq p \leq m - 1$) into \mathbb{H}^n. However, the embeddings of \mathbb{H}^m in \mathbb{H}^n ($m < n$) are totally geodesic, and taking the volume form of \mathbb{H}^m, we see that (7) is not satisfied for $p = m$.

In the following theorem, we obtain the same conclusion as in the theorem 3.1 with a new pinching condition where (N^n, h) is not necessarily of negative sectional curvature (in fact, there is no condition on \overline{K}^1).

Theorem 3.2 Let (M^m, g) be an m-dimensional Riemannian manifold admitting a non-trivial parallel p-form ($1 \leq p \leq m$) and let (N^n, h) be an n-dimensional Riemannian manifold ($n > m$). If for any $x \in (N^n, h)$, we have
\[\overline{\text{Scal}}(x) < (n - m)(n + m - 1)\overline{K}^0(x) + (p(p - 1) + (m - p)(m - p - 1))\overline{\rho}^0(x) \quad (8) \]

then, there is no minimal immersion from \((M^m, g)\) into \((N^n, h)\).

Remark 3.2: We will see in the proof that this theorem is of interest only if the smallest sectional curvature is negative that is \(\overline{K}^0(x) < 0\) for all \(x \in N\). For instance, let us consider the space \(N^n = \mathbb{R}^r \times S^s\) where \(n = r + s\). Then \(\overline{\text{Scal}} = -r(r - 1) + s(s - 1), \overline{\rho}^0 = \overline{K}^0 = 1\) and \(\overline{\rho}^0 = \overline{K}^0 = -1\). Now, let \((M^m, g)\) be a Riemannian manifold of even dimension \(m\) and let \(p = m/2\). Then we have \(\overline{\text{Scal}} - (n - m)(n + m - 1)(\overline{K}^0 - (p(p - 1) + (m - p)(m - p - 1))\overline{\rho}^0 = 2(s^2 + rs - s - m^2/4)\) and it is easy to see that if \(r\) and \(m\) are great enough (for instance for a fixed \(s\) put \(m = r\) great enough) then the condition \((8)\) is satisfied and the conclusion of the theorem 3.2 holds for this example.

Proof of Theorem 3.1: Let \(\phi\) be a minimal immersion of \((M^m, g)\) into \((N^n, h)\) and assume that \(M\) has a nontrivial parallel \(p\)-form \(\omega\). Then \(\langle R^g(\omega), \omega \rangle = 0\) and from (6) we deduce

\[0 = \sum_{i,j} Ric_{ij} \langle i(e_i), \omega, i(e_j) \rangle - \frac{1}{2} \sum_{i,j,k,l} R_{ijkl} \langle i(e_i) \wedge i(e_j), \omega, i(e_k) \wedge \omega \rangle \quad (9) \]

and the last term is zero for \(p = 1\). Now from the Gauss formula (3), we obtain

\[\sum_{i,j} Ric_{ij} \langle i(e_i), \omega, i(e_j) \rangle = \sum_{i,j} (\overline{R}_{ij}) \langle i(e_i), \omega, i(e_j) \rangle + \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i), \omega, i(e_j) \rangle - \sum_{i,j,k} \langle B_{ik}, B_{jk} \rangle \langle i(e_i), \omega, i(e_j) \rangle \quad (10) \]

and

\[\sum_{i,j,k,l} R_{ijkl} \langle i(e_i) \wedge i(e_j), \omega, i(e_k) \wedge \omega \rangle = \sum_{i,j,k,l} \overline{R}_{ijkl} \langle i(e_i) \wedge i(e_j), \omega, i(e_k) \wedge \omega \rangle
+ \sum_{i,j,k,l} \langle B_{ik}, B_{jl} \rangle \langle i(e_i) \wedge i(e_j), \omega, i(e_k) \wedge \omega \rangle - \sum_{i,j,k,l} \langle B_{il}, B_{jk} \rangle \langle i(e_i) \wedge i(e_j), \omega, i(e_k) \wedge \omega \rangle
= \sum_{i,j,k,l} \overline{R}_{ijkl} \langle i(e_i) \wedge i(e_j), \omega, i(e_k) \wedge \omega \rangle + 2 \sum_{i,j,k,l} \langle B_{ik}, B_{jl} \rangle \langle i(e_i) \wedge i(e_j), \omega, i(e_k) \wedge \omega \rangle \quad (11) \]

by reporting (10) and (11) in (9), we get
\[0 = \sum_{i,j} (R_{\alpha})_{ij} \langle i(e_i)\omega, i(e_j)\omega \rangle + m \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i)\omega, i(e_j)\omega \rangle \\
- \sum_{i,j,k} \langle B_{ik}, B_{jk} \rangle \langle i(e_i)\omega, i(e_j)\omega \rangle - \frac{1}{2} \sum_{i,j,k,l} R_{ijkl} \langle i(e_j \wedge e_i)\omega, i(e_l \wedge e_k)\omega \rangle \\
- \sum_{i,j,k,l} \langle B_{ik}, B_{jl} \rangle \langle i(e_i \wedge e_j)\omega, i(e_l \wedge e_k)\omega \rangle \quad (12) \]

