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Abstract: We investigate the potential (small) deviations from the unitarity of the mixing matrix that are
expected to occur, because of mass splittings, in the Quantum Field Theory of non-degenerate coupled
systems. We extend our previous analysis concerning mixingangles, which led to a precise determination
of the Cabibbo angle, to the case of three generations of fermions. We show that the same condition for
neutral currents ofmass eigenstates, i.e. that universality of diagonal currents is violated with thesame
strength as the absence of non-diagonal ones, is satisfied: on one hand, by the three CKM mixing angles
with a precision higher than the experimental uncertainty;on the other hand, by a neutrino-like mixing
pattern in whichθ23 is maximal, andtan(2θ12) = 2. This last pattern turns out to satisfy exactly the
“quark-lepton complementarity condition”θc + θ12 = π/4. Moreover, among all solutions, two values
for the third neutrino mixing angle arise which satisfy the bound sin2(θ13) ≤ 0.1: θ13 = ±5.7 10−3

andθ13 = ±0.2717. The so-called “Neighborhood of the Standard Model” is thusconfirmed to exhibit
special patterns which presumably originate in physics “Beyond the Standard Model”.
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1 Introduction

Following the study of neutral kaons done in [1], we have shown in [2] and [3] that:

∗ in Quantum Field Theory (QFT), mixing matrices linking flavour to mass eigenstates for non degener-
ate coupled systems should never be parametrized as unitary. Indeed, assuming that the effective renor-
malized quadratic Lagrangian is hermitian at anyq2 and that flavour eigenstates form an orthonormal
basis, different mass eigenstates, which correspond to different values ofq2 (poles of the renormalized
propagator) belong to different orthonormal bases1;

∗ when it is so, the properties of universality for diagonal neutral currents and absence of flavor changing
neutral currents (FCNC) which are systematically implemented, for the Standard Model (SM), in the
space of flavour eigenstates, do not automatically translate anymore into equivalent properties in the
space of mass eigenstates. In the case of two generations of fermions, imposing them for mass eigenstates
yields two types of solutions for the mixing angles2 of each doublet with identical electric charge:
Cabibbo-like solutions3 which reduce to a single unconstrained mixing angle, and a set of discrete
solutions, unnoticed in the customary approach, includingin particular the so-called maximal mixing
π/4 ± kπ/2;

∗ for any of these solutions one recovers a unitary mixing matrix; but, as said above, very small deviations
are expected due to mass splittings, which manifest themselves as a tiny departure from the exact two
previous conditions. In particular, in theneighborhoodof a Cabibbo-like solution, these deviations
become of equal strength for a value of the mixing angle extremely close to the measured Cabibbo angle

tan(2θc) = 1/2. (1)

This success was a encouragement to go further in this direction. We present below the outcome of our
investigation of neutral current patterns in the case of three generations of fermions.

The intricate system of trigonometric equations has been solved by successive approximations, starting
from configurations in whichθ13 is vanishing. We will see that this approximation, obviously inspired by
the patterns of mixing angles determined from experimentalmeasurements, turns out to be a very good
one. Indeed, we precisely show, without exhibiting all the solutions of our equations, that the presently
observed patterns of quarks as well as of neutrinos, do fulfill our criterion. While the three angles of the
Cabibbo-Kobayashi-Maskawa (CKM) solution are “Cabibbo-like”, the neutrino-like solution

tan(2θ12) = 2 ⇔ θ12 ≈ 31.7o,
θ23 = π/4,
θ13 = ±5.7 10−3 or θ13 = ±0.2717 (2)

is of a mixed type, whereθ23 is maximal whileθ12 andθ13 are Cabibbo-like.

Two significant features in these results must be stressed. First, the values for the third neutrino mixing
angleθ13 given in (2) are predictions which take into account present(loose) experimental constraints.
Only two possibilities survive: an extremely small valueθ13 ∼ Vub ∼ a few10−3, and a rather “large”
one, at the opposite side of the allowed range. Secondly, ourprocedure yields in an exact, though quite
simple way, the well-known “quark-lepton complementarityrelation” [6] for 1-2 mixing:

θ12 + θc = π/4, (3)

whereθ12 is the leptonic angle, andθc the Cabibbo angle for quarks.
1Since at anygivenq2, the set of eigenstates of the renormalized quadratic Lagrangian form an orthonormal basis, the

mixing matrix with all its elements evaluated at thisq2 is unitary and the unitarity of the theory is never jeopardized.
2For two generations, one is led to introduce two mixing angles to parametrize each2 × 2 non-unitary mixing matrix.
3Cabibbo-like angles can only be fixed by imposing conditionson theviolation patternof the unitarity of the mixing matrix

in its vicinity.
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2 Constraints on neutral currents of mass eigenstates

2.1 The different basis of fermions

Three bases will appear throughout the paper:

∗ flavour eigenstates, that we note(uf , cf , tf ) and(df , sf , bf ) for quarks,(ef , µf , τf ) and(νef , νµf , ντf )
for leptons;

∗mass eigenstates that we note(um, cm, tm) and(dm, sm, bm) for quarks,(em, µm, τm) and(νem, νµm, ντm)
for leptons; they include in particular the charged leptonsdetected experimentally, since their identifica-
tion proceeds through the measurement of theircharge/mass ratio in a magnetic field;

∗ the neutrinos that couple to mass eigenstates of charged leptons in charged weak currents. These are
the usual ”electronic”, “muonic” and ”τ ” neutrinosνe, νµ, ντ considered in SM textbooks [5]: they are
indeed identified by the outgoing charged leptons that they produce through charged weak currents, and
the latter are precisely mass eigenstates (see above). These states read (see Appendix D)











νe

νµ

ντ











= K†
ℓ











νef

νµf

ντf











= (K†
ℓ Kν)











νem

νµm

ντm











, (4)

whereKℓ andKν are the mixing matrices respectively of charged leptons andof neutrinos (i.e. the
matrices that connect their flavour to their mass eigenstates). Note that these neutrinos coincide with
flavour eigenstates when the mixing matrixof charged leptonsis taken equal to unityKℓ = 1, i.e.
when the mass and flavour eigenstates of charged leptons are aligned, which is often assumed without
justification in the literature.

