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Abstract

Formal Models of Analogical Proportions

Natural Language Processing (NLP) applications rely, in an increasing number
of operational contexts, on machine learning mechanisms which are able to extract,
in an entirely automated manner, linguistic regularities from annotated corpora.
Among these, analogical learning is characterized by the systematic exploitation,
in a symbolic machine learning apparatus, of formal proportionality relationships
that exist between training instances.

In this paper, we propose a general definition of these proportionality relation-
ships, based on a generic algebraic framework. This definition is specialized to
handle a number of representations that are commonly encountered in NLP appli-
cations, such as words over a finite alphabet, feature structures, labeled trees, etc.
In each of these cases, we provide and discuss algorithms for answering the two
main computational challenges posed by proportionality relationships: the valida-
tion of a proportion and the computation of the fourth term of a proportion.
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1 Introduction

An analogical proportion1 is a relationship between four entities(x, y, z, t), denoted
by x : y :: z : t and which reads “x is to y what z is to t”. An example of such a
proportion is:

“planetsare to thesunwhatelectronsare to theatomic nucleus”.

The ability to dynamically perceive and establish such analogical relationships is
often recognized to lie at the core of human cognition (Indurkhya, 1992; Gentneret
al., 2001; French, 2002). Tests involving verbal or geometric analogies constitute one
basic ingredient of many IQ tests such as, for instance, the SAT college entrance test
(Hoffman, 1995).

These kinds of proportions have been extensively studied in Artificial Intelligence,
mostly in the context of Analogical Reasoning and Problem Solving (see e.g. (Evans,
1968; Hofstadter & the Fluid Analogies Research Group, 1995; Wilsonet al., 1995;
Jani & Levine, 2000; Schmidet al., 2003) to name just a few). The main focus of these
studies is the dynamic process of analogy-making which relates situations which, while
being apparently very different, share a set of common high-level relationships. In the
above mentioned example, both the solar system and the atom involve the rotation of
one object around a centre, suggesting that the causes of these movements could be
similar: the identification of the analogical proportion thus makes possible the transfer
of knowledge from the solar system domain to the atom domain.

The notion of analogical proportion also has a long history in linguistics. It was
revitalized in the early 20thcentury by the work of de Saussure (1916), for whom pro-
portions are the basis of analogical creations, a process involved in the construction of
novel words. Proportions are also prevalent in modern theories of morphology, such
as word-based morphology and related approaches (Matthews, 1974; Anderson, 1992;
Stump, 2001; Blevins, 2006).2In these models, the analysis of surface word forms is
based primarily on their systematicrelationshipswith other full forms. This is in sharp
contrast with morphemic approaches of morphology, which decompose word forms
into minimal units such as morphemes. An example proportion between word forms
is:

“believeis tounbelievablewhatforgive is tounforgivable”.

The (formal) proportion between these surface forms denotes here a deeper relation-
ship between linguistic entities: the proportion also holds for the morphological fea-
tures (part-of-speech, genre, number, etc.) that are associated with them. Moreover,
given the morphological features of the first three forms, it is possible to infer the mor-
phological features of the fourth one by solving theanalogical equation3

“M(believe)is toM(unbelievable)whatM(forgive) is to?”,

whereM(u) denotes the bundle of morphological properties associated withu.
Based on this observation, memory-based learning devices have been proposed to

solve various Natural Language Processing (NLP) tasks such as automatic word pro-
nunciation (Yvon, 1999), morphological analysis (Lepage, 1999a; Pirrelli & Yvon,

1These proportions correspond to the Aristotelian (Aristote) notion of Analogy.
2This notion has also been invoked in the field of syntax (Bloomfield, 1970; Itkonen & Haukioja, 1997;

Lavie, 2003), even though the use of analogy in this domain has been limited by the generative claims about
the “inadequacy” and “unclarity” of this notion (Chomsky, 1975).

3This kind of equation is also termedcomputation of the fourth (proportional) term(de Saussure, 1916)
or analogical deduction(Blevins, 2006).
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1999) and syntactic analysis (Lepage, 1999b). These devices require the identification
of formal analogical proportions between linguistic representations.4 From a compu-
tational perspective, two key procedures need to be implemented: avalidationproce-
dure, which assesses the validity of a proportion; and aresolution procedure, which
computes the fourth term of an analogical equation. These attempts have been lim-
ited by the types of representations they were able to handle: in most cases we know
of, proportions were only defined on finite sequences over a finite alphabet, using a
restricted or ad-hoc definition of the notion of proportion (Yvon, 1997; Lepage, 1998).

The main contribution of this paper is thus to establish a general and consistent
framework for the notion of analogical proportion, which is necessary to widen the
scope of application of these learning devices and make them applicable for a wider
range of linguistic representations and NLP tasks. We therefore present a general
model for analogical proportion, which is applicable to several algebraic structures,
including free monoids and sets of trees. We show that this framework is a “natural”
generalization of extant definitions of proportions between simple objects, and explain
how this framework can be instantiated to yield a suitable computational model for
complex and/or structured representations such as words, trees, feature structures, and
languages, which are all commonly used in NLP applications. This contribution has
both a methodological and a computational aspect: in addition to a sound definition
of proportions, we are also interested in the algorithmic complexity of the associated
validation and resolution procedures.

The potential of analogy-based learners using these procedures has already been
studied experimentally, for example in (Stroppa, 2005; Stroppa & Yvon, 2005; Lepage
& Denoual, 2005; Stroppa & Yvon, 2006; Langlais & Patry, 2007). In this paper, we
deliberately focus on the theoretical foundations of the learning process, i.e. propor-
tions. Note that both Stroppa (2005) and Stroppa (2005) report experiments carried out
on phonology and morphology learning tasks, in which one has to predict a pronunci-
ation or a morphological analysis given an input word form. In the case of pronunci-
ation, the output to predict is a sequence (of phonemes); in the case of morphological
analysis, one may predict a (morphological) tree or a feature structure (of morpho-
logical features). These experiments demonstrate the ability of the approach to deal
directly with various structured data while achieving state-of-the-art results; they are
based on ALANIS5 (A Learning-by-Analogy Inferencer for Structured data), the tool
we developed to implement the theoretical framework that we describe here. Lepage &
Denoual (2005) introduce a machine translation system entirely based on this learning
procedure: the input is a sequence of words in one language and the output a sequence
of words in another language. Langlais & Patry (2007) use an analogical learner in the
context of unknown words translation.

The remainder of this paper is organized as follows. To begin with, we introduce
in Section 2 several examples of proportions that we want to model. In Section 3,
we establish a general definition of analogical proportions, suitable for the following
algebraic structures: semi-groups, free monoids, and lattices. This definition readily
yields a suitable model for words, sets, and feature structures. The case of proportions

4These works, and others, have also been used to support the view that some of the cognitive processes
involved in the recognition of words, or in the letter-to-sound mapping, could be modeled through some
kinds of analogical process. We will not address here the cognitive plausibility of analogy-based language
processing, but rather concentrate on the algorithmic aspects of the computation of proportion.

5This tool relies on the automata library VAUCANSON (Lombardyet al., 2004), which makes use of
generic programming and static polymorphism (Régis-Gianas & Poss, 2003), allowing for both adaptability
and efficiency.
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between languages and labeled trees are addressed in Sections 4 and 5 respectively. We
conclude and discuss avenues for further research in Section 6.

2 Examples of Analogical Proportions

In this Section, we present some examples of proportions between linguistic repre-
sentations that we want to model. We start with the case of words, then consider the
case of trees, sets, and feature structures, using examples borrowed or adapted from
(Matthews, 1981; Lepage, 2003; Yvon, 2003).

2.1 Analogical Proportions between Words

Word forms occurring in texts or lexicons are represented using strings, i.e. sequences
over some finite alphabets. We want to model the following examples of proportions
between word forms in English:

wolf : wolves :: leaf : leaves,
reader : unreadable :: doer : undoable,

unhappy : unhappiest :: dirty : dirtiest,

in Latin:

oratorem : orator :: honorem : honor,
([speaker, accusative] : [speaker] :: [honor, accusative] : [honor]),

and in Arabic:

ArsAlA : mursilin :: AslAmA : muslimin
([They (two) sent] : [senders] :: [They (two) became Muslims] : [Muslims]).