and the two last terms are zero for \(p = 1 \). Now, put \(B^+(\omega) = \sum_{i \leq m} i(e_i^*)\omega \wedge B(e_i, \cdot) \). The computation of the square of the norm of \(B^+(\omega) \) gives

\[
|B^+(\omega)|^2 = \frac{1}{p!} \sum_{1 \leq i_1 \ldots i_p \leq m} \langle (i(e_i^*)\omega \wedge B(e_i, \cdot))_{i_1 \ldots i_p}, (i(e_i^*)\omega \wedge B(e_j, \cdot))_{i_1 \ldots i_p} \rangle \\
= \frac{1}{p!} \sum_{1 \leq i_1 \ldots i_p \leq m} (-1)^{s+t} \langle B_{ii}, B_{jj} \rangle \omega_{i_1 \ldots i_p \wedge \cdot \wedge \cdot} \omega_{j_1 \ldots j_p \wedge \cdot \wedge \cdot}
\]

where the indices with \(\hat{\cdot} \) are omitted. Then

\[
|B^+(\omega)|^2 \\
= \frac{1}{p!} \sum_{1 \leq i_1 \ldots i_p \leq m} \langle B_{ii}, B_{jj} \rangle \omega_{i_1 \ldots i_p \wedge \cdot \wedge \cdot} \omega_{j_1 \ldots j_p \wedge \cdot \wedge \cdot} \\
+ \frac{1}{p!} \sum_{1 \leq i_1 \ldots i_p \leq m} (-1)^{s+t} \langle B_{ii}, B_{jj} \rangle \omega_{i_1 \ldots i_p \wedge \cdot \wedge \cdot} \omega_{j_1 \ldots j_p \wedge \cdot \wedge \cdot} \\
= \frac{1}{(p-1)!} \sum_{1 \leq i_1 \ldots i_{p-1} \leq m} \langle B_{ik}, B_{jk} \rangle \omega_{i_1 \ldots i_{p-1} \wedge \cdot \wedge \cdot} \omega_{j_1 \ldots j_{p-1} \wedge \cdot \wedge \cdot} \\
- \frac{1}{p!} \sum_{1 \leq i_1 \ldots i_p \leq m} \langle B_{ii}, B_{jj} \rangle \omega_{i_1 \ldots i_p \wedge \cdot \wedge \cdot} \omega_{j_1 \ldots j_p \wedge \cdot \wedge \cdot} \\
- \frac{1}{p!} \sum_{1 \leq i_1 \ldots i_p \leq m} \langle B_{ii}, B_{jj} \rangle \omega_{i_1 \ldots i_p \wedge \cdot \wedge \cdot} \omega_{j_1 \ldots j_p \wedge \cdot \wedge \cdot}
\]
\[\sum_{i,j,k} \langle B_{ik}, B_{jk} \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle - \frac{1}{(p-2)!} \sum_{1 \leq i_1 \cdots i_{p-2} \leq m} \langle B_{ik}, B_{jl} \rangle \omega_{i_1 \cdots i_{p-2}} \omega_{jki_1 \cdots i_{p-2}} \]

\[\sum_{i,j,k} \langle B_{ik}, B_{jk} \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle + \frac{1}{(p-2)!} \sum_{1 \leq i_1 \cdots i_{p-2} \leq m} \langle B_{ik}, B_{jl} \rangle \omega_{i_1 \cdots i_{p-2}} \omega_{jki_1 \cdots i_{p-2}} \]

\[\sum_{i,j,k} \langle B_{ik}, B_{jk} \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle + \sum_{i,j,k,l} \langle B_{ik}, B_{jl} \rangle \langle i(e_j \wedge e_i) \omega, i(e_l \wedge e_k) \omega \rangle \]

Note that if \(M \) is Kaehlerian and \(\omega \) is the Kaehler form then \(|B^+(\omega)|^2 = |B^+|^2 \), where \(B^+ \) is the holomorphic part of \(B \) (i.e. \(B^+(X,Y) = \frac{1}{2} (B(X,Y) + B(JX,JY)) \) where \(\omega(X,Y) = \langle JX, Y \rangle \)).

Now, combining the above relation with (12), we obtain

\[|B^+(\omega)|^2 = m \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle + \sum_{i,j} (\bar{R}_\phi)_{ij} \langle i(e_i) \omega, i(e_j) \omega \rangle - \frac{1}{2} \sum_{i,j,k,l} \bar{R}_{ijkl} \langle i(e_j \wedge e_i) \omega, i(e_l \wedge e_k) \omega \rangle \] (13)

where the last term is zero if \(p = 1 \). Putting \(X^{i_1 \cdots i_p} = \sum_{i \leq m} \omega_{i_1 \cdots i_{p-2}} e_i e_i \) and \(\theta^{i_1 \cdots i_{p-2}} = \frac{1}{2} \sum_{1 \leq i,j \leq m} \omega_{i_1 \cdots i_{p-2}} e_i e_j^* \), we have

\[\sum_{i,j} (\bar{R}_\phi)_{ij} \langle i(e_i) \omega, i(e_j) \omega \rangle = \frac{1}{(p-1)!} \sum_{i_1,\ldots,i_{p-1}} \bar{R}_\phi(X^{i_1 \cdots i_p}, X^{i_1 \cdots i_p}) \]