2.2 Neutral currents and mixing matrices; notations

Neutral currents in the basis of mass eigenstates are controlled by the productK†K of the3 × 3 mixing
matrixK with its hermitian conjugate (see [2]); for example, the (left-handed) neutral currents for quarks
with electric charge(−1/3) read











df

sf

bf











γµ
L











df

sf

bf











=











dm

sm

bm











γµ
L K†

dKd











dm

sm

bm











. (5)

We write each mixing matrixK as a product of three matrices, which reduce, in the unitarity limit, to
the basic rotations byθ12, θ23 andθ13 (we are not concerned withCP violation)

K =











1 0 0

0 c23 s23

0 −s̃23 c̃23











×











c13 0 s13

0 1 0

−s̃13 0 c̃13











×











c12 s12 0

−s̃12 c̃12 0

0 0 1











. (6)

We parametrize each basic matrix, which isa priori non-unitary, with two angles, respectively(θ12, θ̃12),
(θ23, θ̃23) and(θ13, θ̃13). We deal accordingly with six mixing angles, instead of three in the unitary case,
whereθ̃ij = θij). We will use throughout the paper the notationssij = sin(θij), s̃ij = sin(θ̃ij), and
likewise, for the cosines,cij = cos(θij), c̃ij = cos(θ̃ij).

To lighten the text, the elements ofK†K will be abbreviated by[ij], i, j = 1 . . . 3 instead of(K†K)[ij],
and the corresponding neutral current will be noted{ij}. So, in the quark case,{12} stands for̄umγµ

Lcm
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or d̄mγµ
Lsm, and, in the neutrino case, forν̄emγµ

Lνµm or ēmγµ
Lµm. Last, “channel(i, j)” corresponds to

two fermionsi andj with identical electric charge; for example, “channel(2, 3)” corresponds to(d, b),
(c, t), (µ−, τ−) or (νµ, ντ ).

The general constraints that we investigate are five: three arise from the absence of non-diagonal neutral
currents for mass eigenstates, and two from the universality of diagonal currents. Accordingly, one
degree of freedom is expected to be unconstrained.

2.3 Absence of non-diagonal neutral currents of mass eigenstates

The three conditions read:

∗ for the absence of{13} and{31} currents:

[13] = 0 = [31] ⇔ c12

[

c13s13 − c̃13s̃13(c̃
2
23 + s2

23)
]

− c̃13s̃12(c23s23 − c̃23s̃23) = 0; (7)

∗ for the absence of{23} and{32} currents:

[23] = 0 = [32] ⇔ s12

[

c13s13 − c̃13s̃13(c̃
2
23 + s2

23)
]

+ c̃13c̃12(c23s23 − c̃23s̃23) = 0; (8)

∗ for the absence of{12} and{21} currents:

[12] = 0 = [21] ⇔
s12c12c

2
13 − s̃12c̃12(c

2
23 + s̃2

23) + s12c12s̃
2
13(s

2
23 + c̃2

23) + s̃13(s12s̃12 − c12c̃12)(c23s23 − c̃23s̃23) = 0.
(9)

2.4 Universality of diagonal neutral currents of mass eigenstates

The two independent conditions read:

∗ equality of{11} and{22} currents:

[11] − [22] = 0 ⇔
(c2

12 − s2
12)

[

c2
13 + s̃2

13(s
2
23 + c̃2

23)
]

− (c̃2
12 − s̃2

12)(c
2
23 + s̃2

23)
+2s̃13(c23s23 − c̃23s̃23)(c12s̃12 + s12c̃12) = 0; (10)

∗ equality of{22} and{33} currents:

[22] − [33] = 0 ⇔
s2
12 + c̃2

12(c
2
23 + s̃2

23) − (s2
23 + c̃2

23) + (1 + s2
12)

[

s̃2
13(s

2
23 + c̃2

23) − s2
13

]

+2s12s̃13c̃12(c̃23s̃23 − c23s23) = 0. (11)

The equality of{11} and{33} currents is of course not an independent condition.

2.5 Solutions forθ13 = 0 = θ̃13

In a first step, to ease solving the system of trigonometric equations, we shall study the configuration in
which one of the two angles parametrizing the 1-3 mixing vanishes4, which is very close to what is ob-
served experimentally in the quark sector, and likely in theneutrino sector. It turns out, as demonstrated

4By doing so, we exploit the possibility to fix one degree of freedom lefta priori unconstrained by the five equations; see
subsection 2.2.
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in Appendix A, that the second mixing angle vanishes simultaneously. We accordingly work in the ap-
proximation (the sensitivity of the solutions to a small variation of θ13, θ̃13 will be studied afterwards)

θ13 = 0 = θ̃13. (12)

Eqs. (7), (8), (9), (10) and (11), reduce in this limit to

−s̃12(c23s23 − c̃23s̃23) = 0, (13a)

c̃12(c23s23 − c̃23s̃23) = 0, (13b)

s12c12 − s̃12c̃12(c
2
23 + s̃2

23) = 0, (13c)

(c2
12 − s2

12) − (c̃2
12 − s̃2

12)(c
2
23 + s̃2

23) = 0, (13d)

s2
12 + c̃2

12(c
2
23 + s̃2

23) − (s2
23 + c̃2

23) = 0. (13e)

It is shown in Appendix B that the only solutions areθ12 andθ23 Cabibbo-like (̃θ12,23 = θ12,23 + kπ) or
maximal (θ12,23 = π/4 + nπ/2, θ̃12,23 = π/4 + mπ/2).

Accordingly, the two following sections will respectivelystart from:

∗ θ12 andθ23 Cabibbo-like (and, in a first step, vanishingθ13), which finally leads to a mixing pattern
similar to what is observed for quarks;

∗ θ23 maximal andθ12 Cabibbo like (and, in a first step, vanishingθ13), which finally leads to a mixing
pattern similar to the one observed for neutrinos.

