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Abstract: We investigate the potential (small) deviations from thigarity of the mixing matrix that are
expected to occur, because of mass splittings, in the Qumahtald Theory of non-degenerate coupled
systems. We extend our previous analysis concerning maqigies, which led to a precise determination
of the Cabibbo angle, to the case of three generations ofideen\We show that the same condition for
neutral currents ofnass eigenstatese. that universality of diagonal currents is violated with gsne
strength as the absence of non-diagonal ones, is satisfiezheohand, by the three CKM mixing angles
with a precision higher than the experimental uncertaiotythe other hand, by a neutrino-like mixing
pattern in whichde3 is maximal, andtan(26;2) = 2. This last pattern turns out to satisfy exactly the
“quark-lepton complementarity conditio;. + 612 = =/4. Moreover, among all solutions, two values
for the third neutrino mixing angle arise which satisfy tt@ubdsin?(6,3) < 0.1: 613 = +£5.71073
andé,3 = +0.2717. The so-called “Neighborhood of the Standard Model” is tbasfirmed to exhibit
special patterns which presumably originate in physics/t®e the Standard Model”.
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1 Introduction

Following the study of neutral kaons done i [1], we have show[f] and [] that:

x in Quantum Field Theory (QFT), mixing matrices linking flawdo mass eigenstates for non degener-
ate coupled systems should never be parametrized as urditdged, assuming that the effective renor-
malized quadratic Lagrangian is hermitian at alyand that flavour eigenstates form an orthonormal
basis, different mass eigenstates, which correspond feretift values of;?> (poles of the renormalized
propagator) belong to different orthonormal bakes

x when it is so, the properties of universality for diagonaltngl currents and absence of flavor changing
neutral currents (FCNC) which are systematically impleteenfor the Standard Model (SM), in the
space of flavour eigenstates, do not automatically tramglaymore into equivalent properties in the
space of mass eigenstates. In the case of two generatiaesadhs, imposing them for mass eigenstates
yields two types of solutions for the mixing angléf each doublet with identical electric charge:
Cabibbo-like solutions which reduce to a single unconstrained mixing angle, andt afsdiscrete
solutions, unnoticed in the customary approach, includmparticular the so-called maximal mixing
/4 £ kn/2;

x for any of these solutions one recovers a unitary mixing ixidiut, as said above, very small deviations
are expected due to mass splittings, which manifest thewsels a tiny departure from the exact two
previous conditions. In particular, in theeighborhoodof a Cabibbo-like solution, these deviations
become of equal strength for a value of the mixing angle exig close to the measured Cabibbo angle

tan(26.) = 1/2. (1)

This success was a encouragement to go further in this idinedtVe present below the outcome of our
investigation of neutral current patterns in the case @dlgenerations of fermions.

The intricate system of trigonometric equations has bebreddy successive approximations, starting
from configurations in whicl,3 is vanishing. We will see that this approximation, obviguskpired by
the patterns of mixing angles determined from experimentdsurements, turns out to be a very good
one. Indeed, we precisely show, without exhibiting all tbkusons of our equations, that the presently
observed patterns of quarks as well as of neutrinos, dolfollfil criterion. While the three angles of the
Cabibbo-Kobayashi-Maskawa (CKM) solution are “Cabibtd@1, the neutrino-like solution

tan(2012) = 2 & 0o ~ 31.7°,
923 = 7T/4,
015 = +5.7107%orf;3 = +£0.2717 2)

is of a mixed type, wheré,s is maximal whilef,; andf,3 are Cabibbo-like.

Two significant features in these results must be stresdest, the values for the third neutrino mixing
anglef3 given in (2) are predictions which take into account pregktse) experimental constraints.
Only two possibilities survive: an extremely small valug ~ V,;, ~ a few10~3, and a rather “large”
one, at the opposite side of the allowed range. Secondlyprmeedure yields in an exact, though quite
simple way, the well-known “quark-lepton complementaritjation” [g] for 1-2 mixing:

012+ 6. = /4, (3

whered; is the leptonic angle, ang). the Cabibbo angle for quarks.

Since at anygivenq?, the set of eigenstates of the renormalized quadratic naima form an orthonormal basis, the
mixing matrix with all its elements evaluated at thfsis unitary and the unitarity of the theory is never jeopaediz

2For two generations, one is led to introduce two mixing asgeparametrize eachx 2 non-unitary mixing matrix.

3Cabibbo-like angles can only be fixed by imposing conditiomsheviolation patternof the unitarity of the mixing matrix
in its vicinity.



2 Constraints on neutral currents of mass eigenstates

2.1 The different basis of fermions

Three bases will appear throughout the paper:

* flavour eigenstates, that we ndtey, ¢y, t¢) and(dy, sy, by) for quarks,(es, iy, 7¢) and(vey, vyp, vry)

for leptons;

* mass eigenstates that we noig,, ¢,,, t,) and(dy,, Sm., br,) for quarks,(ep, , tm, Tm) aNA(Vep, Vym s Vrm,)
for leptons; they include in particular the charged leptdetected experimentally, since their identifica-
tion proceeds through the measurement of thiein-ge/mass ratio in a magnetic field,;

x the neutrinos that couple to mass eigenstates of chargtahfem charged weak currents. These are
the usual "electronic”, “muonic” and” neutrinosv., v,, v, considered in SM textbook§| [5]: they are
indeed identified by the outgoing charged leptons that thegiyre through charged weak currents, and
the latter are precisely mass eigenstates (see abovek Ftagss read (see Appenflix D)

Ve Vef Vem
Yy = Klj[ Vnf = (KJKV) Vyum ) (4)
vr Vrf Vrm

where K, and K,, are the mixing matrices respectively of charged leptons @nukutrinos ie. the
matrices that connect their flavour to their mass eigerstatsdote that these neutrinos coincide with
flavour eigenstates when the mixing matdk charged leptonss taken equal to unity<, = 1, i.e.
when the mass and flavour eigenstates of charged leptonsigaredh which is often assumed without
justification in the literature.