\[\leq \frac{(m-1)}{(p-1)!} K^1(\phi(x)) \sum_{i_1,\ldots,i_{p-1}} |X^{i_1 \cdots i_p}|^2 = p(m-1)K^1(\phi(x))|\omega|^2 \] (14)

and

\[\frac{1}{2} \sum_{i,j,k,l} \bar{R}_{ijkl} \langle i(e_j \wedge e_i) \omega, i(e_l \wedge e_k) \omega \rangle = \frac{2}{(p-2)!} \sum_{i_1,\ldots,i_{p-2}} \bar{p}(\theta^{i_1 \cdots i_{p-2}}, \theta^{i_1 \cdots i_{p-2}}) \]

\[\geq \frac{2}{(p-2)!} \bar{p}(\phi(x)) \sum_{i_1,\ldots,i_{p-2}} |\theta^{i_1 \cdots i_{p-2}}|^2 \]

\[= \frac{1}{(p-2)!} \bar{p}(\phi(x)) \sum_{i_1,\ldots,i_p} \omega^{i_1 \cdots i_p} = p(p-1) \bar{p}(\phi(x))|\omega|^2 \] (15)
consequently, for all $p \in \{1, ..., m\}$, it follows from (13) and the fact that $H = 0$

$$| \mathcal{B}^+(\omega)|^2(x) \leq p(m - 1) \mathcal{K}_1^p(\phi(x))|\omega|^2 - p(p - 1) \mathcal{P}_1^p(\phi(x))|\omega|^2$$

From this we conclude that if $(p - 1) \mathcal{P}_1^p(x) > (m - 1) \mathcal{K}_1^p(x)$ holds for any $x \in N$, then there is no minimal immersion from (M^m, g) into (N^n, h). \qed

Remark 3.3: In the theorem 3.1, the nonpositivity of the curvature operator of (N^n, h) is not required. In ([2]) Corlette proved (theorem 3.1) a similar result for harmonic maps ϕ from (M^m, g) to (N^n, h) (in fact he assumes that ϕ is a twisted harmonic map which is not necessary) by assuming only the nonpositivity of the curvature operator of (N^n, h) without pinching condition. Indeed, under this hypothesis he proved that if (M^m, g) is compact and has a parallel p-form then $\nabla^*(d\phi \wedge \omega) = 0$ (here ∇ is the pullback of the Levi-Civita connection of TN). Note that Corlette doesn’t obtain a result of non existence. Moreover if ϕ is a minimal isometric immersion, then ϕ is a harmonic map and the theorem of Corlette can be proved without the compacity of M and a short computation shows that $\nabla^*(d\phi \wedge \omega) = -\mathcal{B}^+(\omega)$.

Proof of Theorem 3.2: From the relation (13) and the inequality (15) of the previous proof, we deduce that if ϕ is a minimal immersion, we have

$$| \mathcal{B}^+(\omega)|^2 \leq \sum_{i,j} (\mathcal{R}_\phi)_{ij} \langle i(e_i)\omega, i(e_j)\omega \rangle - p(p - 1) \mathcal{P}_1^p(\phi(x))|\omega|^2$$

Since M is locally oriented, we can define locally the Hodge operator \ast and the $m - p$-form $\ast \omega$. But $| \mathcal{B}^+(\ast \omega)|^2$ is independent on the choice of the orientability and is consequently globally defined. Then we have

$$| \mathcal{B}^+(\omega)|^2 + | \mathcal{B}^+(\ast \omega)|^2 \leq \sum_{i,j} (\mathcal{R}_\phi)_{ij} \left(\langle i(e_i)\omega, i(e_j)\omega \rangle + \langle i(e_i) \ast \omega, i(e_j) \ast \omega \rangle \right)$$

$$- (p(p - 1) + (m - p)(m - p - 1)) \mathcal{P}_1^p(\phi(x))|\omega|^2 \quad (16)$$

Now using the properties about inner and exterior products recalled in the first section, we have

$$\sum_{i,j} \left((\mathcal{R}_\phi)_{ij} \langle i(e_i)\omega, i(e_j)\omega \rangle + (\mathcal{R}_\phi)_{ij} \langle i(e_i) \ast \omega, i(e_j) \ast \omega \rangle \right) =$$

$$\sum_{i,j} \left((\mathcal{R}_\phi)_{ij} \langle i(e_i)\omega, i(e_j)\omega \rangle + (\mathcal{R}_\phi)_{ij} \langle e_i^* \wedge \omega, e_j^* \wedge \omega \rangle \right) =$$

$$\sum_{i,j} \left((\mathcal{R}_\phi)_{ij} \langle i(e_i)\omega, i(e_j)\omega \rangle + (\mathcal{R}_\phi)_{ij} \langle i(e_j)(e_i^* \wedge \omega), \omega \rangle \right) =$$
\[\sum_{i,j} (R_{\phi})_{ij} (i(e_i) \omega, i(e_j) \omega) + \sum_i (R_{\phi})_{ii} |\omega|^2 - \sum_{i,j} (R_{\phi})_{ij} (e_i^* \wedge i(e_j) \omega, \omega) = \sum_i (R_{\phi})_{ii} |\omega|^2\]

(17)