Proportions between word forms are often a sign of deeper relationships between
the entities represented by these forms. Proportions can also be misleading, as in for
instance the coincidental proportionear : early :: dear : dearly.6 Conversely, many
morphological relationships between lexical entries do not translate into a proportion
between their orthographic or phonetic representations:slept is the past tense form
of to sleep, just asgave is the past tense form ofto give; yet we do not observe a
proportion between these four word strings.

As is obvious from these examples, our main focus is onsyntactic(formal) pro-
portions, i.e. proportions in which a word form is viewed as a meaningless sequence
of letters (or more generally, of symbols over a finite set). We therefore do not rec-
ognize semantic relationships such as “cow is to calf whatmare is to foal” as a valid
proportionover words. This does not mean that our model is unable to handle these
proportions, as will be demonstrated shortly, but rather that these relationships hold at
a different level of representation than mere word strings.

6Let us assume that we want to find the morphological analysisM(dearly) of the unknown word form
dearly. In this case, the misleading proportionear : early :: dear : dearly is actually not a problem for
the analogical learners mentioned in the Introduction. Indeed, the resolution procedure, whose goal is to find
a solution to the analogical equationM(ear) : M(early) :: M(dear) :?, will fail (this equation between
morphological features has no solution), and no analysis will be proposed based on this proportion.
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2.2 Analogical Proportions between Trees

Trees are commonly used in linguistic representations, to make explicit the internal
structure of complex words or sentences. Trees also constitute a natural representation
of first order predicates, used in the representation of the semantics of linguistic entities.
An example of proportion between syntactic trees, adapted from Matthews (1974) and
which shows active/passive opposition, is displayed in Figure 1.
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Figure 1: Analogical proportion between syntactic trees (adapted from (Matthews,
1974)).

Such examples suggest that proportions may have the potential to handle some
complex syntactic relationships between utterances, subject to the choice of an appro-
priate representation of these utterances (here, a representation that makes explicit the
structural dependencies between words and phrases). Indeed, if we only consider the
surface representations of these sentences (viewed as mere sequences of characters or
words), the proportion ceases to hold. The ability to handle structural proportions such
as the one in Figure 1 is thus an essential step to make analogical learning devices such
as the one introduced in (Pirrelli & Yvon, 1999) applicable for Parsing or Example-
Based Machine Translation tasks.

Tree representations can also be used to represent first-order logic predicates. We
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can also model the analogy “cowis tocalf whatmareis to foal”, assuming a first-order
representation of the meaning of these words (see Figure 2).

cow

X
:

mare

X

::
and

cow

X

young

X
:

and

mare

X

young

X

Figure 2: Analogical proportion between logical representations.

2.3 Analogical Proportions between Sets

Classes are often used to represent discrete properties of a finite collection of linguistic
entities. For example, a classical approach to the description of phonological systems
identifies subclasses (subsets) of phonemes. Each class contains phonemes that share
one or several properties: the class of consonants, of vowels, of stops, of consonant
stops, etc. In this context, analogical proportions between sets of phonemes can be
used to model systematic oppositions between these properties. For instance, the pro-
portion displayed in Figure 3 relates stops (x), sibilants (t), voiced (y) and unvoiced
(z) occlusive consonants.

x = { /b/, /p/, /t/, /d/, /k/, /g/ } : y = { /b/, /d/, /g/, /z/, /v/, /Z/ }
::

z = { /p/, /t/, /k/, /s/, /f/, /S/ } : t = { /s/, /z/, /f/, /v/, /S/, /Z/ }

Figure 3: Analogical proportion between sets of phonemes.

2.4 Analogical Proportions between Feature Structures

Systems of binary oppositions such as the one used in phonology can also be repre-
sented using feature structures, where each phoneme is associated with a vector of
binary features. There is one feature for each subset of phonemes; a feature takes the
value+ whenever the phoneme belongs to the related set. Using this representation,
the fact that the opposition between /t/ and /d/ on the one hand, and /s/ and /z/ on the
other hand is analyzed in terms of voiced/unvoiced alternation can be modeled by the
proportion between the corresponding feature sets (see Figure 4). Binary feature struc-
tures are also used in semantic representations: Figure 5 gives another view on the
proportion “cow is tocalf whatmareis to foal”.

Finally, feature structures are routinely used in NLP to represent syntactic struc-
tures. In the example of Figure 6, a proportion involving four such representations is
displayed. Note that, in contrast to the two examples above (cf. Figures 4 and 5), the
structures involved in this proportion arecomplex: the value of a feature can be another
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/t/ =

2666666664

consonantal : +
vocalic : −
voiced : −
anterior : +
coronal : +
continuant : −
strident : −

3777777775
: /d/ =

2666666664

consonantal : +
vocalic : −
voiced : +
anterior : +
coronal : +
continuant : −
strident : −

3777777775
::

/s/ =

2666666664

consonantal : +
vocalic : −
voiced : −
anterior : +
coronal : +
continuant : +
strident : +

3777777775
: /z/ =

2666666664

consonantal : +
vocalic : −
voiced : +
anterior : +
coronal : +
continuant : +
strident : +

3777777775

Figure 4: Analogical proportion between feature structures.

[cow/bull, female, mature] : [cow/bull, young]
::

[horse, female,mature] : [horse, young]

Figure 5: Mare and cows, again!

feature structure. The indexes occurring in these structure denote reentrancy, i.e. the
fact that two features have a substructure in common.2664 SUBJ :

24 [1]agr
PERS :

ˆ
1st

˜
NUM :

ˆ
sing

˜
35

PRED :
ˆ
[1]

˜
3775 :

2664 SUBJ :

24 [1]agr
PERS :

ˆ
3rd

˜
NUM :

ˆ
sing

˜
35

PRED :
ˆ
[1]

˜
3775

::2664 SUBJ :

24 [1]agr
PERS :

ˆ
1st

˜
NUM :

ˆ
plur

˜
35

PRED :
ˆ
[1]

˜
3775 :

2664 SUBJ :

24 [1]agr
PERS :

ˆ
3rd

˜
NUM :

ˆ
plur

˜
35

PRED :
ˆ
[1]

˜
3775

Figure 6: Analogical proportion between complex feature structures.

2.5 Summary

We have introduced above a number of examples of proportions between linguistic
representations. Being able to identify these proportions is a requirement for the appli-
cation of some analogical learners to NLP tasks (Pirrelli & Yvon, 1999; Stroppa, 2005).
From the examples we gave, it should be clear that we are interested in modelingfor-
mal proportions, i.e. proportions that can be identified solely using the forms of the
representations and the nature of the algebraic structure underlying them. Moreover,
we aim at providing a consistent framework that would be applicable to the various
types of representations we introduced. Note that we are also interested in other types
of structures, such as finite languages and directed acyclic graphs (which can represent

7



syntactic dependency graphs).

3 Analogical Proportions on Algebraic Structures

In this section, we introduce a formal definition of the notion of analogical proportion.
We start with a general definition, which is then specialized and simplified for several
algebraic structures, notably semi-groups, free monoids, groups and lattices. For each
of these structures, we also discuss the computational aspects of the basic algorithms
which respectively validate a proportion and compute the fourth term in a proportion.

3.1 A Generic Framework

How can we define the notion of analogical proportion in such a way that all the previ-
ous examples are covered? To start with, let us reconsider one of the examples given in
Section 2, which we want to model. This example involves the four graphical forms:
(unhappy, unhappiest, dirty, dirtiest). We can observe that the 1st and the 2nd forms
share a prefix (unhapp-), so do the 3rd and the 4th forms (dirt-). Moreover, the 1st and
the 3nd forms share a suffix (-y), so do the 2nd and the 4th forms (-iest). Each form can
thus be analyzed with a prefix+suffix decomposition.

This analysis suggests that the notion of analogical proportion between four terms
is related to the ability todecomposeeach term into several smaller fragments (two
fragments in the example above) that can be exchanged, i.e. thatalternate. This intu-
ition can be formalized as follows. LetU be a semigroup, i.e. a set equipped with an
internal associative law⊕. In order to express the notion of decomposition, we first
introduce the auxiliary notion offactorization.

Definition 1 (Factorization).
A factorizationof an elementu of a semigroup(U,⊕) is a sequence(u1, . . . , un), with
∀i ∈ J1, nK, ui ∈ U , such thatu1 ⊕ . . . ⊕ un = u.