3 The quark sector; constraining the three CKM angles

Mass splittings entail that the previous general conditions, which, when exactly satisfied, correspondde
factoto unitary mixing matrices, cannot be exactly fulfilled. We investigate the vicinity of their solutions,
and show that the same violation pattern that led to an accurate determination of the Cabibbo angle in
the case of two generations, is also satisfied by the CKM angles in the case of three generations.

3.1 The simplified caseθ13 = 0 = θ̃13

In the neighborhood of the solution with bothθ12 andθ23 Cabibbo-like, we write

θ̃12 = θ12 + ǫ,
θ̃23 = θ23 + η. (14)

The pattern(θ13 = 0 = θ̃13) can be reasonably considered to be close to the experimentalsituation, at
least close enough for trusting not only the relations involving the first and second generation, but also
the third one.

Like in [3], we impose that the absence of{12}, {21} neutral currents is violated with the same strength
as the universality of{11} and{22} currents. It reads

|2ηs12c12s23c23 + ǫ(c2
12 − s2

12)| = | − 2ηs23c23(c
2
12 − s2

12) + 4ǫs12c12|. (15)

We choose the “+” sign for both sides, such that, for two generations only, the Cabibbo angle satisfies
tan(2θ12) = +1/2. (15) yields the ratioη/ǫ, that we then plug into the condition equivalent to (15) for
the(2, 3) channel.

|ηc12(c
2
23 − s2

23)| = |2ηs23c23(1 + c2
12) − 2ǫs12c12|. (16)
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(15) and (16) yield

tan(2θ23) =
c12

1 + c2
12 − 2s12c12

(s12c12 + c2
12 − s2

12)

4s12c12 − (c2
12 − s2

12)

≈
c12

2 −
5

4

s12c12

tan(2θ12) −
1

2

. (17)

In the r.h.s. of (17), we have assumed thatθ12 is close to its Cabibbo valuetan(2θ12) ≈ 1/2. θ23 is seen
to vanish with[tan(2θ23) − 1/2]. The predicted value forθ23 is plotted in Fig. 1 as a function ofθ12,
together with the experimental intervals forθ23 andθ12. There are two [7] forθ12; the first comes from
the measures ofVud (in black on Fig. 1)

Vud ∈ [0.9735, 0.9740] ⇒ θ12 ∈ [0.2285, 0.2307], (18)

and the second from the measures ofVus (in purple on Fig. 1)

Vus ∈ [0.2236, 0.2278] ⇒ θ12 ∈ [0.2255, 0.2298]. (19)

theta1

0.2250.215 0.23

0

0.220.21

0.01

0.05

0.02

0.04

0.07

0.06

0.03

Fig. 1: θ23 for quarks as a function ofθ12; simplified caseθ13 = 0 = θ̃13

The measured value forθ23 is seen on Fig. 1 to correspond toθ12 ≈ 0.221, that iscos(θ12) ≈ 0.9757.
Our prediction forcos(θ12) is accordingly1.7 10−3 away from the upper limit of the present upper
bound forVud ≡ c12c13 [8] [7]; it corresponds to twice the experimental uncertainty. It also corresponds
to sin(θ12) = 0.2192, while Vus ≡ s12c13 is measured to be0.2247(19) [9] [7]; there, the discrepancy is
2/100, only slightly above the1.8/100 relative width of the experimental interval.

The approximation which setsθ13 = 0 = θ̃13 is accordingly reasonable, though it yields results slightly
away from experimental bounds. We show in the next subsection that relaxing this approximation gives
results in excellent agreement with present experiments.

3.2 Going to(θ13 6= 0, θ̃13 6= 0)

Considering all angles to be Cabibbo-like with, in additionto (14)
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θ̃13 = θ13 + ρ, (20)

the l.h.s.’s of eqs. (7),(8),(9), (10), (11) and the sum (10 +11) depart respectively from zero by

ηc13

[

s12(c
2
23 − s2

23) + 2s13c12c23s23

]

− ρc12(c
2
13 − s2

13); (21a)

ηc13

[

−c12(c
2
23 − s2

23) + 2s13s12c23s23

]

− ρs12(c
2
13 − s2

13); (21b)

−ǫ(c2
12 − s2

12) + η
[

s13(c
2
23 − s2

23)(c
2
12 − s2

12) − 2c23s23c12s12(1 + s2
13)

]

+ 2ρc13s13c12s12; (21c)

4ǫc12s12 + η
[

−4s13s12c12(c
2
23 − s2

23) − 2c23s23(c
2
12 − s2

12)(1 + s2
13)

]

+ 2ρc13s13(c
2
12 − s2

12); (21d)

−2ǫs12c12 + η
[

2s13c12s12(c
2
23 − s2

23) + 2c23s23

(

(c2
12 − s2

12) + c2
13(1 + s2

12)
)]

+ 2ρc13s13(1 + s2
12);
(21e)

2ǫs12c12 + η
[

−2s13c12s12(c
2
23 − s2

23) + 2c23s23

(

c2
13(1 + c2

12) − (c2
12 − s2

12)
)]

+ 2ρc13s13(1 + c2
12).
(21f)

We have added (21f), which is not an independent relation, but the sum of (21d) and (21e); it expresses
the violation in the universality of diagonal{11} and{33} currents.