A straightforward computation gives

\[\sum_i (R_{\phi})_{ii} \leq \overline{\text{Scal}}(\phi(x)) - (n - m) (n + m - 1) K^0(\phi(x))\]

and from (16) and (17) we deduce that for all \(x \in M\)

\[0 \leq \overline{\text{Scal}}(\phi(x)) - \left((n - m) (n + m - 1) K^0(x) + (p(p - 1) + (m - p)(m - p - 1)) \overline{\rho}^0(x)\right) (\phi(x))\]

Consequently if

\[\overline{\text{Scal}}(x) < (n - m) (n + m - 1) K^0(x) + (p(p - 1) + (m - p)(m - p - 1)) \overline{\rho}^0(x)\]

for all \(x \in N\), there is no minimal immersion from \((M^m, g)\) into \((N^n, h)\). Using the inequalities (2), we can easily see that the above condition implies

\[\left(\frac{m(m - 1)}{p(p - 1) + (m - p)(m - p - 1)}\right) K^0(x) < \overline{\rho}^0(x) \leq K^0(x)\]

for all \(x \in N\). And the theorem 3.2 is of interest only for \(K^0 < 0\).

To finish this section, we study the particular case where the ambient space is the complex hyperbolic space \(\mathbb{CH}^n(c)\) with constant holomorphic curvature equal to \(c (c < 0)\). Let us recall that in this case the curvature tensor of \(\mathbb{CH}^n(c)\) has the expression

\[
\mathcal{R}(X, Y, Z, W) = \frac{c}{4} (\langle X \wedge Y, Z \wedge W \rangle + \langle X \wedge Y, JZ \wedge JW \rangle + 2 \langle X, JY \rangle \langle Z, JW \rangle) \quad (18)
\]

for all \(X, Y, Z, W \in \Gamma(T\mathbb{CH}^n(c))\). Here \(J\) denotes the complex structure of \(\mathbb{CH}^n(c)\). For any isometric immersion \(\phi\) of a Riemannian manifold \((M^m, g)\) into \(\mathbb{CH}^n(c)\), we define the \((1,1)\)-tensor \(J_\phi\) on \(M\) by \(J_\phi X = \sum_{i \leq m} (Jd\phi(X), d\phi(e_i)) e_i, \forall X \in \Gamma(TM)\) and for all orthonormal frame \((e_i)_{1 \leq i \leq m}\). Recall that the immersion \(\phi\) is said to be totally real if \(J_\phi \equiv 0\).

For this kind of immersions we have the

Theorem 3.3 Let \((M^m, g)\) be an \(m\)-dimensional Riemannian manifold admitting a non-trivial parallel \(p\)-form \((p \geq 1)\). Then there is no minimal totally real immersion of \((M^m, g)\) into \(\mathbb{CH}^n(c)\).
Proof: Let ϕ be a minimal immersion of (M^m, g) into \mathbb{H}^n and assume that M has a non trivial parallel p-form ω. Then from (13) we have

$$|B^+(\omega)|^2 = \sum_{i,j} (R_{\phi})_{ij} \langle i(e_i)\omega, i(e_j)\omega \rangle - \frac{1}{2} \sum_{i,j,k,l} R_{ijkl} \langle i(e_j \wedge e_i)\omega, i(e_l \wedge e_k)\omega \rangle$$

Now the conclusion follows from a straightforward computation. Using (18) the above equality becomes

$$|B^+(\omega)|^2 = \frac{c}{4} (p(m-p)|\omega|^2 + 3 \sum_{i,j \leq m} \langle J_{\phi}e_i, J_{\phi}e_j \rangle \langle i(e_i)\omega, i(e_j)\omega \rangle - \sum_{i,j \leq m} \langle i(e_j \wedge e_i)\omega, i(e_j \wedge J_{\phi}e_i)\omega \rangle - \sum_{i,j \leq m} \langle i(e_i \wedge J_{\phi}e_i)\omega, i(e_j \wedge J_{\phi}e_j)\omega \rangle$$

where $(e_i)_{1 \leq i \leq m}$ is a local orthonormal frame.

4 Geometry of submanifolds with $b_p(M) \neq 0$

Let (M^m, g) and (N^n, h) be two Riemannian manifolds and assume that (M^m, g) is compact. We use the same notations as in the previous sections. Moreover in this section, $k(x)$ denotes the smallest eigenvalue at x of the Ricci curvature of (M^m, g) and we put $k_0 = \min_M k(x)$. On the other hand, if \overline{K}^1 is bounded above, we will set $\overline{K}^1_{\text{max}} = \max_N (\overline{K}^1)$ and $\overline{p}^1_{\text{max}} = \max_N (\overline{p}^1)$. The first result is the following theorem.

Theorem 4.1 Let (M^m, g) be a compact Riemannian manifold of dimension $m \geq 2$ so that $b_p(M) \neq 0$ for some $p \geq 1$. Then for any isometric immersion ϕ from (M^m, g) into an n-dimensional Riemannian manifold (N^n, h), there exists at least a point $x \in M$ so that

$$\frac{m}{\sqrt{p}} \left(\frac{p-1}{p} \right) |B(x)||H(x)| \geq k(x) - \left(\frac{p-1}{p} \right) ((m-1)\overline{K}^1 + \overline{p}^1)(\phi(x))$$

The following corollary is an immediate consequence of this theorem.