Each termui in a factorization ofu is a factor of u. We notefu(i) = ui and
|fu | = n. If I = {i1 . . . ik} ⊆ J1, nK, we also notefu(I) = ui1 ⊕ . . . ⊕ uik

.
By taking into account the alternation constraint between the terms of a factoriza-

tion, we can propose the following definition for analogical proportions.

Definition 2 (Analogical proportion (semigroups)).
Let (x, y, z, t) ∈ U4, we say thatx : y :: z : t if and only if there exist some factoriza-
tionsfx, fy, fz, ft, respectively ofx, y, z andt, such that:

∀i ∈ J1, dK, (fy(i), fz(i)) ∈ {(fx(i), ft(i)), (ft(i), fx(i))}.

By construction, we have|fx | = |fy | = |fz | = |fz | = d. The smallest integerd for
which this property holds is termed thedegreeof the proportion.

Definition 2 expresses the alternation constraint by stipulating that all the factors
fy(i) andfz(i) in y andz should be alternatively equal to factors inx or in t.

This definition is fairly general: it applies to any semigroup anda fortiori to any
richer structure, such as those displayed in the inheritance graph of Figure 7. If the
algebraic structure(U,⊕) has additional properties (commutativity, existence of a neu-
tral element, existence of a unique inverse for⊕), then this definition can be simplified.
We study several cases of such simplifications in the following paragraphs.

Before turning our attention to these simplications, we introduce a first result,
which will prove useful in the following.
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Free group Abelian group

GroupFree monoid Abelian monoid

freedom

Free semigroup Abelian semigroup

commutativity identity element

Semigroup

Monoid

freedom

inverse

commutativity

inverse freedom inverse

commutativity

identity    element

identity   element

Figure 7: Inheritance graph of algebraic structures.

Proposition 1.
Analogical proportions are preserved by semigroup morphisms,7 i.e. if M : (U,⊕) →
(V,�) is a (semigroup) morphism, then

∀(x, y, z, t) ∈ U4, x : y :: z : t⇒M(x) : M(y) :: M(z) : M(t).

Proof. It suffices to note that iffu = (u1, . . . , un) is a factorization ofu ∈ (U,⊕),
thenFu = (M(u1), . . . ,M(un)) is a factorization ofM(u) ∈ (V,�), sinceM(u) =
M(u1 ⊕ . . . ⊕ un) = M(u1)� . . . �M(un).

3.2 Abelian Semigroups and Abelian Groups

When the internal composition law in a semigroupU is commutative, the semigroup is
said to be commutative orAbelian. Within an Abelian semigroup, the order of factors
in a factorization is not relevant. When analyzing a proportion, it is thus possible to
reorder the terms in a factorization ofy so that the factors shared withx are put together
on the “left part” of the factorization; and the factors shared witht are on the “right
part”. The same applies forz, hence the following result.

Proposition 2.
If U is an Abelian semigroup,∀(x, y, z, t) ∈ U4, we havex : y :: z : t if and only if

7A (semigroup) morphismM from (U,⊕) to (V,�) is a mapping such that∀x, y ∈ U, M(x ⊕ y) =
M(x)�M(y).
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either (y, z) ∈ {(x, t), (t, x)} or ∃(x1, x2, t1, t2) ∈ U4 such thatx = x1 ⊕ x2, y =
x1 ⊕ t2, z = t1 ⊕ x2, t = t1 ⊕ t2.

Proof. One implication is true by virtue of definition 2.
To prove the converse, let us assume that there exists a quadruple of factorizations

(fx, fy, fz, ft) ∈ (Ud)4 and two subsetsI, J of J1, dK such thatI ∩ J = ∅, I ∪ J =
J1, dK, and:

fx(I) = fy(I), fz(I) = ft(I), fx(J) = fz(J), fy(J) = ft(J).

The composition law⊕ being commutative,∀α ∈ {x, y, z, t}, (fα(I), fα(J)) is a
factorization ofα, hence the result.

An Abelian groupis an Abelian semigroup, i.e. a commutative monoid with identity
element1U in which each elementu has a unique inverse	u such thatu⊕ 	u = 1U .
The definition of analogical proportions in Abelian groups can be further simplified.

Proposition 3.
If U is an Abelian group,∀(x, y, z, t) ∈ U4, we havex : y :: z : t if and only if

x⊕ (	y) = z ⊕ (	t).

Proof. Proposition 2 readily yields:

x⊕ (	y) = x2 ⊕ (	t2) = z ⊕ (	t).

Conversely, ifx⊕ (	y) = z ⊕ (	t), taking:

x1 = 1U , x2 = x, t1 = z ⊕ (	x) andt2 = y,

yields:
x = x1 ⊕ x2, y = x1 ⊕ t2, z = t1 ⊕ x2 andt = t1 ⊕ t2.

This definition is consistent with traditional and intuitive visions of analogical pro-
portions. For example, in(R?,×), it corresponds to the classical proportionality re-
lation (xy = z

t ); in a vector space, it expresses the relation between the summits of a

parallelogram (~x− ~y = ~z − ~t, cf. Figure 8).

~x

~y ~t

~z

Figure 8: A parallelogram.

From a computational perspective, these simplifications make the computational
problems of validating and solving a proportion a trivial issue, which basically amounts
to performing two operations inU .

As we shall see in the coming sections, the same definition 2 that is used here to
account for proportions between the summits of a parallelogram, or between integers in
(N,+), will be used to establish proportions between sequences of letters or between
trees, which is a positive sign of the consistency of our model.
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3.3 Sets and Feature Structures

The abstract algebraic framework that has been presented in the previous section pro-
vides us with a definition of analogical proportion which readily applies to sets, multi-
sets, and feature structures.

3.3.1 Sets

The union operation is an internal operation defined on the powerset(2S ,∪) of a setS
which makes it an Abelian monoid: it is associative, commutative and the empty set∅
is the identity element. Proposition 2 directly applies.

Proposition 4.
LetS be a set,∀(x, y, z, t) ∈ (2S)4, we havex : y :: z : t if and only if ∃(x1, x2, t1, t2) ∈
(2S)4 such that:

x = x1 ∪ x2, y = x1 ∪ t2, z = t1 ∪ x2, t = t1 ∪ t2.

It is routine to check that this definition accounts for the example given in Sec-
tion 2.3 (cf. Figure 3).

3.3.2 Multisets

A multiset can be seen as a set whose elements have a multiplicity. Formally, a multiset
is a pair(S, m) whereS is a set (called the underlying set of elements) andm : S → N
a function fromS to the setN of (positive) natural numbers. For each elemente in S,
the multiplicity of e is m(e).8 For convenience, a multiset(A,m) can also be noted∑

a∈A m(a)a; for example, the multiset({a, b},m) such thatm(a) = 2 andm(b) = 1
will be noted2a + b.

A multiset is an Abelian monoid with respect to the sum operation(
⊎

), defined as
follows:

(A,m)
⊎

(B,n) = (A ∪B, f), wheref(e) = m(e) + n(e),∀e ∈ A ∪B.

Therefore, we can again apply proposition 2. We can easily verify that the following
proportion holds:

3A + r + s + l : m + u + r + s + 2i + l + n :: 3A + s + l + m : 2m + u + s + l + 2i + n,

which is also a consequence of proposition 1, since: (i) the proportion between words
ArsAlA : mursilin :: AslAmA : muslimin is verified (this will be formally proved
in Section 3.4), (ii) the application that turns a word into a multiset of letters is a
semigroup morphism.

3.3.3 Feature Structures

A feature structureis made up of a set of attribute-value pairs. A value can be ei-
ther atomic or complex (most commonly a feature structure9). Such representations
are classical knowledge representation tools. Feature structures are also used in sev-
eral formal models of syntax, such as LFG (Lexical Functional Grammar, (Bresnan,
2001)) and HPSG (Head-Driven Phrase Structure Grammar, (Pollard & Sag, 1994));
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266664
wordform : loves
lemma : love
cat : verb

agreement :

»
person : third
number : singular

–
377775

Figure 9: Feature structure representing the verb formloves.

Carpenter (1992) gives an introduction to feature structures and their uses in NLP. A
(matrix) representation of such a feature structure is displayed in Figure 9.