3.2.1 A guiding calculation

Before doing the calculation in full generality, and to makea clearer difference with the neutrino case,
we first do it in the limit where one neglects terms which are quadratic in the small quantitiesθ13 and
ρ. By providing simple intermediate formulæ, it enables in particular to suitably choose the signs which
occur in equating the moduli of two quantities. Eqs.(21) become

η
[

s12(c
2
23 − s2

23) + 2s13c12c23s23

]

− ρc12; (22a)

η
[

−c12(c
2
23 − s2

23) + 2s13s12c23s23

]

− ρs12; (22b)

−ǫ(c2
12 − s2

12) + η
[

s13(c
2
23 − s2

23)(c
2
12 − s2

12) − 2c23s23c12s12

]

; (22c)

4ǫc12s12 − 2η
[

2s13s12c12(c
2
23 − s2

23) + c23s23(c
2
12 − s2

12)
]

; (22d)

−2ǫs12c12 + 2η
[

s13c12s12(c
2
23 − s2

23) + c23s23(1 + c2
12)

]

; (22e)

2ǫs12c12 + 2η
[

−s13c12s12(c
2
23 − s2

23) + c23s23(1 + s2
12)

]

. (22f)

The principle of the method is the same as before. From (22c) =(-)(22d) 5 , which expresses that the
absence of non-diagonal{12} current is violated with the same strength as the universality of {11} and

5The (-) signs ensures thattan(2θ12) ≈ (+)1/2.
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{22} currents, one getsǫ/η as a function ofθ12, θ23, θ13
6. This expression is plugged in the relation

(22b) = (-)(22e)7, which expresses the same condition for the(2, 3) channel; from this, one extractsρ/η
as a function ofθ12, θ23, θ13

8. The expressions that have been obtained forǫ/η andρ/η are then inserted
into the third relation, (22a) = (22f) , which now corresponds to the(1, 3) channel. This last step
yields a relationF0(θ12, θ23, θ13) = 1 between the three anglesθ12, θ23, θ13.

It turns out that∂F0(θ12,θ23,θ13)
∂θ13

= 0, such that, in this case, a condition betweenθ12 and θ23 alone
eventually fulfills the three relations under concern

1 =

∣

∣

∣

∣

viol([11] = [22])

viol([12] = 0 = [21])

∣

∣

∣

∣

=

∣

∣

∣

∣

viol([22] = [33])

viol([23] = 0 = [32])

∣

∣

∣

∣

=

∣

∣

∣

∣

viol([11] = [33])

viol([13] = 0 = [31])

∣

∣

∣

∣

⇔ F̃0(θ12, θ23) = 1.

(25)

theta1

0.2310.2290.228

0.06

0.227

0.04

0.01

0.225
0

0.23

theta20.03

0.224

0.02

0.05

0.226

Fig. 2: θ23 for quarks as a function ofθ12; neglecting terms quadratic inθ13

θ23 is plotted on Fig. 2 as a function ofθ12, together with the experimental intervals forθ23 andθ12 (the
intervals forθ12 come respectively fromVud (eq. (18)) andVus (eq. (19))).

The precision obtained is much better than in Fig. 1 since, inparticular, forθ23 within its experimental
range, the discrepancy between the predictedθ12 and its lower experimental limit coming fromVus is
smaller than the two experimental intervals, and even smaller than their intersection.

3.2.2 The general solution

The principle for solving the general equations (21) is the same as above. One first uses the relation (21c)
= (-) (21d) to determineρ/ǫ in terms ofη/ǫ. The result is plugged in the relation (21b) = (-) (21e), which

6

ǫ

η
= s13(c

2
23 − s2

23) + 2s23c23
s12c12 + c2

12 − s2
12

4c12s12 − (c2
12 − s2

12)
; (23)

ǫ/η has a pole attan(2θ12) = 1/2, the predicted value of the Cabibbo angle for two generations.
7There, again, the (-) sign has to be chosen so as to recover approximately (17).
8

ρ

η
= 2c23s23

[

s13 − c12

(

2
(c12s12 + c2

12 − s2
12)

4s12c12 − (c2
12 − s2

12)
−

1 + c2
12

c12s12
+

1

s12

c2
23 − s2

23

2s23c23

)]

. (24)

ρ/η has a pole attan(2θ12) = 1/2 and, forθ13 = 0, it vanishes, as expected, whenθ12 andθ23 satisfy the relation (17), which
has been deduced for̃θ13(≡ θ13 + ρ) = 0 = θ13.
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fixes η/ǫ, and thusρ/ǫ as functions of(θ12, θ23, θ13). These expressions forη/ǫ andρ/ǫ are finally
plugged in the relation(21a) = (21f) , which provides a conditionF (θ12, θ23, θ13) = 1. When it is
fulfilled, the universality of each pair of diagonal neutralcurrents of mass eigenstates and the absence of
the corresponding non-diagonal currents are violated withthe same strength, in the three channels(1, 2),
(2, 3) and(1, 3).

The results are displayed in Fig. 3;θ23 is plotted as a function ofθ12 for θ13 = 0.004 and0.01. The
present experimental interval is [7]

Vub = sin(θ13) ≈ θ13 ∈ [4 10−3, 4.6 10−3]. (26)

theta1

0.2310.2290.2280.2270.225 0.23

0.04

0.03

0.01

0.226

theta2

0.05

0.02

0.224

Fig. 3: θ23 for quarks as a function ofθ12, general case.θ13 = 0 (red),0.004 (blue) and0.01 (green)

We conclude that:

∗ The discrepancy between our predictions and experiments issmaller than the experimental uncertainty;

∗ a slightly larger value ofθ13 and/or slightly smaller values ofθ23 and/orθ12 still increase the agreement
between our predictions and experimental measurements;

∗ the determination ofθ12 from Vus seems preferred to that fromVud.

Another confirmation of the relevance of our criterion is given in the next section concerning neutrino
mixing angles.

4 A neutrino-like pattern; quark-lepton complementarity

In the “quark case”, we dealt with three “Cabibbo-like” angles. The configuration that we investigate
here is the one in whichθ23 is, as observed experimentally [7], (close to) maximal, andθ12 andθ13 are
Cabibbo-like (see subsection 2.5).