Corollary 4.1 Let (M^m, g) be a compact Riemannian manifold of dimension $m \geq 2$ minimally immersed in an n-dimensional Riemannian manifold (N^n, h) ($n > m$). If \overline{p}^1 is bounded above and if for an integer p so that $1 \leq p \leq m/2$, we have
\[k_0 > \left(\frac{p - 1}{p} \right) \left((m - 1)K_\text{max}^1 + \rho_\text{max}^1 \right) \]

then \(b_q(M) = 0 \) for \(q \in \{1, \ldots, p\} \).

Remark 4.1: The inequality (19) is an equality at each point for the standard embedding of \(\mathbb{S}^p (\sqrt{p/m}) \times \mathbb{S}^{k_1} (\sqrt{k_1/m}) \times \cdots \times \mathbb{S}^{k_q} (\sqrt{k_q/m}) \) into \(\mathbb{S}^{m+r} \) where \(p + k_1 + \cdots + k_q = m \) with \(k_i \geq p \) (1 \(\leq i \leq q \)). For the case \(p = 2 \), (19) is also an equality at each point for the standard embedding from \(\mathbb{C}P^q \) with holomorphic curvature \(2q/(q + 1) \) into \(\mathbb{S}^{q^2 + 2q} \).

This theorem 4.1 is a generalization of a result obtained by El Soufi (see theorem 3.1 of [5]) in the particular case \(p = 2 \).

To prove the theorem 4.1 we need the following proposition which gives an estimate of the term \(\langle R_p(\omega), \omega \rangle \) for any \(p \)-form \(\omega \).

Proposition 4.1 Let \((M^m, g) \) be an \(m \)-dimensional compact Riemannian manifold isometrically immersed in an \(n \)-dimensional Riemannian manifold \((N^n, h) \). Then for any \(p \in \{1, \ldots, m\} \) and for any \(p \)-form \(\omega \) of \(M \), we have for all \(x \in M \)

\[\langle R_p(\omega), \omega \rangle \geq p \left(pk(x) - (p - 1) \left((m - 1)K_1^1 + \rho_1^1 \right)(\phi(x)) - m \left(\frac{p - 1}{\sqrt{p}} \right) |H(x)| |B(x)| \right) |\omega|^2 \]

Before proving this proposition, we introduce the following \(p \)-tensor associated to any \(p \)-form \(\omega \) of \(M \) and the isometric immersion \(\phi \)

\[B^-(\omega) = \frac{1}{(p - 2)!} \sum_{i,i_1,\ldots,i_{p-2} \leq m} \left(i(e_i \wedge e_{i_1} \wedge \cdots e_{i_{p-2}}) \omega \right) \land B(e_{i_1} \ldots) \otimes (e_{i_1}^* \wedge \cdots e_{i_{p-2}}^*) \]

where \((e_i)_{1 \leq i \leq m} \) is an orthonormal frame at a point \(x \in M \) and \(\land \) denotes the symmetric product defined in the preliminaries (see (4)). It will be convenient to choose the norm \(|B^-(\omega)| \) so that

\[|B^-(\omega)|^2 = \frac{1}{(p - 2)!} \sum_{jki_1\ldots i_{p-2} \leq m} \left| B^-(\omega)_{jki_1\ldots i_{p-2}} \right|^2 \]

Such a tensor has been introduced for the first time in [8] where the second fundamental form is replaced by the Hessian of a function. First note that if \(\omega \) is a volume form at a point \(p \) of \(M \) where we have define the Hodge operator \(\star \) so that \(\omega = \star 1 \), we deduce from (20) shown in the proof of the proposition 4.1, that
\[
\frac{1}{2n}|B^-(v_g)|^2 = \frac{n-1}{n} \sum_{ijk\leq n} \langle B_{ik}, B_{jk} \rangle \langle i(e_i) \times 1, i(e_j) \times 1 \rangle
\]

\[
- \frac{1}{n} \sum_{ijkl\leq n} \langle B_{ij}, B_{kl} \rangle \langle i(e_i \wedge e_i) \times 1, i(e_j \wedge e_j) \times 1 \rangle
\]

\[
= \frac{n-1}{n} \sum_{ijk\leq n} \langle B_{ik}, B_{jk} \rangle \langle e_i^* \times e_j^* , e_k^* \times e_j^* \rangle - \frac{1}{n} \sum_{ijkl\leq n} \langle B_{ij}, B_{kl} \rangle \langle e_i^* \wedge e_j^* , e_k^* \wedge e_j^* \rangle
\]

\[
= |B|^2 - n|H|^2 = |B - H \otimes g|^2
\]

In other words we obtain the square of the umbilicity tensor. Moreover if \(\alpha\) denotes the Kaehler form of a Kaehlerian manifold, a straightforward calculation gives

\[
|B^-(\alpha)|^2 = 4|B^-|^2
\]

where \(B^-\) is the anti-holomorphic part of \(B\) (i.e. \(B^-(X, Y) = \frac{1}{2}(B(X, Y) - B(JX, JY))\)) where \(\alpha(X, Y) = \langle JX, JY \rangle\).