Feature structures can also be used to represent dependency relations, as produced
by dependency parsers (Mel’čuk, 1988; Buchholz & Marsi, 2006), as displayed in
Figure 10.

She loved me for the dangers I had passed
nsubj obj prep pobjdet rcmodnsubj aux

26666666666664

wordform : “loved′′

nsubj. :
ˆ
wordform : “she′′

˜

prep. :

26666664
wordform : “for′′

pobj. :

266664
wordform : “dangers′′

det. :
ˆ
wordform : “the′′

˜
rcmod. :

24 wordform : “had′′

nsubj. :
ˆ
wordform : “I ′′

˜
aux. :

ˆ
wordform : “passed′′

˜
35

377775

37777775
obj.

ˆ
wordform : “me′′

˜

37777777777775
Figure 10: Feature structure representing the dependency graph of a sentence.

Formally, the set of feature structuresFS is a set equipped with two binary internal
composition laws which are associative, idempotent, and commutative. The internal
composition laws of the setFS are theunificationoperation, denotedt and thegen-
eralization operation, denotedu. The setFS is also equipped with a partial order
relation, namelysubsumption, denotedv. We havea v b if a is more general thanb,
i.e. if a u b = a.

The set of feature structures being an Abelian semigroup for the unification opera-
tion, proposition 2 is also applicable.

Proposition 5.
∀(x, y, z, t) ∈ FS4, we havex : y :: z : t if and only if∃(x1, x2, t1, t2) ∈ FS4 such
that

x = x1 t x2, y = x1 t t2, z = t1 t x2, t = t1 t t2.

It has to be noted that this definition applies to any kind of feature structure, the
only requirement being the definition of the unification operation. Once again, it can
be checked that this definition covers the introductory examples of Section 2.4.

8For a multiset(S, m), we can also extendm to a setU ⊇ S, by settingm(e) = 0, ∀e ∈ U \ S.
9Some linguistic theories make also use of other types of complex feature values, such as lists or sets.
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3.3.4 Lattices

In this section, we present an additional simplification of previous definitions, which
allows us to get rid of the existential quantifiers when the underlying algebraic struc-
ture is a lattice. The two cases of data structures studied in this section, namely sets
and feature structures, are particular cases of lattices and will thus benefit from this
simplified definition.

A lattice is a mathematical structure which can be seen either as a partially ordered
set (poset) or as an algebra. A lattice can be defined as a poset in which all nonempty
finite subsets have a least upper bound (also calledsupremumor join) and a greatest
lower bound (also calledinfimumor meet). An algebra(L;∧,∨) is called a lattice ifL
is a nonempty set,∧ and∨ are binary operations inL, both idempotent, commutative,
and associative, and satisfying the absorption law. These two views on lattices can eas-
ily be reconciled, and any lattice defined as an algebra can be turned into a lattice seen
as a poset and vice-versa. This is stated in the following classical theorem (Grätzer,
1971):

Theorem 1. 1. Let the posetL = (L;≤) be a lattice. Definea∧ b = inf{a, b} and
a ∨ b = sup{a, b}. Then the algebraLa = (L;∧,∨) is a lattice.

2. Let the algebraL = (L;∧,∨) be a lattice. Leta ≤ b if and only ifa ∧ b = a
(or equivalentlya ∨ b = b). ThenLp = (L;≤) is a poset, and the posetLp is a
lattice.

3. Let the posetL = (L;≤) be a lattice; then(Lp)a = L.

4. Let the algebraL = (L;∧,∨) be a lattice; then(La)p = L.

The set of feature structures can be seen as a lattice with respect to the unification
and generalization operations. The same applies to the powerset of a set with respect to
the union and intersection operations. The following simplified definition of analogical
proportion applies to these two types of representations.

Proposition 6.
If (L;∧,∨) is a lattice,∀(x, y, z, t) ∈ L4, we havex : y :: z : t if and only if:

x = (x ∧ y) ∨ (x ∧ z),
y = (x ∧ y) ∨ (t ∧ y),
z = (t ∧ z) ∨ (x ∧ z),
t = (t ∧ z) ∨ (t ∧ y).

Proof. ⇐ Trivial as the formulation of proposition 6 is a particular case of the one used
in proposition 2.
⇒ Let (x, y, z, t) be inL4 such thatx : y :: z : t. By definition, there exists some

(x1, x2, t1, t2) ∈ L4 such that

x = x1 ∨ x2, y = x1 ∨ t2, z = t1 ∨ x2 andt = t1 ∨ t2.

We will first show thatx = (x ∧ y) ∨ (x ∧ z). The inequalities

(x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z) ≤ x

hold from the basic properties of meet and join. Ifa ≤ b andc ≤ d, thena ≤ b ≤ (b∨d)
andc ≤ d ≤ (b ∨ d), yielding a ∨ c ≤ b ∨ d. Sincex1 ≤ x andx1 ≤ y, we have
x1 ≤ (x ∧ y). Likewise, we havex2 ≤ (x ∧ z). Consequently,

x = x1 ∨ x2 ≤ (x ∧ y) ∨ (x ∧ z).
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We therefore have
x = (x ∧ y) ∨ (x ∧ z),

and the other equalities hold by symmetry.

Based on this proposition, we can conclude that an algorithm for validating a pro-
portion on sets or on feature structures will have the same complexity as the computa-
tion of the basic operations join and meet: in fact, validating an analogical proportion
only involves8 basic operations (4 meets and4 joins). In the case of Boolean algebra,
in which each elemente has a complement¬e such thate∧¬e = 0, e∨¬e = 1 and the
two internal laws are mutually distributive, we have an additional result for the solving
procedure.

Proposition 7.
If A is a Boolean algebra, we havex : y :: z : t for (x, y, z, t) ∈ A4 if and only if
x ≤ (y ∨ z) and(y ∨ z) ∧ ¬x ≤ t ≤ (y ∨ z).

Proof. ⇒. We assume that the proportionx : y :: z : t holds. We thus havet = (t∧z)∨
(t∧y). From the basic properties of meet and join, we deducet ≤ (y∨z)∧t ≤ (y∨z).
Moreover, if we notey1 = (x ∧ y), y2 = (t ∧ y), z1 = (t ∧ z), andz2 = (x ∧ z), we
have:

(y ∨ z) ∧ ¬x =((y1 ∨ z2) ∨ (z1 ∨ y2)) ∧ ¬(y1 ∨ z2)
=(z1 ∨ y2) ∧ ¬(y1 ∨ z2)
=t ∧ ¬x ≤ t,

so (y ∨ z) ∧ ¬x ≤ t ≤ (y ∨ z). Moreover, sincex = (x ∧ y) ∨ (x ∧ z), we have
x ≤ (y ∨ z).
⇐. We assumex ≤ (y∨ z) and(y∨ z)∧¬x ≤ t ≤ (y∨ z). Sincex ≤ (y∨ z), we

havex ≤ x∧ (y∨z), andx = (x∧y)∨ (x∧z). We have(t∧z)∨ (t∧y) ≤ t from the
basic properties of meet and join. Moreover, sincet ≤ (y∨z), we havet ≤ t∧ (y∨z),
sot = (t ∧ z) ∨ (t ∧ y). Since(y ∨ z) ∧ ¬x ≤ t, we have((y ∨ z) ∧ ¬x) ∨ x ≤ t ∨ x,
and((y ∨ z) ∨ x) ≤ t ∨ x. Consequently, we have bothy ≤ t ∨ x andz ≤ t ∨ x,
so y ≤ y ∧ (t ∨ x) andz ≤ z ∧ (t ∨ x). Finally, since(x ∧ y) ∨ (t ∧ y) ≤ y and
z = (t ∧ z) ∨ (x ∧ z) ≤ z always hold, we can deducey = (x ∧ y) ∨ (t ∧ y) and
z = (t ∧ z) ∨ (x ∧ z).

3.4 Words

This section is devoted to the study of the free monoid structure, which is the classical
model to represent finite sequences of symbols, that is, finite words. We use defini-
tion 2, which can be directly applied to the case of words. In particular, we examine
the verification of the solving procedures and present a framework based on finite-state
transducers.