4.1 The caseθ13 = 0 = θ̃13

We explore the vicinity of this solution, slightly departing from the corresponding unitary mixing matrix,
by considering that̃θ12 now slightly differs fromθ12, andθ̃23 from its maximal value

θ̃12 = θ12 + ǫ,
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θ23 = π/4 , θ̃23 = θ23 + η. (27)

The l.h.s.’s of eqs. (7) (8) (9) (10) and (11) no longer vanish, and become respectively

−
1

2
η2(s12 + ǫc12), (28a)

1

2
η2(c12 − ǫs12), (28b)

∗ − ηs12c12 + ǫ(s2
12 − c2

12)(1 + η), (28c)

∗ − η(c2
12 − s2

12) + 4ǫs12c12(1 + η), (28d)

η(1 + c2
12) − 2ǫs12c12(1 + η), (28e)

showing by which amount the five conditions under scrutiny are now violated. Some care has to be taken
concerning the accurateness of equations (28). Indeed, we imposed a value ofθ13 which is probably not
the physical one (even if close to). It is then reasonable to consider that channel(1, 2) is the less sensitive
to this approximation and that, accordingly, of the five equations above, (28c) and (28d), marked with an
“∗”, are the most accurate9 .

The question: is there a special value ofθ12 = θ̃12 Cabibbo-like for which small deviations(ǫ, η) from
unitarity entail equal strength violations of
∗ the absence of{12}, {21} non-diagonal neutral currents;
∗ the universality of{11} and{22} neutral currents ?

gets then a simple answer
s12c12 = c2

12 − s2
12 ⇒ tan(2θ12) = 2. (29)

We did not take into account the terms proportional toǫ because we assumed that the mass splittings
between the first and second generations (from which the lackof unitarity originates) are much smaller
that the ones between the second and the third generation10.

In the case of two generations, onlyǫ appears, and one immediately recovers from (28c) and (28d) the
condition fixingtan(2θc) = 1/2 for the Cabibbo angle.

Accordingly, the same type of requirement that led to a valueof the Cabibbo angle for two generations
very close to the observed value leads, for three generations, to a value of the first mixing angle satisfying
the quark-lepton complementarity relation (3) [6].

The values ofθ12 andθ23 determined through this procedure are very close to the observed neutrino
mixing angles [7].

Though we only considered the two equations that area priori the least sensitive to our choice of a
vanishing third mixing angle (which is not yet confirmed experimentally), it is instructive to investigate
the sensitivity of our solution to a small non-vanishing value of θ13. This is done in Appendix C in
which, for this purpose, we made the simplificationθ̃13 ≈ θ13. It turns out that the terms proportional to

9The limitation of this approximation also appears in the fact that (28b), of second order inη, is not compatible with (28e),
which is of first order.

10Since the three angles playa priori symmetric roles, the simultaneous vanishing ofθ and θ̃, which we demonstrated for
θ13 and θ̃13 (see Appendix A), should also occur for the other angles. Twocompeting effects accordingly contribute to the
magnitude of the parametersǫ, η . . . : on one hand, they should be proportional to (some power of) the correspondingθ, and, on
the other hand, one reasonably expects them to increase withthe mass splitting between the fermions mixed by thisθ. So, in the
quark sector, that the violation of unitarity should be maximal forθ13 is not guaranteed since the corresponding mixing angle is
also very small (as expected from hierarchical mixing matrices [10]). A detailed investigation of this phenomenon is postponed
to a further work. In the neutrino sector, however, sinceθ23 is maximal (large), the assumption that the mass splitting between
the second and third generation is larger than between the first and second is enough to guaranteeǫ ≪ η.

9



s13 in the two equations[12] = 0 = [21] and [11] = [22] are also proportional to(c2
23 − s2

23), such that
our solution withθ23 maximal is very stable with respect to a variation ofθ13 around zero. This may of
course not be the case for the other three equations, which are expected to be more sensitive to the value
of θ13.

4.2 Prediction for θ13

We now consider, like we did for quarks, the general caseθ13 6= 0 6= θ̃13(ρ 6= 0), θ̃12 6= θ12(ǫ 6= 0),
θ̃23 6= θ23(η 6= 0), while assigning toθ12 andθ23 their values predicted in subsection 4.1.

We investigate the eight different relations betweenθ12, θ23 andθ13 which originate from the2×2×2 pos-
sible sign combinations in the conditions (25) (the r.h.s. is now replaced by a conditionF (θ12, θ23, θ13) =
1 involving the three mixing angles), where each modulus can be alternatively replaced by “+” or “−”.

Among the solutions found forθ13, only two (up to a sign) satisfy the very loose experimental bound

sin2(θ13) ≤ 0.1. (30)

They correspond respectively to the sign combinations(+/−/−), (+/+/+), (−/+/+) and(−/−/−)

θ13 = ±0.2717 , sin2(θ13) = 0.072,

θ13 = ±5.7 10−3 , sin2(θ13) = 3.3 10−5. (31)

The most recent experimental bounds can be found in [11]. They read

sin2(θ13) ≤ 0.05, (32)

which only leaves the smallest solution in (31).

Future experiments will confirm, or infirm, for neutrinos, the properties that we have shown to be satisfied
with an impressive accuracy by quark mixing angles.

5 Comments, open questions and problems

5.1 How close are mixing matrices to unitarity?

An important characteristic of the conditions that fix the mixing angles is that they do not depend on
the strength of the violation of the two properties under concern, namely, the absence of non-diagonal
neutral currents and the universality of the diagonal ones in the space of mass eigenstates. Since only
their ratio is concerned, each violation can be infinitesimally small.

This is fortunate since we have not yet been able to calculatethe magnitude of the violation of the
unitarity of the mixing matrices from, for example, mass ratios. The issue, for fundamental particles,
turns indeed to be much more difficult conceptually than it was for composite particles like neutral
kaons, for which standard Feynman diagrams provided the estimateǫL − ǫS ≈ 10−17 for the difference
of theCP violating parameters ofKL andKS mesons [1]. This problem is under investigation.

5.2 The measured mixing angles are those of charged currents

The results that have been exposed are valid for fermions of both electric charges. They concern the
mixing angles which parametrize

∗ for quarks, the mixing matrixKu of u-type quarks as well asKd of d-type quarks;

∗ for leptons, the mixing matrixKν of neutrinos as well as that of charged leptonsKℓ,
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and we have shown that our approach allows to obtain on purelytheoretical grounds the values of the
mixing angles which are experimentally determined.