2.2 Neutral currents and mixing matrices; notations

Neutral currents in the basis of mass eigenstates are dedthy the products K of the3 x 3 mixing
matrix K with its hermitian conjugate (sefd [2]); for example, thét{tended) neutral currents for quarks
with electric chargé—1/3) read

dy dy dm dp,
Sf 75 Sf = Sm 75 K;Kd Sm : (5)
by by b b

We write each mixing matri¥< as a product of three matrices, which reduce, in the unjtéinitit, to
the basic rotations b#,, 623 andf,3 (we are not concerned with P violation)

1 0 0 C13 0 S13 C12 S12 0
K= 0 co3 93 |X 0 1 0 X | =812 ¢2 0 |- (6)
0 —523 623 —513 0 613 0 0 1

We parametrize each basic matrix, whiclaigriori non-unitary, with two angles, respectively;, 512),
(023, 523) and (63, 513). We deal accordingly with six mixing angles, instead of ¢hirethe unitary case,
whered;; = 6,;). We will use throughout the paper the notations = sin(6;;), ;; = sin(6;;), and
likewise, for the cosines;; = cos(0;;), éj = cos(8;;).

To lighten the text, the elements &ff K will be abbreviated byij],i,j = 1...3 instead of KTK);;,
and the corresponding neutral current will be noted. So, in the quark cas¢12} stands fotti,,/ ¢,
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or dmyh sm, and, in the neutrino case, f0f,,7; Vym OF €nYY . Last, “channeli, j)” corresponds to
two fermionsi and; with identical electric charge; for example, “chanii2]3)” corresponds tdd, b),

(e,), (n=,77) O (v, vr).
The general constraints that we investigate are five: thise ilom the absence of non-diagonal neutral
currents for mass eigenstates, and two from the universalidiagonal currents. Accordingly, one
degree of freedom is expected to be unconstrained.
2.3 Absence of non-diagonal neutral currents of mass eigetases
The three conditions read:
« for the absence of13} and{31} currents:

[13] = 0 = [31] & c12 [c13513 — 13513(C33 + s33)] — C13812(Co3 523 — Ca3daz) = 0; (7)
 for the absence of23} and{32} currents:

[23] =0= [32] <~ S12 [613813 — 613513(533 + 833)] + 613612(023823 — 623523) = 0; (8)
« for the absence of12} and{21} currents:

[12] =0 =[21] &
8120120%3 - 512512(653 + 5%3) + 8120125%3(3%3 + 5%3) + 513(s12512 — c12€12)(C23823 — Ca3823) = 0.

)
2.4 Universality of diagonal neutral currents of mass eigestates
The two independent conditions read:
x equality of{11} and{22} currents:
[11] - [22] =0 <
(clo — 81o) [cT3 + 813(s33 + &33)] — (&12 — 312)(ch3 + 353)
+2513(co3523 — C23523) (12512 + S12€12) = 0; (10)
x equality of{22} and{33} currents:
[22] — [33] =0 <
sTy + Ca(Ca3 + 353) — (533 + Ga3) + (1 + s1a) [873(s55 + G53) — s74]
+2512813C12(C3523 — C23523) = 0. (11)

The equality of{ 11} and{33} currents is of course not an independent condition.

2.5 Solutions for@;3 = 0 = 0,3

In a first step, to ease solving the system of trigopnometn@tqgns, we shall study the configuration in
which one of the two angles parametrizing the 1-3 mixing slaes*, which is very close to what is ob-
served experimentally in the quark sector, and likely inrtbatrino sector. It turns out, as demonstrated

4By doing so, we exploit the possibility to fix one degree okfiem lefta priori unconstrained by the five equations; see

subsectioz.



in Appendix[4, that the second mixing angle vanishes simeltaisly. We accordingly work in the ap-
proximation (the sensitivity of the solutions to a smalligtion of 6,3, 8,3 will be studied afterwards)

015 =0 = 013. (12)
Eas. (), [B).[().[(J0) and (IL1), reduce in this limit to
—3512(c23523 — C23523) =0, (13a)
C12(c23823 — Ca3823) = 0, (13b)
512€12 — 512512(653 + 553) =0, (13c¢)
(cly — 515) — (€15 — §12)(c33 + 333) = 0, (13d)
sto + Cla(chs + 333) — (s33 + C33) = 0. (13e)

It is shown in Appendif B that ﬂje only solutions d@g andf,3 Cabibbo-like 6]2,23 = 012,03 + k) or
maximal Q12,23 = /4 + nn /2, 01293 = 7/4 + mn/2).
Accordingly, the two following sections will respectivedyart from:

x 019 andfyz Cabibbo-like (and, in a first step, vanishifig;), which finally leads to a mixing pattern
similar to what is observed for quarks;

x 3 maximal and¥,, Cabibbo like (and, in a first step, vanishifig;), which finally leads to a mixing
pattern similar to the one observed for neutrinos.