A detailed presentations of proportions on words, including proofs, can be found
in (Yvon, 2003; Yvonet al., 2004; Stroppa, 2005), from where most definitions and
constructions are borrowed. The discussion of the algorithmic aspects at the end of this
section is entirely original.
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3.4.1 Notations

Let Σ be a finite set of symbols, called analphabet. Σ? denotes the set of finite se-
quences of elements ofΣ, calledwordsoverΣ. Provided with theconcatenationoper-
ation,Σ? is a free monoidwhoseidentity elementis theempty wordε. Forx andy in
Σ?, the concatenation ofx andy is denotedx.y or simplyxy. We note|x | the length
of x; we have|ε | = 0. Forx ∈ Σ? andi ≤ |x |, x(i) denotes theithsymbol inx.

3.4.2 Definition

For free monoids, we can rewrite definition 2; concatenation is the internal law used to
define factorization in this case.

Definition 3 (Reformulation of Definition 2).
If Σ? is a free monoid,∀(x, y, z, t) ∈ Σ?4, we havex : y :: z : t if and only if there
exist some factorizations(fx, fy, fz, ft) ∈ ((Σ?)d)4 such that

∀i ∈ J1, dK, (fy(i), fz(i)) ∈ {(fx(i), ft(i)), (ft(i), fx(i))}.

The smallest integerd for which this property holds is termed thedegreeof the
proportion.

We can show (Yvon, 2003) that this definition generalizes the (algorithmic) def-
inition of proportions between words proposed by Lepage (1998); in both cases the
following properties hold. First, an analogical equation may have one, zero, or multi-
ple solutions. Lepage (2001) gives a number of conditions for an equation to have at
least one solution; these conditions also apply here. In particular, ift is a solution of
x : y :: z :?, thent contains all the symbols iny andz that are not inx, in the same
order. As a corollary, all the solutions of an analogical equation (between words) have
the same length.10

3.4.3 A Finite-State Solver

Proposition 3 yields an efficient procedure for solving analogical equations, based on
finite-state transducers. We only sketch here the main steps of the procedure and we
refer the reader to the above cited papers for a more detailed account. To start with, let
us introduce the notions ofcomplementary setandshuffle product.

Complementary Set If v is a subword ofw, thecomplementary setof v with respect
to w, denoted byw\v is the set of subwords ofw obtained by removing fromw, from
left to right, the symbols inv. For instance,eea belongs to the complementary set of
xmplr with respect toexemplar. Whenv is not a subword ofw, w\v is empty. This
notion can be generalized to any regular language.

The complementary set ofv with respect tow is a regular set: it is the output
language of the finite-state transducerTw (see Figure 11) for the inputv.

0 1 2 k
w(1) : ε

ε : w(1)

w(2) : ε

ε : w(2)

w(k) : ε

ε : w(k)

Figure 11: The transducerTw computing complementary sets with respect tow.

10Note that this result is directly derived from proposition 1, since the length application is a semigroup
morphism from the set of wordsΣ? to the set of integersN.
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Shuffle The shuffleu • v of two wordsu andv is defined as follows (Sakarovitch,
2003):

u • v = {u1v1u2v2 . . . unvn, with ui, vi ∈ Σ?, u1 . . . un = u, v1 . . . vn = v}.

The shuffle of two wordsu andv contains all the wordsw which can be composed
using all the symbols inu andv, subject to the condition that ifa precedesb in u
(or in v), then it precedesb in w. Taking, for instance,u = abc andv = def , the
wordsabcdef , abdefc, adbecf all belong tou • v; this is not the case ofabefcd. This
operation generalizes straightforwardly to languages.

The shuffle of two regular languages is regular (Sakarovitch, 2003); the automaton
A, computingK • L, is derived from the automataAK = (Σ, QK , q0

K , FK , δK) and
AL = (Σ, QL, q0

L, FL, δL) recognizing respectivelyK andL as the product automaton
A = (Σ, QK × QL, (q0

K , q0
L), FK × FL, δ), whereδ is defined as:δ((qK , qL), a) =

(rK , rL) if and only if eitherδK(qK , a) = rK andqL = rL or δL(qL, a) = rL and
qK = rK .

The notions of complementary set and shuffle are related through the following
property, which is a direct consequence of the definitions.

∀w, u, v ∈ Σ?, w ∈ u • v ⇔ u ∈ w\v.

Solving Analogical Equations The notions of shuffle and complementary sets yield
another characterization of analogical proportion between words, based on the follow-
ing proposition (Yvon, 2003):

Proposition 8.

∀x, y, z, t ∈ Σ?, x : y :: z : t⇔ x • t ∩ y • z 6= ∅.

An analogical proportion is thus established if the symbols inx andt are also found
in y andz, and appear in the same relative order. A corollary follows:

Proposition 9.

t is a solution ofx : y :: z :?⇔ t ∈ (y • z)\x.

The set of solutions of an analogical equationx : y :: z :? is a regular set, which
can be computed with a finite-state transducer. It can also be shown Yvonet al.(2004)
that this analogical solver generalizes the approach based on edit distance proposed in
Lepage (1998).

3.4.4 Computational Issues

Given the finite-state constructions presented above, it is possible to assess the com-
plexity of the validation and solving procedures. In the case of validation, we have to
build the shufflesx • t andy • z, which yield two automata of size|x + 1 | × | t + 1 |
and|y + 1 | × |z + 1 | respectively. We then have to intersect these automata, yielding
an automaton of a most|x + 1 |× |y + 1 |× |z + 1 |× | t + 1 |, which is then tested for
emptiness.11

11It is possible to build the intersection product of two automata in such a way that all the states in the
product are accessible (Sakarovitch, 2003). In this case, checking for emptiness simply amounts to verifying
that the set of final states is not empty, which is done in constant time.
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The solving procedure is similar: we need to build the shuffle automaton ofy andz,
then to compute its complementary set with respect tox. Consequently, there is a non-
deterministic automaton which represents the set of all possible solutions ofx : y :: z :?
with O(|x | × |y | × |z |) states. Enumerating all the words in this non-deterministic
automaton is an exponential process, though this limit is rarely met in practice.

In the following, we present several ways to associate a numerical score to a pro-
portion; these scores can be used to reduce the complexity of the solving procedure.

3.4.5 Scoring Analogical Proportions

Scoring analogical proportions serves two purposes. First, as analogical equations may
have more than one solution, we need to define criteria allowing the comparison and
ranking of competing solutions. Second, scoring proportions enables us to consider
only a subset of optimal solutions when solving an analogical equation, which may
reduce the complexity of the procedure. In the following, we present several score
functions and discuss some of their properties. Additional measures of analogical pro-
portions are presented in (Yvonet al., 2004), based on the aggregation of measures of
proportions between symbols ofΣ.

(a) degree = 2 (b) degree = 3︷ ︸︸ ︷
1 1 1 1 2 2 2
s i n g
s i n g i n g
c a l l
c a l l i n g

1 2 3 4 5 6 7
←−−−−−−−−−−−−−−−−−−→

︷ ︸︸ ︷
1 1 1 1 2 2 2 3 3
s i n g
s i n g i n g
c a l l
c a i n g l l

1 2 3 4 5 6 7 8 9
←−−−−−−−−−−−−−−−−−−−−−−−−→

size = 7 size = 9

Figure 12: The degree and size of two proportions on words (empty cells correspond
to empty factors (ε)).

Degree The degreeis a score function for proportions introduced in definition 2.
The degree counts the number of alternating chunks in an analogical proportion: the
smaller the degree, the simpler the proportion. The “trivial” proportions of the form
a : a :: b : b or a : b :: a : b have a degree of1. The degree is related to the number
of factors found in the words involved in a proportion; a small degree corresponds the
intuition that good proportions should preserve larger parts of the original words.

The degree of an analogical proportionx : y :: z : t is denotedD(x : y :: z : t) and
can be alternatively defined as followed, whereF denotes the set of factorizations for
which the proportionx : y :: z : t holds.

Definition 4 (Degree).
Thedegreeof an analogical proportionx : y :: z : t is defined as follows:

D(x : y :: z : t) = min
(fx,fy,fz,ft)∈F

|fx |.
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Size The degree counts the number of alternating factors. Thesizeof a proportion
counts the number of atomic symbol alignments, which take the forma : a :: b : b or
a : b :: a : b (cf. Figure 12).

Definition 5 (Size).
Thesizeof an analogical proportionx : y :: z : t is defined as:

S(x : y :: z : t) = min
(fx,fy,fz,ft)∈F

∑
i∈J1,|fx |K

max(|fx(i) |, |ft(i) |).