However, there arises a non negligible problem : indeed, thematrix elements which are measured corre-
spond to charged currents, that is, to the product of the two corresponding mixing matrices,K†

uKd for
quarks andK†

ℓ Kν for leptons. Thus, they area priori related to an entanglement of the mixing angles of
quarks (or leptons) of different charges.

Nevertheless, what happens in the common approach of the SM is the following : in the expression of the
charged current, the productK†

uKd (or K†
ℓ Kν) is applied as a whole ”to the right” and thus practically

redefined as the mixing matrix of the type-d fermions (e.g. neutrinos) ; it takesde factothe place of
Kd (or Kν ), such that the angles which parametrize it are defined as themixing angles for the type-
d fermions. Such a procedure is equivalent to assuming that only one of the two types of fermions
undergoes a mixing, while the other has its mass and flavour eigenstates aligned. Though it is difficult
to agree with this opportunistic statement (since the two species should playa priori similar roles), our
results tend to confirm it (see also Appendix D).

5.3 Why are quarks different from leptons?

The generality of our procedure and, in particular, its being independent of the type of fermions (quarks
or leptons) raises another well-known but still unansweredquestion : why is the mixing pattern of leptons
so different from that of quarks ?

A sketch of solution could be provided by considering configurations of the two quark mixing matrices
Ku andKd which, on one hand, reproduce the angles of the CKM matrixK = K†

uKd as they are gener-
ally accounted for in data books [7]11, and, on the other hand, are both leptonic-like. A simple example
of such a configuration is given by the symmetrical pattern:Ku = (π/4, θν , θ),Kd = (θν , π/4, ϕ), with
tan(2θν) = 2. Since, according to (3),θc = π/4 − θν , the Cabibbo angle appears inK†

uKd
12.

11in which the CKM angles are generally attributed to the sole mixing of d-type quarks
12Consider, for example, the simplified caseθ = 0 = ϕ

Ku =











1 0 0

0 c2 s2

0 −s2 c2











×











1 0 0

0 1 0

0 0 1











×











c1 s1 0

−s1 c1 0

0 0 1











, (33)

and

Kd =











1 0 0

0 c1 s1

0 −s1 c1











×











1 0 0

0 1 0

0 0 1











×











c2 s2 0

−s2 c2 0

0 0 1











. (34)

One has

K†
uKd =











c1c2 + s1s2 cos(θ1 − θ2) c1s2 − s1c2 cos(θ1 − θ2) −s1 sin(θ1 − θ2)

s1c2 − c1s2 cos(θ1 − θ2) s1s2 + c1c2 cos(θ1 − θ2) c1 sin(θ1 − θ2)

s2 sin(θ1 − θ2) −c2 sin(θ1 − θ2) cos(θ1 − θ2)











(θ1−θ2) small

≈











cos(θ1 − θ2) − sin(θ1 − θ2) −s1 sin(θ1 − θ2)

sin(θ1 − θ2) cos(θ1 − θ2) c1 sin(θ1 − θ2)

s2 sin(θ1 − θ2) −c2 sin(θ1 − θ2) cos(θ1 − θ2)











. (35)

Forθ1 = π/4 andθ2 = θν , tan(2θν) = 2, the Cabibbo angle(θ1 −θ2) naturally appears. This simplified case of course needs
improvement sinceVub, Vtd, Vcb, Vts are far from being suitably predicted.
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5.4 A multiscale problem

Recovery of the present results by perturbative techniques(Feynman diagrams) stays, as already men-
tioned, an open issue.

All the subtlety of the problem lies in the inadequacy of using a single constant mass matrix; because
non-degenerate coupled systems are multiscale systems, asmany mass matrix should be introduced as
there are poles in the (matricial) propagator [13]13.

The existence of different scales makes the use of an “on-shell” renormalized Lagrangian [14] hazardous,
because each possible renormalization scale optimizes thecalculation of parameters at this scale, while,
for other scales, one has to rely on renormalization group equations.

Unfortunately, these equations have only been approximately solved with the simplifying assumption that
the renormalized mass matrices are hermitian14 and that the renormalized mixing matrices are unitary
[14]. Performing the same job dropping these hypotheses looks rather formidable and beyond the scope
of the present work. It also unfortunately turns out that, asfar as the Yukawa couplings are concerned,
the expressions that have been obtained at two loops for their β functions (which start the evolution only
up from the top quark mass) [15] have poles in(mi − mj), which makes them inadequate for the study
of subsystems with masses below the top quark mass.

5.5 Using aq2-dependent renormalized mass matrix

Departure from the inappropriate Wigner-Weisskopf approximation can also be done by working with
an effective renormalizedq2-dependent mass matrixM(q2). It however leads to similar conclusions as
the present approach.

Its eigenvalues are nowq2-dependent, and are determined by the equationdet[M(q2) − λ(q2)] = 0
15. Let them beλ1(q

2) . . . λn(q2). The physical masses satisfy then self-consistent equationsq2 =
λ1...n(q2), such thatm2

1 = λ1(m
2
1) . . . m2

n = λn(m2
n). At eachm2

i , M(m2
i ) hasn eigenvectors, but

only one corresponds to the physical mass eigenstate; the others are “spurious” states [1]. Even if the
renormalized mass matrix is hermitian at any givenq2, the physical mass eigenstates corresponding to
differentq2 belong to as many different orthonormal sets of eigenstatesand thus, in general, do not form
an orthonormal set. The discussion proceeds like in the coreof the paper.

Determining the exact form of the renormalized mass matrix could accordingly be a suitable way to
recover our predictions via perturbative techniques (likewas done in [1] for the quantitative prediction of
the ratioǫS/ǫL). As already mentioned, the difficulty is that hermiticity assumptions should be dropped,
which open the possibility of departing from the unitarity of the mixing matrix. This is currently under
investigation.