On the other hand we will see in the proof of theorem 4.1 that \(B^-(\omega)\) is vanishing identically for the standard embedding of \(\mathbb{S}^p(\sqrt{p/m}) \times \mathbb{S}^q(\sqrt{k_1/m}) \times \ldots \times \mathbb{S}^q(\sqrt{k_q/m})\) into \(\mathbb{S}^{m+r}\) where \(p + k_1 + \ldots + k_q = m\) with \(k_i \geq p\) (1 \(\leq i \leq q\).

Proof of Proposition 4.1: For \(p = 1\) and from the relation (6), the equality of the proposition is obvious. Suppose now that \(p \geq 2\). Let \(x \in M\) and let \((e_i)_{1 \leq i \leq m}\) be a local orthonormal frame in a neighborhood of \(x\). We have

\[
\frac{(p-2)!}{2} |B^-(\omega)|^2 = \frac{1}{2} \sum_{i,j,i_1,\ldots,i_{p-2}} |B^-(\omega)_{i,j,i_1,\ldots,i_{p-2}}|^2 =
\]

\[
= \frac{1}{2} \sum_{i,j,k,l,i_1,\ldots,i_{p-2}} \langle i(e_i \wedge e_i \wedge \ldots \wedge e_{i_{p-2}}) \omega \wedge B(e_1, \ldots) \rangle_{kl} \langle i(e_j \wedge e_i \wedge \ldots \wedge e_{i_{p-2}}) \omega \wedge B(e_j, \ldots) \rangle_{kl}
\]

\[
= \sum_{i,j,k,l,i_1,\ldots,i_{p-2}} \langle i(e_i \wedge e_i \wedge \ldots \wedge e_{i_{p-2}}) \omega \rangle_k \langle i(e_j \wedge e_i \wedge \ldots \wedge e_{i_{p-2}}) \omega \rangle_k \langle B_{dl}, B_{jk} \rangle
\]

\[
+ \sum_{i,j,k,l,i_1,\ldots,i_{p-2}} \langle i(e_i \wedge e_i \wedge \ldots \wedge e_{i_{p-2}}) \omega \rangle_k \langle i(e_j \wedge e_i \wedge \ldots \wedge e_{i_{p-2}}) \omega \rangle_k \langle B_{dl}, B_{ik} \rangle
\]

\[
= \sum_{i,j,k,l,i_1,\ldots,i_{p-2}} \langle B_{dl}, B_{jk} \rangle \omega_{ik1 \ldots i_{p-2}} \omega_{jkl1 \ldots i_{p-2}} + \sum_{i,j,k,l,i_1,\ldots,i_{p-2}} \langle B_{dl}, B_{ik} \rangle \omega_{ik1 \ldots i_{p-2}} \omega_{i_1 \ldots i_{p-2}}
\]

\[
= (p-1)! \sum_{i,j,k} \langle B_{ik}, B_{jk} \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle - (p-2)! \sum_{i,j,k} \langle B_{ij}, B_{kl} \rangle \langle i(e_i \wedge e_i) \omega, i(e_k \wedge e_j) \omega \rangle
\]

Finally, we have proved that
\[\frac{1}{2} |\mathcal{B}^- (\omega) |^2 = (p - 1) \sum_{i, j, k} \langle B_{ik}, B_{jk} \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle - \sum_{i, j, k, l} \langle B_{ik}, B_{jl} \rangle \langle i(e_i \wedge e_j) \omega, i(e_k \wedge e_l) \omega \rangle \]

(20)

Now, combining this with the relations (10) and (11) and using the expression of \(\langle R_p(\omega), \omega \rangle \) (see (6)), we get

\[\frac{1}{2} |\mathcal{B}^- (\omega) |^2 = \langle R_p(\omega), \omega \rangle - p \sum_{i, j} \text{Ric}_{ij} \langle i(e_i) \omega, i(e_j) \omega \rangle \]

\[+ (p - 1) \sum_{i, j} (\mathcal{R}_p)_{ij} \langle i(e_i) \omega, i(e_j) \omega \rangle + \frac{1}{2} \sum_{i, j, k, l} \mathcal{R}_{ijkl} \langle i(e_j \wedge e_k) \omega, i(e_l) \omega \rangle \]

\[+ m(p - 1) \sum_{i, j} \langle B_{ij}, H \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle \]

(21)

From the hypotheses on the curvature of \(N \) and by techniques already used in the proof of the theorem 3.1 (see (14) and (15)) we deduce that

\[\frac{1}{2} |\mathcal{B}^- (\omega) |^2 \leq \langle R_p(\omega), \omega \rangle - p \sum_{i, j} \text{Ric}_{ij} \langle i(e_i) \omega, i(e_j) \omega \rangle \]

\[+ p(p - 1) \left((m - 1) \mathcal{K}^1 (x) + p^1 (x) \right) |\omega|^2 + m(p - 1) \sum_{i, j} \langle B_{ij}, H \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle \]

(22)