3 The quark sector; constraining the three CKM angles

Mass splittings entail that the previous general condstiavhich, when exactly satisfied, correspated
factoto unitary mixing matrices, cannot be exactly fulfilled. Wigeéstigate the vicinity of their solutions,
and show that the same violation pattern that led to an aidetermination of the Cabibbo angle in
the case of two generations, is also satisfied by the CKM anglthe case of three generations.

3.1 The simplified casé;3 = 0 = 65
In the neighborhood of the solution with batly, andf,3 Cabibbo-like, we write

o = O +e,
o3 = o3+ . (14)

The pattern(fy3 = 0 = §13) can be reasonably considered to be close to the experinsituaiion, at
least close enough for trusting not only the relations wvg the first and second generation, but also
the third one.

Like in [B], we impose that the absence{dR}, {21} neutral currents is violated with the same strength
as the universality of 11} and{22} currents. It reads
|2ns12¢12503C3 + €(cTy — sTo)| = | — 2msagcas(cly — sTo) + desiacral. (15)

We choose the+" sign for both sides, such that, for two generations onlg @abibbo angle satisfies
tan(2612) = +1/2. ([B) yields the ratioy/¢, that we then plug into the condition equivalent |t (15) for
the (2, 3) channel.

ncia(c3s — s33)| = |2nsaacas(1 + ¢fp) — 2es19¢12]. (16)
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(T3) and [Ip) yield

C12 C12
tan(20s3) = ~ . 17
(202s) 2 (s12c12 +cfy —sy) oD S12¢12 4
1+ciy— 28126124 5 = 1 il
s12¢12 — (¢fy — 81p) tan(2012) — 3

In the r.h.s. of[(17), we have assumed thatis close to its Cabibbo valuan (26;2) ~ 1/2. 623 is seen
to vanish with[tan(26,3) — 1/2]. The predicted value fafs3 is plotted in Fig. 1 as a function a5,
together with the experimental intervals fiy; and6y,. There are two[[7] for;,; the first comes from
the measures df,4 (in black on Fig. 1)

Vua € 10.9735,0.9740] = 012 € [0.2285,0.2307], (18)
and the second from the measured/pf (in purple on Fig. 1)

Vs € [0.2236,0.2278] = 615 € [0.2255,0.2298]. (19)
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Fig. 1: 6.3 for quarks as a function df,; simplified casé13 = 0 = 03

The measured value fdhs is seen on Fig. 1 to correspondég, ~ 0.221, that iscos(612) ~ 0.9757.
Our prediction forcos(612) is accordingly1.710~2 away from the upper limit of the present upper
bound forV,y = c12¢13 [B] [fll; it corresponds to twice the experimental uncertgirt also corresponds
tosin(612) = 0.2192, while V,,s = s12¢13 is measured to be2247(19) [H] [f]l; there, the discrepancy is
2/100, only slightly above th&.8/100 relative width of the experimental interval.

The approximation which ses; = 0 = 6,5 is accordingly reasonable, though it yields results sight
away from experimental bounds. We show in the next subsethiat relaxing this approximation gives
results in excellent agreement with present experiments.

3.2 GOing t0(013 # 0, 613 # 0)
Considering all angles to be Cabibbo-like with, in additior(14)



013 = 013 + p, (20)
the I.h.s.’s of eqs[[7[X8]](9) (10, {11) and the s{inh ({01} depart respectively from zero by

nci3 [812(653 - 833) + 2813612623823] - P012(C%3 - 5%3); (21a)

necis [—012(033 - 8%3) + 2813812023823] - p812(0%3 - 3%3)? (21b)

—e(cly — sTo) + 1 [s13(c33 — 833)(cly — s15) — 2ca3s03c12512(1 + 813)] + 2pcizsizciasiz;  (21€)

decrasia + 1 [—4s13s12¢12(cB3 — 533) — 2ea3s03(cTy — 5T2) (1 + s13)] + 2pcrzs13(cly — s1a); (21d)

—2es12¢12 + 1 [2313012312(033 — $53) + 2c23523 ((0%2 — s1y) + ci3(1+ 3%2))] + 2pc13s13(1 + $15);
(21e)

2es12c12 + 1 [—2813012812(033 — 833) + 2c93593 (0%3(1 + 0%2) — (C%Q — 8%2))] + 2p013813(1 + 0%2).
(21f)
We have added (31f), which is not an independent relationthsusum of [23d) and (2Le); it expresses
the violation in the universality of diagon&l 1} and{33} currents.