6 Conclusion and perspective

This work does not, obviously, belong to what is nowadays referred to as ”Beyond the Standard Model”,
since it does not incorporate any “new physics” such as supersymmetry, “grand unified theories (GUT)”

13In QFT, as opposed to a Quantum Mechanical treatment (in which a single constant mass matrix is introduced – this is
the Wigner-Weisskopf approximation–), a constant mass matrix can only be introduced in a linear approximation to the inverse
propagator in the vicinity of each of its poles. When severalcoupled states are concerned, the (matricial) propagator having
several poles, as many (constant) mass matrices should be introduced; only one of the eigenstates of each of these mass matrices
corresponds to a physical (mass) eigenstate.

14One can go to hermitian mass matrices by rotating right-handed fermionsas far as they are not coupled; however, at 3
loops, the charged weak currents also involve right-handedfermions, which cannot be anymore freely rotated.

15This is the simple case of a normal mass matrix, which can be diagonalized by a single (q2-dependent) unitary matrix.
When it is non-normal, the standard procedure uses a bi-unitary diagonalization, in which case the so-called “mass eigenstates”
are non longer the eigenstates of the mass matrix.
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or extra-dimensions. However it does not strictly lie within the SM either, even if it is very close to. Of
course, it shares with the latter its general framework (mathematical background and physical content),
and also borrows from it the two physical conditions of universality for diagonal neutral currents and
absence of FCNC’s, which play a crucial role in the process. But, on the basis of the most general argu-
ments of QFT, we make a decisive use of the essential non-unitarity of the mixing matrices, whereas only
unitary matrices are present in the SM. This property may be considered, in the SM, as an ”accidental”
characteristic of objects which are intrinsically non-unitary.

The mixing angles experimentally observed get constrainedin the vicinity of this “standard” situation,
a slight departure from which being due to mass splittings. Hence our approach can be considered to
explore the ”Neighborhood of the Standard Model”, which is likely to exhibit low-energy manifestations
of physics ”Beyond the Standard Model”.

While common approaches limit themselves to guessing symmetries for the mass matrix (see for example
[16] and references therein), we showed that special patterns are instead likely to reveal themselves in
the violation of some (wrongly) intuitive properties16. In each given(i, j) channel ofmass eigenstates,
the characteristic pattern that emerges is that twoa priori different properties are violated with the same
strength, which can even be arbitrarily small: the absence of {ij} and{ji} non-diagonal neutral currents
and the universality of diagonal neutral currents{ii} = {jj}.

The way of proceeding exposed here is reminiscent of Gell-Mann’s approach toSU(3) flavour symmetry
[4], in which the interesting structures were to be looked for in its violation. The equivalent here would
be that “symmetries” relevant for flavour physics should notbe looked for, or implemented, at the level
of the mass matrices and Yukawa couplings, but at the level ofdeviationsfrom properties which are
usually taken for granted.

To conclude, the present work demonstrates that flavor physics satisfies very simple criteria which had
been, up to now, unnoticed. Strong arguments have been presented in both the quark and leptonic sectors,
which will be further tested when the third mixing angle of neutrinos is accurately determined. These
features nature offers to our perspicacity and to our quest for still hidden symmetries.

Acknowledgments: Discussions with A. Djouadi, J. Orloff and M.I. Vysotsky are gratefully acknowl-
edged.

16For a (constant unique) mass matrix, unitarity of the mixingmatrix has indeed always been linked with the unitarity of
the theory. In the case of coupled systems, this fundamentalfeature is instead linked to the property that, at any givenq2, the
renormalizedq2-dependent mixing matrix linking flavor states to the (q2-dependent) eigenvectors of the mass matrix at this
givenq2 is unitary. This set of eigenvectors however never containsmore that one physical mass eigenstate.
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Appendix

A θ̃13 = 0 ⇒ θ13 = 0

Using the notations of section 2, we start with the followingsystem of equations:

[11] + [22]

2
= [33] ⇔ s2

13 + s2
23 + c̃2

23 = 1; (36a)

[11] = [22] ⇔ c2
13 cos(2θ12) = (c2

23 + s̃2
23) cos(2θ̃12); (36b)

[12] = 0 = [21] ⇔ c2
13 sin(2θ12) = (c2

23 + s̃2
23) sin(2θ̃12); (36c)

[13] = 0 = [31] ⇔ s̃12

(

sin(2θ23) − sin(2θ̃23)
)

= c12 sin(2θ13); (36d)

[23] = 0 = [32] ⇔ c̃12

(

sin(2θ̃23) − sin(2θ23)
)

= s12 sin(2θ13). (36e)

From equation (36a), we havec2
23 + s̃2

23 6= 0, which entailsc2
13 6= 017. Let us study the consequence on

the two equations (36b) and (36c).

• the two sides of (36b) vanish forcos(2θ12) = 0 = cos(2θ̃12), i.e. θ12 = π
4 [π2 ] = θ̃12.

(36c) then givesc2
13 = c2

23 + s̃2
23, which, associated with (36a), yields the following solution 18: θ13 =

0[π] andθ̃23 = ±θ23[π].

• the two sides of (36c) vanish forsin(2θ12) = 0 = sin(2θ̃12) = 0, i.e. θ12 = 0[π2 ] = θ̃12.
(36b) gives thenc2

13 = c2
23 + s̃2

23, hence, like previously,θ13 = 0[π] andθ̃23 = ±θ23[π].

• in the other cases we can calculate the ratio (36b) / (36c), which givestan(2θ12) = tan(2θ̃12), hence
θ12 = θ̃12[π] or θ12 = π

2 + θ̃12[π]:

∗ θ12 = π
2 + θ̃12[π] implies for (36b)(36c)c2

13 = −c2
23 − s̃2

23, which, together with (36a) (c2
13 =

s2
23 + c̃2

23), gives a contradiction :2 = 0:

∗ θ12 = θ̃12(6= 0)[π] implies, like previously,c2
13 = c2

23 + s̃2
23, which gives, when combined with

(36a):θ13 = 0[π] andθ̃23 = ±θ23[π].