Now, let us estimate the last term. For this, assume that at the point \(x \in M, (e_i)_{1 \leq i \leq m} \) diagonalizes the symmetric tensor \(\langle B(X, Y), H \rangle \). We have

\[\sum_{i, j} \langle B_{ij}, H \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle = \frac{1}{(p - 1)!} \sum_{i, i_1, ..., i_p-1} \langle B_{ii}, H \rangle \omega_{i_1 ... i_p-1}^2 \]

\[= \frac{1}{p!} \sum_{i, i_1, ..., i_p-1} \left(\langle B_{ii}, H \rangle + \langle B_{i_1i_1}, H \rangle + ... + \langle B_{i_{p-1}i_{p-1}}, H \rangle \right) \omega_{i_1 ... i_p-1}^2 \]

\[\leq \frac{1}{p!} \sum_{i, i_1, ..., i_p-1} \left(|B_{ii}| + |B_{i_1i_1}| + ... + |B_{i_{p-1}i_{p-1}}| \right) |H| \omega_{i_1 ... i_p-1}^2 \]

\[\leq \frac{\sqrt{p}}{p!} \sum_{i, i_1, ..., i_p-1} |B||H| \omega_{i_1 ... i_p-1}^2 \]

16
Finally we have proved
\[
\sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle \leq \sqrt{p} |B||H| |\omega|^2
\] \hfill (23)

Since $Ric \geq kg$, we have
\[
\sum_{i,j} Ric_{ij} \langle i(e_i) \omega, i(e_j) \omega \rangle \geq pk|\omega|^2,
\]
and (23), the inequality of the proposition 4.1.

The proof of the theorem 4.1 is now an immediate consequence of the proposition 4.1

Proof of theorem 4.1: Since $b_p(M) \neq 0$, there exists a nontrivial p-form ω so that $\Delta \omega = 0$. And from the Weitzenböck formula (5), we deduce
\[
\int_M \langle \mathcal{R}_p(\omega), \omega \rangle \leq 0 \hfill (24)
\]

Now, applying the estimate of the proposition 4.1 we get the desired inequality.

We can show a similar result to the theorem 4.1, with the scalar curvature $Scal$ of (M^m, g) instead of the Ricci curvature.

Theorem 4.2 Let (M^m, g) be a compact Riemannian manifold of dimension $m \geq 2$ so that $b_p(M) \neq 0$ for a $p \geq 1$. Then for any isometric immersion ϕ from (M^m, g) into an n-dimensional Riemannian manifold (N^n, h), there exists at least a point $x \in M$ so that
\[
m \left(\frac{p - 1}{\sqrt{p}} + \frac{m - p - 1}{\sqrt{m - p}} \right) |B(x)||H(x)| \geq Scal(x) - (m - 2)((m - 1)\bar{K}^l + \bar{p}^l)(\phi(x)) \hfill (25)
\]

We immediately deduce the following

Corollary 4.2 Let (M^m, g) be a compact Riemannian manifold of dimension $m \geq 2$ minimally immersed into an n-dimensional Riemannian manifold (N^n, h) ($n > m$). If \bar{p}^l is bounded above and if
\[
\min_M Scal > (m - 2) \left((m - 1)\bar{K}^l_{\text{max}} + \bar{p}^l_{\text{max}} \right)
\]
then for any $p \in \{1, ..., m\}$, we have $b_p(M) = 0$.

Remark 4.2: If $p = m/2$, we can improve (25) to obtain
\[
m(m - 2)|H(x)|^2 \geq Scal(x) - (m - 2)((m - 1)\bar{K}^l + \bar{p}^l)(\phi(x)) \hfill (26)
\]
The theorem 4.2 and the inequality (26) was obtained by El Soufi (theorem 3.1 and theorem 3.2 of [5]) in the particular case where \(m = 4 \) and \(p = 2 \).

On the other hand, note that for \(p \neq m/2 \), the theorem 4.1 is not a consequence of the theorem 4.2.

For the same reasons as in the proof of theorem 3.2, we can choose locally an orientation on \(M \) and define locally the Hodge operator \(*\). But for all \(p\)-form \(\omega \) of \(M \), the quantity \(\langle R_{m-p}(\omega), \omega \rangle \) is globally defined.

The theorem 4.2 is a consequence of the following proposition

Proposition 4.2 Let \((M^m, g)\) be an \(m\)-dimensional compact Riemannian manifold isometrically immersed in an \(n\)-dimensional Riemannian manifold \((N^n, h)\). Then for all \(p \in \{1, \ldots, m-1\} \) and for all \(p\)-form \(\omega \) on \((M^m, g)\), we have for all \(x \in M \)

\[
\langle R_p(\omega), \omega \rangle + \frac{p}{m-p} \langle R_{m-p}(\omega), \omega \rangle \geq p \left(\text{Scal}(x) - (m-2) \left((m-1)K^1 + \overline{p}^1 \right) \phi(x) \right) \\
- m \left(\frac{p-1}{\sqrt{p}} + \frac{m-p-1}{\sqrt{m-p}} \right) |H(x)||B(x)||\omega|^2
\]

Remark 4.3: If \(p = m/2 \), we can improve this inequality (see the proof of the proposition 4.2) to obtain

\[
\langle R_p(\omega), \omega \rangle + \frac{p}{m-p} \langle R_{m-p}(\omega), \omega \rangle \geq p \left(\text{Scal}(x) - (m-2) \left((m-1)K^1 + \overline{p}^1 \right) \phi(x) \right) - m(m-2)|H(x)||\omega|^2
\]

And if for \(p \geq 1 \), \(b_p(M) \neq 0 \), we get (26).