3.2.1 A guiding calculation

Before doing the calculation in full generality, and to makelearer difference with the neutrino case,
we first do it in the limit where one neglects terms which aradyatic in the small quantitie®,; and

p. By providing simple intermediate formulae, it enables irtipalar to suitably choose the signs which
occur in equating the moduli of two quantities. Ef.(21)dmee

N [s12(c35 — s33) + 2s13c12¢03523] — pei2; (22a)

n [—c12(c33 — s33) + 2s13512¢23593] — psi2; (22b)

—€(cly — s13) + 1 [s13(ch3 — s53)(ca — 5Ta) — 2c23823C12512] ; (22c)
P P 2 247,

46012812 — 277 [2813812012(023 - 823) + 023823(012 — 812)] N (22d)

—2es12¢12 + 20 [s13¢12512(C33 — 833) + Cazsaz(l + ciy)] (22e)

2es12¢12 + 20 [—s13¢12512(C33 — S33) + cassas(1 + s1,)] - (22f)

The principle of the method is the same as before. Ffon] (22e)@2d)) ° , which expresses that the
absence of non-diagon@l2} current is violated with the same strength as the univeysali{11} and

®The (-) signs ensures thatn(2612) ~ (+)1/2.



{22} currents, one gets/n as a function ob;2, 023, 613 6. This expression is plugged in the relation
®21) = (-)[22k}, which expresses the same condition for (2e3) channel; from this, one extractgn
as a function ob,2, f23, 613 8. The expressions that have been obtained fgrandp /7 are then inserted
into the third relation| (22&)| = | @21) | , which now corresponds to thg, 3) channel. This last step
yields a relationFj (612, 023, 013) = 1 between the three anglés;, 03, 613.

0Fp(012,023,013)

It turns out that=—"—5>>=% = 0, such that, in this case, a condition betwegn and 63 alone
eventually fulfills the three relations under concern
viol ([11] = [22]) viol ([22] = [33]) viol ([11] = [33]) ~
= |= = |= = |= F =1
viol([12] = 0 = [21])| ~ |viol(23] = 0=[32])| _ |viol([13] =0 = [31))| 0(012, 023)
(25)
0. 0]
0. O%
0. 0;
N N
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Fig. 2: 6,3 for quarks as a function df,5; neglecting terms quadratic it 3

023 is plotted on Fig. 2 as a function 6f,, together with the experimental intervals fag and6d;; (the

intervals ford;, come respectively fron,; (eq. (1)) and/,, (eq. (19))).

The precision obtained is much better than in Fig. 1 sinceaiticular, forf,3 within its experimental
range, the discrepancy between the prediétedand its lower experimental limit coming froi, is

smaller than the two experimental intervals, and even smtdhn their intersection.

3.2.2 The general solution

The principle for solving the general equatiopd (21) is th@e as above. One first uses the relation|(21c)
= (-) (21d) to determing/¢ in terms ofn/e. The result is plugged in the relatign (21b) = () (R1e), vahic

6

2 2
S12C12 + Cla — S12

€ 2 2
- = — 2 ; 23
" s13(ca3 — s33) + 2s23C23 Ae1a510 — (0%2 — 8%2), (23)
e/n has a pole atan(260,2) = 1/2, the predicted value of the Cabibbo angle for two generation
"There, again, the (-) sign has to be chosen so as to recovenéapgtely ).
8
2 2 2 2 2
P 9piss | s1s — c1a (2 (c12512 +C122 3122) _ LH4cip | 1 ch3— 53 . (24)
n 4s1ac12 — (¢fy — 875) 12812 S12 2s23C23

p/n has a pole atan(2612) = 1/2 and, for¢15 = 0, it vanishes, as expected, when andf»s satisfy the relatior@r?), which
has been deduced ft3(= 013 + p) = 0 = 613.



fixesn/e, and thusp/e as functions of(#;2, 623, 613). These expressions for/e and p/e are finally
plugged in the relation(RZd)| =| (B1f) | , which provides a conditiod (612, 623, 013) = 1. When it is
fulfilled, the universality of each pair of diagonal neuttakrents of mass eigenstates and the absence of
the corresponding non-diagonal currents are violated thélsame strength, in the three chanriél®),

(2,3) and(1, 3).

The results are displayed in Fig. 8;5 is plotted as a function ofy, for 63 = 0.004 and0.01. The
present experimental interval {g [7]

Vi = sin(f13) ~ 013 € [41072,4.61073). (26)
0053
0.0; \
thetaB.Oé
AN
] \\
0.224 0.225 0.226 0.227 0.228 0.229 0.23 0.231

t hetal

Fig. 3: 63 for quarks as a function df,5, general casef;3 = 0 (red), 0.004 (blue) and0.01 (green)

We conclude that:
x The discrepancy between our predictions and experimeatsadier than the experimental uncertainty;

x a slightly larger value of;3 and/or slightly smaller values @f3 and/orf;, still increase the agreement
between our predictions and experimental measurements;

x the determination of{, from V,,, seems preferred to that frol,,.

Another confirmation of the relevance of our criterion isagivin the next section concerning neutrino
mixing angles.

4 A neutrino-like pattern; quark-lepton complementarity

In the “quark case”, we dealt with three “Cabibbo-like” a@gl The configuration that we investigate
here is the one in whichys is, as observed experimentally [7], (close to) maximal, @padand6;s are
Cabibbo-like (see subsectipn]2.5).