To illustrate the notions of degree and size, two examples are displayed in Figure
12. Whereas the analogical proportionsing : singing :: call : calling has a degree of
2 and a size of7, sing : singing :: call : caingll has a degree of3 and a size of9, in
agreement with the intuition that the former proportion is better than the latter.

ε-Order The ε-order of an analogical proportion is the maximum number of con-
secutive empty factors appearing in the factorizations involved in the proportion. For
example, the proportionsing : singing :: call : calling has anε-order of1, whereas
sing : singing :: call : caingll has anε-order of 2: two consecutive empty factors
appear in the related factorization ofcall (cf. Figure 12).

Definition 6 (ε-order).
Theε-orderof an analogical proportionx : y :: z : t with respect toα ∈ {x, y, z, t} is
defined as:

Oε(x : y :: z : t, α) = min
(fx,fy,fz,ft)∈F

max
1≤i≤j≤|fx |

{|j − i + 1 | : fα(Ji, jK) = ε}

Theε-order for the whole proportion is defined as:

Oε(x : y :: z : t) = max
α∈{x,y,z,t}

{Oε(x : y :: z : t, α)}

The ε-order is actually related to the notions of degree and size, yielding the fol-
lowing result.

Proposition 10.
If t is a solution of the equationx : y :: z :? such that

D(x : y :: z : t) > Oε(x : y :: z : t, x) > 1,

then there exists a solution̂t such that the following (in)equalities are satisfied:

Oε(x : y :: z : t̂, x) = Oε(x : y :: z : t, x)− 1,

D(x : y :: z : t̂) = D(x : y :: z : t)− 1,

S(x : y :: z : t̂) ≤ S(x : y :: z : t).

The proof of this proposition is given in Appendix A.

Corollary 1. If t is a solution of the equationx : y :: z :? with

D(x : y :: z : t) > Oε(x : y :: z : t, x) > 1,

then there exists a solution̂t such that

Oε(x : y :: z : t̂, x) = 1.
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In particular, this result implies that the search for a minimal degree solution of the
equationx : y :: z :? can be pruned by searching only those wordst which satisfy the
inequality

Oε(x : y :: z : t, x) ≤ 1.

Reducing the Complexity of the Solving Procedure Since the degree of an analog-
ical proportion is a sign of its quality, it is possible to consider only solutions with a
degree less than a given threshold.

To assess the complexity of this heuristic, let us first consider the case where the
maximum degree is2. In this case, factorizing three words amounts to considering a
triple of positions which denotes the places where the factors separate. In Example
(a) of Figure 12, the triple of positions of the factorizations is(4, 4, 4) in (x, y, z); in
Example (b), the degree of the proportion is3, so there are two triples of positions:
(4, 4, 2) and (4, 7, 2). Once a triple of positions is chosen, we need to verify that
the factorxi is equal toyi or zi. This verification requires at most|y | + |z | = m
operations. Since there are(|x |+1)×(|y |+1)×(|z |+1) = n triples of positions, the
overall complexity isn×m. If the maximal degree isd, then we have to considerd−1
triples of positions. The number of such triples is given by the multinomial coefficients.

For a degreed, the number of factorizations ofx is (x, d − 1)! =
(|x |+d−1

d−1

)
(and

likewise fory andz); the number of triples of positions is thus:(
|x |+ d− 1

d− 1

)
×

(
|y |+ d− 1

d− 1

)
×

(
|z |+ d− 1

d− 1

)
,

which is bounded by a polynomial of degreed− 1, hence the global complexity:

O((|x | × |y | × |z |)d−1 ×m).

Here again, this theoretical complexity is rarely met in practice. A complementary
approach consists in exploiting the result of the corollary 1. More precisely, if we
are interested in solutions of low degree, then solutions involving consecutive epsilons
may be safely skipped, which speeds up the search, though formal complexity is still
polynomial in the product of the words lengths.

4 Multi-Level Proportions and Proportions between Lan-
guages

In this section, we present a generalization of the framework developed in the previous
sections introduced in (Yvonet al., 2004). This generalization is needed to define
proportions over languages. We then propose two possible definitions and show that
they are in fact equivalent.

In the algebraic framework presented above, the notion of analogical proportion
relies on: (i) the ability to decompose complex entities into smaller parts, (ii) the ex-
istence ofalignmentsbetween these parts. Recall that four objects(x, y, z, t) form an
analogical proportion if and only if there exist some factorizations(fx, fy, fz, ft) of
(x, y, z, t) such that:

∀i ∈ J1, nK, (fy(i), fz(i)) ∈ {(fx(i), ft(i)), (ft(i), fx(i))}.

19



This latter condition states that it is possible toalign the factors involved in the fac-
torizations, forming quadruplets(fx(i), fy(i), fz(i), ft(i) that either match the pattern
u : u :: v : v or u : v :: v : u. We have in fact already used this property when defin-
ing the size and theε-order of a proportion between words over some finite alpha-
bet. The left part of Figure 12 displays an alignment which supports the proportion
sing : singing :: call : calling.

This property warrants the following alternative definition of proportions:

Definition 7 (Recursive formulation of analogical proportions).
For (x, y, z, t) ∈ U4, we havex : y :: z : t if and only if either(y, z) ∈ {(x, t), (t, x)},
or ∀α ∈ {x, y, z, t}, ∃(α1, α2) ∈ (U,⊕)2 such thatα = α1 ⊕ α2 and∀i ∈ J1, 2K,
xi : yi :: zi : ti.

It can be proved (Stroppa, 2005) that definition 7 is equivalent to definition 2.
This new definition makes explicit the fact that analogies on composite objects

(i.e. objects that decompose in factors) are based on simple alternations between their
factors, which will be termedbaseproportions in the remainder of this section.

In light of this reformulation of proportions, a natural extension is the consideration
of a richer set of base proportions, giving rise to the concept ofmulti-level proportions.
This extension is explored in the following section.

4.1 Multi-Level Proportions

Allowing arbitrary base proportions, definition 2 is generalized as follows.

Definition 8 (Multi-level proportions).
LetB(U) denotes a set ofbase proportions, i.e. a subset ofU4. For all (x, y, z, t) ∈ U4,
we havex : y :: z : t if and only if either(x, y, z, t) ∈ B(U)4 or ∀α ∈ {x, y, z, t},
∃(α1, α2) ∈ (U,⊕)2 such thatα = α1 ⊕ α2 and∀i ∈ J1, 2K, xi : yi :: zi : ti,

DenotingA(U) the set of atomic proportions, definition 2 is obviously a particular
case of definition 8 whereA(U) = B(U). However,B(U) may now contain more than
the atomic proportions.

To illustrate this mechanism, let us consider the following example of analogical
proportion between sequences of phonemes:

/ædvaIs/:/ædvaIz/::/bIli:f/:/bIli:v/ (advice: advise:: belief : believe)

Definition 3 does not recognize this quadruplet as forming a valid proportion: alter-
nating prefixes are easily identified, but no quadruplet of alternating suffix exists, as the
alignment (/s/:/z/::/f/:/v/) does not belong to the set of legitimate atomic proportions
between individual phonemes. However, if we take into account the internal structural
of the phoneme set, the proportion can be established. Let us consider each phoneme
as a vector of distinctive binary features, as in Figure 4. In this context, the proportion
(/s/:/z/::/f/:/v/) is valid, and represent an instance of the opposition between voiced
and unvoiced consonants.

To sum up, by considering an extended notion of analogical proportion between
elements of the generator setΣ of the free monoid, we are in a position to generalize
the notion of analogical proportion between elements ofΣ?. This strategy is fairly
general, and allows us to stack together various levels of analogical proportions: it
allows us, for instance, to define proportions between strings of sets, but also strings of
strings, sets of features-structures, sets of strings of strings, etc.
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This generalization has obvious applications in the modeling of language, where
the atoms of syntax (be they word forms or morphemes) are themselves made up of
combinatorial arrangements of phonological atoms, a situation sometimes referred to
in linguistic circles as thedouble articulation. Using two levels of proportions, the
following four sentences, viewed as sequences of words, do constitute a valid multi-
level proportion:

dogs are resting by the fire : the cat sleeps on the coach
::

cats are sleeping on the coach: the dog rests by the fire

Figure 13: A two-level proportion.