Proof of the proposition 4.2: From the inequality (22) we obtain that for all \(p \geq 1 \)

\[
\langle R_p(\omega), \omega \rangle \geq p \sum_{i,j} \text{Ric}_{ij} \langle i(e_i)\omega, i(e_j)\omega \rangle \\
- p(p-1) \left((m-1)K^1 + \overline{p}^1 \right) \phi(x)|\omega|^2 \\
- m(p-1) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i)\omega, i(e_j)\omega \rangle
\]

Since \(*\omega\) is a \((m-p)\)-form we have also

\[
\langle R_{m-p}(\omega), \omega \rangle \geq (m-p) \sum_{i,j} \text{Ric}_{ij} \langle i(e_i)\omega, i(e_j)\omega \rangle \\
- (m-p)(m-p-1) \left((m-1)K^1 + \overline{p}^1 \right) \phi(x)|\omega|^2
\]
\[-m(m-p-1) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \star \omega, i(e_j) \star \omega \rangle \]

(29)

Multiplying (29) by \(\frac{p}{m-p} \), and summing the obtained inequality with (28), we find

\[
\langle R_p(\omega), \omega \rangle + \frac{p}{m-p} \langle R_{m-p}(\star \omega), \star \omega \rangle \geq
\]

\[p \sum_{i,j} \left(Ric_{ij} \langle i(e_i) \omega, i(e_j) \omega \rangle + Ric_{ij} \langle i(e_i) \star \omega, i(e_j) \star \omega \rangle \right)
- p(m-2) \left((m-1)K + \bar{\rho} \right) (\phi(x))|\omega|^2
- m(p-1) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle - mp \left(\frac{m-p-1}{m-p} \right) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \star \omega, i(e_j) \star \omega \rangle
\]

By computations which are similar to (17) we get

\[
\sum_{i,j} \left(Ric_{ij} \langle i(e_i) \omega, i(e_j) \omega \rangle + Ric_{ij} \langle i(e_i) \star \omega, i(e_j) \star \omega \rangle \right) = Scal|\omega|^2
\]

(30)

Thus

\[
\langle R_p(\omega), \omega \rangle + \frac{p}{m-p} \langle R_{m-p}(\star \omega), \star \omega \rangle \geq pScal|\omega|^2
- p(m-2) \left((m-1)K + \bar{\rho} \right) (\phi(x))|\omega|^2
- m(p-1) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle
- mp \left(\frac{m-p-1}{m-p} \right) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \star \omega, i(e_j) \star \omega \rangle
\]

(31)

\(\text{(Note that if } p = m/2, \text{ then } p-1 = p \left(\frac{m-p-1}{m-p} \right), \text{ and we show with the same arguments as in the proof of (30) that) } \)

\[
m(p-1) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \omega, i(e_j) \omega \rangle + mp \left(\frac{m-p-1}{m-p} \right) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \star \omega, i(e_j) \star \omega \rangle =
\]

\[p(m-2)m|H|^2|\omega|^2 \]

and reporting this in (31), we obtain the inequality (27) of the remark 3.3.

From the estimate (23), we deduce
\[m(p-1) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i)\omega, i(e_j)\omega \rangle \leq m(p-1)\sqrt{p}||H||B||\omega||^2 \]

and

\[mp \left(\frac{m-p-1}{m-p} \right) \sum_{i,j} \langle B_{ij}, H \rangle \langle i(e_i) \star \omega, i(e_j) \star \omega \rangle \leq \frac{mp(m-p-1)}{\sqrt{m-p}}||H||B||\omega||^2 \]

now reporting these inequalities in (31), we find the inequality of the proposition. \(\square \)

The proof of the theorem is now immediate

Proof of theorem 4.2: Let \(\omega \) be a harmonic \(p \)-form. Since the Hodge operator commutes with the Laplacian, then \(\star \omega \) is a harmonic \((m-p) \)-form, and we have

\[\int_M \left(\langle R_p(\omega), \omega \rangle + \frac{p}{m-p} \langle R_{m-p}(\star \omega), \star \omega \rangle \right) \leq 0 \]

and the theorem follows from the proposition 4.2. \(\square \)

Remark 4.4: We can improve all the results of this section by considering the particular case of submanifolds of the complex projective space \(\mathbb{C}P^n(c) \) \((c > 0)\). We just need to compute in (21) the terms with the curvature tensor of the complex projective space. Then we obtain the same statements as previously by replacing \((m-1)K^2 + \overline{P}^1 \) by \(c/8((m-1) + 3 \| J_\phi \|^2 \) where for all \(x \in M, \| J_\phi \| (x) = \sup \{|J_\phi(X)|/X \in T_xM \text{ and } |X| = 1\} \). In particular, if \((M^m, g)\) is an \(m \)-dimensional compact Riemannian manifold minimally immersed in \(\mathbb{C}P^n(c) \) and if

\[\min_M(\text{Scal}) > \frac{c(m-2)((m-1) + 3 \max_M(\| J_\phi \|^2))}{8} \]

then for any \(p \in \{1, \ldots, m\} \), we have \(b_p(M) = 0 \).

Acknowledgements:

The author would like to express his gratefulness to Professor S.Ilias.

References