41 The CaS@13 - 0 - 513

We explore the vicinity of this solution, slightly depagifrom the corresponding unitary mixing matrix,
by considering tha#;> now slightly differs fromd,5, andfsy3 from its maximal value

01 = Op+e



fo3 = /4, a3 = b3 +1. (27)

The I.h.s.’s of egs.[[7]]8]](9) (L0) and [11) no longer vanisid become respectively

1
—5772(512 + ec12), (28a)
Lo
3" (c12 — €s12), (28b)
* —1NS12¢C12 + 6(3%2 - 0%2)(1 + 77)7 (28C)
« —n(cly — sTo) + desiacia(1 + ), (28d)
(1 + cfy) — 2es12¢19(1 4 1), (28e)

showing by which amount the five conditions under scrutiyraow violated. Some care has to be taken
concerning the accurateness of equatipnk (28). Indeednpesied a value df;3 which is probably not
the physical one (even if close to). It is then reasonabletsider that chann¢l, 2) is the less sensitive
to this approximation and that, accordingly, of the five diques above,[(2§c) anfl (28d), marked with an
“x”, are the most accurafe.

The question: is there a special valuefpf = 6,5 Cabibbo-like for which small deviationg, n) from
unitarity entail equal strength violations of

« the absence df12}, {21} non-diagonal neutral currents;

« the universality of 11} and{22} neutral currents ?

gets then a simple answer
S12C12 = C%Q — 8%2 = tan(2912) = 2. (29)

We did not take into account the terms proportionat feecause we assumed that the mass splittings
between the first and second generations (from which thedfokitarity originates) are much smaller
that the ones between the second and the third geneftion

In the case of two generations, ondyappears, and one immediately recovers frfm](28c) (Pgd) t
condition fixingtan(26.) = 1/2 for the Cabibbo angle.

Accordingly, the same type of requirement that led to a valuie Cabibbo angle for two generations
very close to the observed value leads, for three genesatiom value of the first mixing angle satisfying
the quark-lepton complementarity relatidh (B) [6].

The values of, andfy3 determined through this procedure are very close to therebdeneutrino
mixing angles [[7].

Though we only considered the two equations thataapiori the least sensitive to our choice of a
vanishing third mixing angle (which is not yet confirmed estpeentally), it is instructive to investigate
the sensitivity of our solution to a small non-vanishingueabf 6,3. This is done in AppendiX]C in
which, for this purpose, we made the simplificatiig ~ ;5. It turns out that the terms proportional to

®The limitation of this approximation also appears in the that ), of second order iy is not compatible withe),
which is of first order.

Ysince the three angles playpriori symmetric roles, the simultaneous vanishing/@fndd, which we demonstrated for
615 andfys (see AppendiﬂA), should also occur for the other angles. Fampeting effects accordingly contribute to the
magnitude of the parameters; .. .: on one hand, they should be proportional to (some pofy¢he corresponding, and, on
the other hand, one reasonably expects them to increaséwithass splitting between the fermions mixed by ¢hiSo, in the
quark sector, that the violation of unitarity should be ma&i for 63 is not guaranteed since the corresponding mixing angle is
also very small (as expected from hierarchical mixing matri]). A detailed investigation of this phenomenon istponed
to a further work. In the neutrino sector, however, sifgeis maximal (large), the assumption that the mass splittatgrben
the second and third generation is larger than between #tafid second is enough to guarante€ 1.



s13 in the two equation§l 2] = 0 = [21] and|[11] | =] [22]| are also proportional t-3; — s35), such that
our solution withf,3 maximal is very stable with respect to a variationdgf around zero. This may of
course not be the case for the other three equations, wreakxaected to be more sensitive to the value
of 013.

4.2 Prediction for 05

We now consider, like we did for quarks, the general @age# 0 # f13(p # 0), 612 # O12(e # 0),
B2 # B23(n # 0), while assigning t@;» andé,s their values predicted in subsectipn] 4.1.

We investigate the eight different relations betwéen 6.3 andf; 3 which originate from th@ x2x 2 pos-
sible sign combinations in the conditiorjs](25) (the r.rs:idw replaced by a conditidfi(6:2, 623, 613) =

1 involving the three mixing angles), where each modulus @aalternatively replaced by or “ —".
Among the solutions found fdt, 3, only two (up to a sign) satisfy the very loose experimentalr

sin?(f13) < 0.1. (30)
They correspond respectively to the sign combinatiens—/—), (+/+/+), (—/+/+) and(—/—/-)
613 = £0.2717 , sin?(613) = 0.072,
13 = +£5.7107% , sin*(f13) = 3.3107°. (31)
The most recent experimental bounds can be found |n [11]y Teweed
sin?(#13) < 0.05, (32)

which only leaves the smallest solution jn](31).

Future experiments will confirm, or infirm, for neutrinoseroperties that we have shown to be satisfied
with an impressive accuracy by quark mixing angles.

5 Comments, open gquestions and problems

5.1 How close are mixing matrices to unitarity?

An important characteristic of the conditions that fix theximi angles is that they do not depend on

the strength of the violation of the two properties undercgwn, namely, the absence of non-diagonal

neutral currents and the universality of the diagonal ongté space of mass eigenstates. Since only
their ratio is concerned, each violation can be infinitediyremall.

This is fortunate since we have not yet been able to calctitetenagnitude of the violation of the
unitarity of the mixing matrices from, for example, massast The issue, for fundamental particles,
turns indeed to be much more difficult conceptually than is i@ composite particles like neutral
kaons, for which standard Feynman diagrams provided tihmatste; — e ~ 10717 for the difference
of the C P violating parameters ok, and K's mesons[[[L]. This problem is under investigation.