Hence, it appears that whatever the case, the solution givesrise toθ13 = 0[π].

Let us now look at (36d) and (36e). Sinceθ13 = 0, the two r.h.s.’s vanish, and we obtain the twin
equations̃s12(sin(2θ23) − sin(2θ̃23)) = 0 and c̃12(sin(2θ23) − sin(2θ̃23)) = 0, which, together, imply
sin(2θ23) = sin(2θ̃23). It follows that, eitherθ23 = θ̃23[π] or θ23 = π

2 − θ̃23[π];

∗ θ23 = θ̃23[π] matches the result of the previous discussion in the “+” case, whereas, in the “-” case,
the matching leads toθ23 = θ̃23 = 0, which is to be absorbed as a particular case in the “+” configuration;

∗ θ23 = π
2 − θ̃23[π] matches the result of the previous discussion in the “+” configuration, in which

case it leads toθ23 = θ̃23 = π
4 [π2 ], i.e. maximal mixing between the fermions of the second and third

generations.
17Indeed, let us suppose thatc13 vanishes. Thencos(2θ̃12) andsin(2θ̃12) must vanish simultaneously, which is impossible.

18







c2
13 = c2

23 + s̃2
23

s2
13 + s2

23 + c̃2
23 = 1

=⇒







s2
23 + c̃2

23 = 1

s2
13 = 0
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B (θ12, θ23) solutions of eqs. (7) (8) (9) (10) (11) forθ13 = 0 = θ̃13

Excluding θ̃12 = 0, (13a) and (13b) requiresin(2θ23) = sin(2θ̃23) ⇒ θ̃23 = θ23 + kπ or θ̃23 =
π/2 − θ23 + kπ.

• for θ̃23 = θ23 + kπ Cabibbo-like,

(13c) requiressin(2θ12) = sin(2θ̃12) ⇒ θ̃12 = θ12 + nπ or θ̃12 = π/2 − θ12 + nπ;

(13d) requirescos(2θ12) = cos(2θ̃12) ⇒ θ̃12 = ±θ12 + pπ;

(13e) requiress2
12 + c̃2

12 − 1 = 0 ⇒ θ̃12 = ±θ12 + rπ.

The solutions of these three equations areθ12 = θ̃12 + kπ Cabibbo-like orθ12 = π/4 + qπ/2 maximal.

• for θ̃23 = π/2 − θ23 + kπ,

(13c) requiress12c12 = 2c2
23s̃12c̃12;

(13d) requiresc2
12 − s2

12 = 2c2
23(c̃

2
12 − s̃2

12);

(13e) requiress2
12 + 2c2

23c̃
2
12 − 2s2

23 = 0.

The first two conditions yieldtan(2θ12) = tan(2θ̃12) = 2c2
23 ⇒ θ̃12 = θ12 + kπ/2 + nπ, which

entails2c2
23 = 1 ⇒ θ23 = ±π/4 + pπ/2 maximal; θ̃23 is then maximal, too, and the third condition is

automatically satisfied.

θ̃12 = θ12 + nπ is Cabibbo-like, while, for̃θ12 = θ12 + (2k + 1)π/2, the second condition becomes
(c2

12 − s2
12) = 0, which means thatθ12 must be maximal.

C Sensitivity of the neutrino solution to a small variation of θ13

If one allows for a smallθ13 ≈ θ̃13, (9) and (10) become

−2ηs12c12s23c23 + ǫ(s2
12 − c2

12) + ηs13(c
2
23 − s2

23)(c
2
12 − s2

12),
−2ηs23c23(c

2
12 − s2

12) + 4ǫs12c12 − 2ηs13(c
2
23 − s2

23)(2s12c12 + ǫ(c2
12 − s2

12)). (37)

Forθ23, θ̃23 maximal, the dependence onθ13 drops out.

D Charged weak currents

Charged weak currents can be written in six different forms that are all strictly equivalent, but nonetheless
refer to different physical pictures. As an example, for twogenerations of leptons :





νef

νµf



W+
µ γµ

L





e−f

µ−
f



 =





νem

νµm



W+
µ γµ

LK†
νKℓ





e−m

µ−
m





=





νef

νµf



W+
µ γµ

L



Kℓ





e−m

µ−
m







 =



Kν





νem

νµm







W+
µ γµ

L





e−f

µ−
f





=





νem

νµm



W+
µ γµ

L



K†
ν





e−f

µ−
f







 =



K†
ℓ





νef

νµf







W+
µ γµ

L





e−m

µ−
m



 . (38)

In the case where one of theSU(2) partners, for example the charged lepton, is undoubtedly a mass
eigenstate19 , the last expression of (38) shows that it is coupled to the so-calledelectronic and muonic

19This is the case inside the sun [5] where, because of the limited available energy, only massive electrons can be produced,
and also in the detection process of neutrinos on earth, which always proceeds via charged currents and the detection of
produced physical (mass eigenstates) charged leptons.
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neutrinos

νe = (K†
ℓ Kν)11νem + (K†

ℓ Kν)12νµm = K†
ℓ,11νef + K†

ℓ,12νµf ,

νµ = (K†
ℓ Kν)21νem + (K†

ℓ Kν)22νµm = K†
ℓ,21νef + K†

ℓ,22νµf . (39)

The latter are neither flavour eigenstates, nor mass eigenstates, but a third kind of neutrinos, precisely
defined as the ones which couple to electron and muon mass eigenstates in the weak charged currents





νe

νµ



W+
µ γµ

L





e−m

µ−
m



 . (40)

It then occurs that neutral currents of both charged leptonsmass eigenstates andνe, νµ, ντ make appear
the productK†

ℓ Kℓ, which only contains the mixing matrix of the former. It may accordingly happen that,
if the properties that we have implemented in this work for both types of mass eigenstates are imple-
mented now for(νe, νµ, ντ ) instead of(νem, νµm, ντm) (and still for charged lepton mass eigenstates)
the only mixing angles that get constrained are the ones ofcharged leptonsand not the ones of neutrinos.
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