In the following, we study the case where a definition of analogical proportions is
available for a partP ⊆ U (typically for elements in the generative set ofU , whenU is
a free semi-group). A proportion with respect toP between four entities(x, y, z, t) ∈
P 4 is denotedx : y

P
:: z : t; B(U) is then simply defined as

B(U) = {(x, y, z, t) ∈ P 4| x : y
P
:: z : t}.

This formal extension is sufficient to define proportions for sets of strings, that is for
languages, to which we now turn our attention.

4.2 Languages

Languages are commonly encountered in NLP applications: finite languages, for in-
stance, provide a convenient model for ambiguities. They can be used to represent
alternative analyses of a word, pronunciation variants, or a set of possible translations
of a sentence.

An example of a proportion between finite languages, drawn from the word pro-
nunciation task, is reproduced in Figure 14. As this example makes clear, our prime

(potato) [p@"tA:t@] : [p@"tA:t@], [p@"teIt@]
::

(tomato) [t@"mA:t@] : [t@"mA:t@], [t@"meIt@]

Figure 14: Analogical proportion between languages.

interest in defining proportions between languages is to capture systematic ambiguities:
in our example, the fact that a particular sequence of graphemes (ato) in a specific set
of words is the subject of dialectal variations; in the context of automatic translation,
the fact that two synonyms can be interchanged in almost every context.

A (finite) language overΣ is a (finite) subset ofΣ?. The set of languages is a
semigroup with respect to the classical union operation. It is also a semigroup with
respect to the concatenation operation, defined as:

L.K = {lk | l ∈ L, k ∈ K}.

Moreover, the concatenation is distributive with respect to the union and the neutral
element for the union is a zero for concatenation, which makes the set of languages a
semiring.
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Languages can thus be studied from two different perspectives: (i) as sets of words
and (ii) as elements of a semiring. Each of these perspectives entails a definition of
analogical proportions between languages: the former suggests the use of the multi-
level framework presented above; the latter points to an adaptation of definition 2 to
algebraic structures equipped with two operators. In the following, we study these two
definitions in more depth. They will eventually prove to be equivalent, which is a new
piece of evidence in favour of the consistency of our framework.

4.2.1 Languages as Sets of Words

The set of languages over an alphabetΣ is 2Σ?

. A language being a set of words,
the multi-level framework is applicable:B(2Σ?

) is based on the definition of (usual or
extended) analogical proportions between words, which correspond to the singletons
in 2Σ?

.
In order to distinguish between words and languages, analogical proportions be-

tween words will be denoted byx : y
Σ?

:: z : t in the following. For example, since

reading : reader
Σ?

:: reviewing : reviewer, we have (over2Σ?

):

{reading} : {reader} :: {reviewing} : {reviewer}.

This is formally expressed by:12

B(2Σ?

) = {({x}, {y}, {z}, {t}) ∈ {{w}|w ∈ Σ?}4| x : y
Σ?

:: z : t} ∪ A(2Σ?

).

In this context, the definition of analogical proportion between words acts as a
bootstrap for the case of languages. Our introductory example is correctly covered by
this definition, and it is routine to check that:

{ p@"tA:t@} = { p@"tA:t@} ∪ { p@"tA:t@}
{ p@"tA:t@, p@"teIt@} = { p@"tA:t@} ∪ { p@"teIt@}

{ t@"mA:t@} = { t@"mA:t@} ∪ { t@"mA:t@}
{ t@"mA:t@, t@"meIt@} = { t@"mA:t@} ∪ { t@"meIt@}

with

p@"tA:t@ : p@"tA:t@
Σ?

:: t@"mA:t@ : t@"mA:t@

and

p@"tA:t@ : p@"teIt@
Σ?

:: t@"mA:t@ : t@"meIt@.

This notion of analogical proportion between languages will be calledWLangand de-

notedx : y
W
:: z : t. The degree for aWLangproportion is defined as for the case of

semigroups.

12Since atomic proportions have served as a basic component of our formalism, it seems reasonable to
imposeA(U) ⊆ B(U); this is the reason whyA(2Σ?

) is explicitly added toB(2Σ?
).
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4.2.2 Languages as Elements of a Semiring

As already noted in Section 4.2, the set of languages is a semigroup with respect to both
the classical union operation and the concatenation operation, which makes it asemir-
ing. Building on this dual nature, it is possible to propose another generalization of
analogical proportions, readily applicable to the case of languages. This generalization
extends definition 2 as follows.

Definition 9 (Analogical proportion (in a semiring)).
If (U,⊕,⊗) is a semiring,∀(x, y, z, t) ∈ U4, we havex : y :: z : t if and only if either
(y, z) ∈ {(x, t), (t, x)}, or ∀α ∈ {x, y, z, t}, ∃(α1, α2) ∈ U2 and� ∈ {⊕,⊗} such
thatα = α1 ⊕ α2 and∀i ∈ J1, 2K, xi : yi :: zi : ti.13

This definition is a simple extension of definition 2, in which two operators, rather
than just one, can be used in factorizations.

A proportion on languages can thus be defined as a specific instance of definition 9,
where the union and concatenation operations respectively instantiate⊕ and⊗. In
this context, the notion of degree is well-defined and continues to refer to one plus the
minimal number of recursions involved in a proportion.

This definition also correctly captures our working example, as:

{ p@"tA:t@} = { p@"t} . { A:} . { t@}
{ p@"tA:t@, p@"teIt@} = { p@"t} . { A:, eI} . { t@}

{ t@"mA:t@} = { t@"m} . { A:} . { t@}
{ t@"mA:t@, t@"meIt@} = { t@"m} . { A:, eI} . { t@}.

This notion of analogical proportion between languages will be calledSLangand de-

notedx : y
S
:: z : t. In the case ofSLang, the notion of degree is defined as the number

of recursions involved in the proportion.

4.2.3 An Equivalence Result

In this section, we prove that the two definitions considered above are actually equiva-
lent in the case of finite languages. Before developing the equivalence result, let us in-
formally compare these definitions. Both involve two components: a definition of base
proportions and a recursive mechanism of composition. InWLang, base proportions
include atomic proportions and proportions between isolated words, and aggregation
is made using the union operation; in contrast, inSLang, base proportions are the only
atomic ones, but they can be recombined using both union and concatenation.WLang
is based on an enriched notion of base proportion, whileSLangdraws upon a more
liberal aggregation procedure. The proof additionally needs the following lemma.

Lemma 1. An atomic proportion between non-empty finite languages can be reinter-
preted in terms of factorizations which only involve singletons.

Proof. Indeed, ifA : A
W
:: B : B with A = ∪i

k=1{ak} andB = ∪j
k=1{bk}, we can

write:

m = max(i, j), ak = a1 for k ∈ Ji + 1,mK andbk = b1 for k ∈ Jj + 1,mK,

which yields:∀k ∈ J1,mK, {ai} : {ai}
W
:: {bi} : {bi}.

13Since the multiplication (⊗) with the identity element for⊕ is an absorbing (thus destructive) operation,
we additionally impose that this identity element cannot be involved in a multiplication.
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Proposition 11.

∀(x, y, z, t) ∈ (2Σ?

)4, x : y
W
:: z : t⇔x : y

S
:: z : t.

Proof. ⇒. By induction on the degree of the proportion. Let(x, y, z, t) ∈ (2Σ?

)4 with

x : y
W
:: z : t andd = D(x : y

W
:: z : t) the degree of the proportion. By definition,

there exist some languages:

(xi)i∈J1,dK, (yi)i∈J1,dK, (zi)i∈J1,dK, (ti)i∈J1,dK

so that∀α ∈ {x, y, z, t}, α1 ∪ · · · ∪ αd = α, and∀i ∈ J1, dK, xi : yi
W
:: zi : ti (atomic

proportion or proportion between singletons). Ifd = 1, then the quadruplet(x, y, z, t)
is either an atomic proportion or a proportion between singletons. In the former case,
the result is trivially verified. In the latter,x, y, z andt being singletons, we can note

(x, y, z, t) = ({x′}, {y′}, {z′}, {t′}) with x′ : y′
Σ?

:: z′ : t′. The definition of analogical
proportion between words states that forα′ ∈ {x′, y′, z′, t′}, there exist some factors
(α′i)i∈J1,dK ∈ Σ? so thatα′ = α′1 . . . α′m and

∀i, (y′i, z′i) ∈ {(x′i, t′i), (t′i, x′i)}.