5.2 The measured mixing angles are those of charged currents

The results that have been exposed are valid for fermion®thf électric charges. They concern the
mixing angles which parametrize

x for quarks, the mixing matrix<, of u-type quarks as well a&'; of d-type quarks;
« for leptons, the mixing matriX<, of neutrinos as well as that of charged leptdfis
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and we have shown that our approach allows to obtain on ptielyretical grounds the values of the
mixing angles which are experimentally determined.

However, there arises a non negligible problem : indeedmatix elements which are measured corre-
spond to charged currents, that is, to the product of the twesponding mixing matricestLKd for
quarks andK’gKV for leptons. Thus, they ai@priori related to an entanglement of the mixing angles of
quarks (or leptons) of different charges.

Nevertheless, what happens in the common approach of the 8 following : in the expression of the
charged current, the produﬁfﬂKd (or K}KV) is applied as a whole "to the right” and thus practically
redefined as the mixing matrix of the type-d fermions (e.gutmos) ; it takesde factothe place of
K4 (or K,), such that the angles which parametrize it are defined amikieg angles for the type-
d fermions. Such a procedure is equivalent to assuming thigtane of the two types of fermions
undergoes a mixing, while the other has its mass and flavgensiates aligned. Though it is difficult
to agree with this opportunistic statement (since the tvarigs should plaw priori similar roles), our
results tend to confirm it (see also Appenfd]x D).

5.3 Why are quarks different from leptons?

The generality of our procedure and, in particular, its géimdependent of the type of fermions (quarks
or leptons) raises another well-known but still unanswenegistion : why is the mixing pattern of leptons
so different from that of quarks ?

A sketch of solution could be provided by considering configjons of the two quark mixing matrices
K, andK; which, on one hand, reproduce the angles of the CKM mairix Kin as they are gener-
ally accounted for in data book{ [7}, and, on the other hand, are both leptonic-like. A simplargla
of such a configuration is given by the symmetrical pattéfp:= (7 /4,0,,60), Kqg = (0,,7/4, ¢), with
tan(26,) = 2. Since, according td}3¥, = /4 — 6,,, the Cabibbo angle appearsii K, 12.

Yin which the CKM angles are generally attributed to the sobéng of d-type quarks
2Consider, for example, the simplified cabe- 0 =

1 0 0 1 0 0 cgc s 0
Ki=[0 e s [x[0 1 0]|X]| —s1 a 0], (33)
0 —s2 c2 0 0 1 0 0 1
and
1 0 0 1 0 0 c2 s2 0
Ki=| 0 e s |X]| 0 1 0 [x]| —=s2 2 0 (34
0 —s1 < 0 0 1 0 0 1
One has
cic2 + s152c08(01 — 62)  c152 — sicacos(01 — 62) —s1sin(61 — 62)
Kle = s1c2 — c152c08(01 — 02)  s182 + cicacos(61 —02)  c1sin(61 — 62)
s2sin(fy — 02) —cosin(01 — 62) cos(01 — 02)
cos(61 — 62) —sin(61 — 62) —s18in(01 — 02)
(1 =05y smell sin(01 — 62) cos(01 — 62) c1sin(f1 — 02) . (35)

s2sin(fr — 02) —casin(61 — 02) cos(01 — 02)

For6, = w/4 andf, = 0,,tan(20,) = 2, the Cabibbo angl&, — 02) naturally appears. This simplified case of course needs
improvement sinc’,,, Via, Ve, Vis are far from being suitably predicted.
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5.4 A multiscale problem

Recovery of the present results by perturbative techniffgegnman diagrams) stays, as already men-
tioned, an open issue.

All the subtlety of the problem lies in the inadequacy of gsinsingle constant mass matrix; because
non-degenerate coupled systems are multiscale systemmrgsmass matrix should be introduced as
there are poles in the (matricial) propagafoi] [A3]

The existence of different scales makes the use of an “olti-styeormalized Lagrangiar{ [14] hazardous,
because each possible renormalization scale optimizesatbelation of parameters at this scale, while,
for other scales, one has to rely on renormalization growaians.

Unfortunately, these equations have only been approxiynsidved with the simplifying assumption that
the renormalized mass matrices are hermitthand that the renormalized mixing matrices are unitary
[L4). Performing the same job dropping these hypothesdsIoather formidable and beyond the scope
of the present work. It also unfortunately turns out thatfaasas the Yukawa couplings are concerned,
the expressions that have been obtained at two loops far@tenctions (which start the evolution only
up from the top quark masd) J15] have polesim; — m;), which makes them inadequate for the study
of subsystems with masses below the top quark mass.

5.5 Using ag?-dependent renormalized mass matrix

Departure from the inappropriate Wigner-Weisskopf appnation can also be done by working with
an effective renormalizeg?-dependent mass matriX (¢2). It however leads to similar conclusions as
the present approach.

Its eigenvalues are noy?-dependent, and are determined by the equatianM (¢?) — A(¢?)] = 0

15 Let them be)(¢?) ... \.(¢?). The physical masses satisfy theself-consistent equationg =
M..n(g?), such thatn? = A\ (m?)...m2 = \,(m2). At eachm?, M(m?) hasn eigenvectors, but
only one corresponds to the physical mass eigenstate; tieesoare “spurious” statef [1]. Even if the
renormalized mass matrix is hermitian at any giyénthe physical mass eigenstates corresponding to
different¢? belong to as many different orthonormal sets of eigenstatdghus, in general, do not form
an orthonormal set. The discussion proceeds like in theafdiee paper.

Determining the exact form of the renormalized mass matixidt accordingly be a suitable way to
recover our predictions via perturbative techniques (lies done in[[1] for the quantitative prediction of
the ratioeg /e ). As already mentioned, the difficulty is that hermiticitysamptions should be dropped,
which open the possibility of departing from the unitarititloe mixing matrix. This is currently under
investigation.

6 Conclusion and perspective

This work does not, obviously, belong to what is nowadaysrretl to as "Beyond the Standard Model”,
since it does not incorporate any “new physics” such as sypanetry, “grand unified theories (GUT)”"

1¥In QFT, as opposed to a Quantum Mechanical treatment (inhwisingle constant mass matrix is introduced — this is
the Wigner-Weisskopf approximation—), a constant massixnzdn only be introduced in a linear approximation to theeiise
propagator in the vicinity of each of its poles. When sevemlpled states are concerned, the (matricial) propagatdnd
several poles, as many (constant) mass matrices shoultrbéloed; only one of the eigenstates of each of these massesa
corresponds to a physical (mass) eigenstate.

140ne can go to hermitian mass matrices by rotating right-drfdrmionsas far as they are not coupletiowever, at 3
loops, the charged weak currents also involve right-harfeiedions, which cannot be anymore freely rotated.

This is the simple case of a normal mass matrix, which can &gotialized by a single;t-dependent) unitary matrix.
When itis hon-normal, the standard procedure uses a tayrdiagonalization, in which case the so-called “massreigges”
are non longer the eigenstates of the mass matrix.
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or extra-dimensions. However it does not strictly lie withine SM either, even if it is very close to. Of

course, it shares with the latter its general framework liemtatical background and physical content),
and also borrows from it the two physical conditions of urmdadity for diagonal neutral currents and

absence of FCNC's, which play a crucial role in the procesg, & the basis of the most general argu-
ments of QFT, we make a decisive use of the essential noarityibf the mixing matrices, whereas only

unitary matrices are present in the SM. This property maydmsidered, in the SM, as an "accidental”

characteristic of objects which are intrinsically nontany.

The mixing angles experimentally observed get constraingle vicinity of this “standard” situation,

a slight departure from which being due to mass splittingend¢ our approach can be considered to
explore the "Neighborhood of the Standard Model”, whiclikslly to exhibit low-energy manifestations
of physics "Beyond the Standard Model”.

While common approaches limit themselves to guessing syrieador the mass matrix (see for example
[L4)] and references therein), we showed that special pati@e instead likely to reveal themselves in
the violation of some (wrongly) intuitive propertié& In each giver(i, j) channel ofmass eigenstates
the characteristic pattern that emerges is thatawaiori different properties are violated with the same
strength, which can even be arbitrarily small: the absefi¢ej¢ and{ji} non-diagonal neutral currents
and the universality of diagonal neutral currefis; = {j;j}.

The way of proceeding exposed here is reminiscent of Gelideapproach t&'U (3) flavour symmetry
[@], in which the interesting structures were to be lookedirfidts violation. The equivalent here would
be that “symmetries” relevant for flavour physics should betooked for, or implemented, at the level
of the mass matrices and Yukawa couplings, but at the levekwiationsfrom properties which are
usually taken for granted.

To conclude, the present work demonstrates that flavor phsitisfies very simple criteria which had
been, up to now, unnoticed. Strong arguments have beempedsa both the quark and leptonic sectors,
which will be further tested when the third mixing angle olutrénos is accurately determined. These
features nature offers to our perspicacity and to our questill hidden symmetries.

AcknowledgmentsDiscussions with A. Djouadi, J. Orloff and M.l. Vysotskye aratefully acknowl-
edged.

18For a (constant unique) mass matrix, unitarity of the mixinagtrix has indeed always been linked with the unitarity of
the theory. In the case of coupled systems, this fundamésatire is instead linked to the property that, at any giy&rthe
renormalized;®-dependent mixing matrix linking flavor states to tlgé-flependent) eigenvectors of the mass matrix at this
giveng? is unitary. This set of eigenvectors however never contaioge that one physical mass eigenstate.
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Appendix

A 03=0=0.,3=0
Using the notations of sectidh 2, we start with the followsygtem of equations:

[11] + [22]

5 = [33] < si4 + 535 + Cog = 1; (36a)

[11] = [22] © 73 cos(2012) = (B3 + 553) cos(2012); (36b)

[12] = 0 = [21] & ¢i5sin(2012) = (c33 + 533) sin(2612); (36¢)
[13] = 0 = [31] © 510 <sin(2923) - sin(2§23)) = c1o5i0(2013); (36d)
23] = 0 = [32] & &1z <sin(2923) - sin(2923)) = s125in(2013). (36€)

From equation[(36a), we havg, + 53 # 0, which entailsc?, £ 017, Let us study the consequence on
the two equationd (3pb) and (B6c).
o the two sides of[(36b) vanish fabs(2612) = 0 = cos(2012), i.€. 612 = Z[Z] = O12.
(B6¢) then gives?; = c3; + 535, which, associated with (36a), yields the following saatt®: 6,5 =
O[TI’] and923 = iagg[ﬂ'].
o the two sides of[(36c) vanish fein(2012) = 0 = sin(2612) = 0, i.€. 612 = 0[] = O
([B6R) gives then?, = 3, + 535, hence, like previously 3 = 0[x] andfyz = +63[7].
« in the other cases we can calculate the ratio](36p) ] (36dshndivestan (2012) = tan(2612), hence
012 = O12[m] Or 012 = 5 + O12[7]:

% 01 = T + O12[n] implies for (36b)(BEc)?; = —c3; — 325, which, together with[(3a)c, =
s3, + C33), gives a contradiction2 = 0:

% 010 = 019(# 0)[x] implies, like previously,cf; = ¢35 + 533, which gives, when combined with
):913 = 0[71'] andfys = :|:923[7T].
Hence, it appears that whatever the case, the solution gseet63 = 0[x].
Let us now look atd) andEGe). Sin@g = 0, the two r.h.s.~’s vanish, and we obtain the twin
equations§12(sin(2923) — sin(2923)) =0 and&m (s~in(2923) — sin(29232) =0, WhiCh, together, |mpIy
sin(2923) = sin(2923). It follows that, eithelfys = 693 [7‘1’] orfs3 = % — B3 [7‘1’],

% O3 = O3 [7] matches tpe result of the previous discussion in the “+" cabereas, in the “-” case,
the matching leads 3 = 623 = 0, which is to be absorbed as a particular case in the “+” cordifpn;

* 03 = 5 — f93[7] matches the result of the previous discussion in the “+” guméition, in which
case it leads td23 = 63 = Z[Z], i.e. maximal mixing between the fermions of the second and third
generations.

YIndeed, let us suppose that vanishes. Thenos(20;2) andsin(26,2) must vanish simultaneously, which is impossible.
18 iy = by + 833 Sy + o3 =1
=
Szt 833+ 33 =1 si3=0
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B (612, 6,3) solutions of egs. [7) {8){9)TA0) T11) fob13 = 0 = O3

EXClUding 512 = 0, 1= and b) requirein(2923) = sin(2§23) = 9~23 = o3 + km or 9~23 =
/2 — 093 + k.

o for fa3 = 03 + km Cabibbo-like,

([I3%) requiresin(26012) = sin(2012) = 1o = O12 + nw orbyy = /2 — 015 + nx;

([L34d) requiresos(2615) = COS(2§12) = 019 = +b19 + pr;

([3%) requires?, + &, — 1 =0 = 015 = 46015 + 7.

The solutions of these three equations@re= 615 + kr Cabibbo-like o2 = 7/4 + qn /2 maximal.
o for 053 = /2 — O3 + k,

([T3¢) requiressiacia = 2c33512612;

([L39) requires?, — sty = 2c35(c?, — 5%,);

[@3&) requires?, + 2¢3,62, — 253, = 0.

The first two conditions yieldan(2015) = tan(2012) = 233 = 012 = 012 + km/2 + nar, which

entailsQCg3 =1 = 03 = +7/4 + pr/2 maximal;f,3 is then maximal, too, and the third condition is
automatically satisfied.

015 = 015 + nr is Cabibbo-like, while, folf1, = 615 + (2k + 1)7/2, the second condition becomes
(¢35 — s25) = 0, which means thatt;, must be maximal.

C Sensitivity of the neutrino solution to a small variation d 643

If one allows for a smalb3 ~ 6,3, () and [IP) become

—277312012523023 +2€(5%2 — cly) + ns13(c33 - 5%3)2(032 — s1y), , )
—2ns93c23(cly — ST9) + desiacia — 2ns13(ch3 — 533)(2512¢12 + €(cTy — ST9))- (37)

For 693, §23 maximal, the dependence 6p; drops out.
D Charged weak currents

Charged weak currents can be written in six different formasg are all strictly equivalent, but nonetheless
refer to different physical pictures. As an example, for tyemerations of leptons :

Vef Vem

-
Wil ) = WK K|
Vpf My Vym 22
Vef e v, e,
= Cowih " ) =T |
Vuf i Mo, Vum ] | Mg
Vem e, Vef €,
= T VOl B - |K] Wiy " (38)
Vym Iy Vuf ) | Han

In the case where one of thtel/(2) partners, for example the charged lepton, is undoubtediyassm
eigenstaté? , the last expression of (88) shows that it is coupled to theaied electronic and muonic

This is the case inside the SLE1 [5] where, because of theelihaivailable energy, only massive electrons can be produced
and also in the detection process of neutrinos on earth,hadliways proceeds via charged currents and the detection of
produced physical (mass eigenstates) charged leptons.
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neutrinos

ve = (K] K)11Vem + (K Ky )120m = Kg,n’/ef + Kg,lzyufv
v = (K] K))o1vem + (KK oovum = Ky ver + K pyvy- (39)

The latter are neither flavour eigenstates, nor mass eijenstbut a third kind of neutrinos, precisely
defined as the ones which couple to electron and muon masssges in the weak charged currents

Ve [
Wj v R E (40)

Vu K

It then occurs that neutral currents of both charged leptoass eigenstates angd v, v, make appear
the productKgKg, which only contains the mixing matrix of the former. It magcardingly happen that,

if the properties that we have implemented in this work fothbiypes of mass eigenstates are imple-
mented now for(v,, v, v,) instead of(ver,, vum, vrm) (and still for charged lepton mass eigenstates)
the only mixing angles that get constrained are the onebafyed leptonsnd not the ones of neutrinos.
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