If we setαi = {α′i}, we then have:α = α1 . . . αm (by concatenation of languages)
with ∀i ∈ J1,mK, (yi, zi) ∈ {(xi, ti), (ti, xi)} andαi 6= ∅. Since the definition of
SLangallows for concatenations, we havex : y :: z : t, which establishes the impli-
cation ford = 1. The remaining of the inductive proof is trivial, as the composition
mechanism is richer in the case ofSLangthan it is forWLang.
⇐. By induction on the degree of the proportion. Let(x, y, z, t) ∈ (2Σ?

)4 with

x : y
S
:: z : t andd = D(x : y

S
:: z : t) the degree of the proportion. Ifd = 1, then the

result is trivial sinceA(2Σ?

) ⊆ B(2Σ?

). Let us now assume that the result holds for
any proportion with degreek < d. By definition,∃x1, x2, t1, t2 ∈ (2Σ?

)4 such that:

x = x1 � x2, y = x1 � t2, z = t1 � x2, t = t1 � t2,

with � ∈ {∪, .}, x1 : y1
S
:: z1 : t1 andx2 : y2

S
:: z2 : t2. By definition of the degree of

a proportion, we haveD(x1 : y1
S
:: z1 : t1) < d andD(x2 : y2

S
:: z2 : t2) < d. Using

the induction hypothesis, we thus also havex1 : y1
W
:: z1 : t1 and x2 : y2

W
:: z2 : t2.

If � = ∪, the implication holds, since the union operation defines the aggregation
mechanism ofWLang, i.e. since:

x1 : y1
W
:: z1 : t1 ∧ x2 : y2

W
:: z2 : t2 ⇒ x : y

W
:: z : t.

If � = ., we can express the various factors involved as unions of proportions
between singletons using Lemma 1,14 i.e. ∀α ∈ {x, y, z, t}, α1 = ∪i

k=1{α′1k}, α2 =
∪j

k=1{α′2k} with:

∀k ∈ J1, iK, x′1k : y′1k

Σ?

:: z′1k : t′1k and∀l ∈ J1, jK, x′2l : y′2l

Σ?

:: z′2l : t′2l.

It is consequently possible to write:

∀α ∈ {x, y, z, t}, α = α1α2 = ∪i,j
k=1,l=1{α

′
1k}{α′2l} = ∪i,j

k=1,l=1{α
′
1kα′2l}.

14This is legitimate by virtue of the fact, as pointed out in Section 4.2.2, that the factors composed using
concatenation are non-empty.
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Since∀k ∈ J1, iK, x′1k : y′1k

Σ?

:: z′1k : t′1k and∀k ∈ J1, jK, x′2k : y′2k

Σ?

:: z′2k : t′2k, we

also have∀(k, l) ∈ J1, iK× J1, jK, x′1kx′2l : y′1ky′2l

Σ?

:: z′1kz′2l : t′1k, which completes the

proof that the proportionx : y
W
:: z : t holds.

4.2.4 Discussion

The equivalence result established above is a sign of the consistency of the framework.
For finite languages, the verification and solving procedures are decidable, though no
efficient algorithm is known. In this case, a brute-force approach remains possible, by
consideringWLang and the set of factorizations (with respect to the union operation)
of a given language.15 We do not have such a result in the case of infinite languages.

5 Tree Proportions

Labeled trees are commonly used in Natural Language Processing to represent lin-
guistic entities: for instance, they can represent syntactic structures, or terms in the
logical representation of a concept or of a sentence. Hence the need to provide a sound
definition, and companion algorithms, for computing proportions on trees.

The definition of proportions between trees is quite similar to the one used for
words and involves (i) associative binary operations between trees and (ii) the notion
of alternating subtrees. The most obvious candidate operation, which is commonly en-
countered in tree-based grammar formalisms such as TSG (Bod, 1992), is the left-most
(label) substitution. However, this operation is not associative, which led us to ground
our definition on the related notion ofv-substitution(or substitution for short), which
is the operation used to combine subtrees. This operation is introduced in section 5.1,
followed in section 5.2 by a definition of tree proportions. We then turn to algorithmic
issues, and successively study the case of exact and approximate computation of tree
proportions. The main results of these studies are (i) exact algorithms for validating
proportions between trees and for computing the solution of a proportion (section 5.3)
and (ii) approximate algorithms for solving proportional equations on trees, which are
based on more restrictive definition of proportions and exploit various linearizations of
the input tree.

5.1 Notations and Definitions

The following notations and definitions are mainly borrowed and/or adapted from
Comonet al. (1997) and Shieber (2004).

Definition 10 (Trees).
Let L be a finite set oflabels, V a set ofvariables, andU = L ∪ V . The set of trees
overU , denotedT (U), is the smallest set such that:

• l ∈ T (U) for all l ∈ U ;

• f(t1, . . . , tn) ∈ T (U) for all f ∈ U andi ∈ J1, nK, with ti ∈ T (U).

15The number of factorizations (with respect to union) of a given language is actually infinite since a factor
can be repeated an unlimited number of times. However, if we have proportions in mind, it is clear that it is
not necessary to repeat a term more than twice: in a proportionx : y :: z : t, a factor inx can only be aligned
with a factor iny, in z, or in both. For a given language, the number of factorizations that are relevant to
proportions is thus finite.
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Nodes in a tree are identified by their position, where a position is simply a se-
quence of positive integers, i.e. a word inN?

+. Positionε is the position of the root,1
the position of its first (leftmost) child,1.2 the position of the second child of its first
child, and so forth. A setPos(t) of nodes positions isprefixial if

∀(u, i) ∈ (N?
+ × N+), u.i ∈ Pos(t)⇒ ∀j ∈ J1, iK, u.j ∈ Pos(t).

Prefixial sets are also termedtree domains. A tree such thatPos(t) = {ε} is called an
empty tree.

A labeled treet is thus a mapping from a tree domainPos(t) to U , where each
node position is mapped to the label of the corresponding node. The label of node at
positionp in the treet will be denotedt@p. This mapping is computed recursively as:{

f(t1, . . . , tn)@ε = f,
f(t1, . . . , tn)@i.p = ti@p for i ∈ J1, nK.

The set of variable positions int is denoted byVPos(t) andV(t) is the set of
variables int. In the following, we will only consider trees in which these variables are
located on leaves, i.e.:

∀u ∈ U, [u ∈ Pos(t) and∃j, u.j ∈ Pos(t)]⇒ t@u /∈ V.

Theyield of a treet is the word inL? defined as:{
Y(l) = l,
Y(f(t1, . . . , tn)) = Y(t1). . . . .Y(tn).

Example Let us consider the set of labelsL = {a, b} and the set of variablesV =
{x}. The treet1 ∈ T (U), defined as:

t1@ε = t1@1 = t1@2.2 = a, t1@2 = t1@2.1 = b andt1@2.3 = x,

and the treet2 ∈ T (U), defined as

t2@ε = t2@1.1 = t@1.2 = a, t@1 = t@2 = b,

are displayed in Figure 15, where positions appear between parentheses. We have
VPos(t1) = {x}, VPos(t2) = ∅, Y(t1) = abax, andY(t2) = aab.

t1 t2
a(ε)

a(1) b (2)

b(2.1) a(2.2) x(2.3)

a(ε)

b(1)

a(1.1) a(1.2)

b (2)

Figure 15: Two examples of trees.

We are now in a position to introduce the notion of substitution.
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Definition 11 (Substitution).
A substitutionis a pair (v ← t′), wherev ∈ V is a variable andt′ ∈ T (U) is a
tree. Theapplicationof the substitution(v ← t′) to a treet is denotedt /v t′ and is
computed inductively as: v /v t′ = t′ if v ∈ V,

l /v t′ = l if l ∈ L,
f(t1, . . . , tn) /v t′ = f(t1 /v t′, . . . , tn /v t′).

In other words, the application of a substitution consists in replacingeach leafof t
labeledv by the treet′.

Example Continuing with the example trees of Figure 15, the application of substi-
tution (x← t2) to t1 yieldst1 /x t2 = t3 (see Figure 16).

a(ε)

a(1) b(2)

b(2.1) a(2.2) a(2.3)

b(2.3.1)

a(2.3.1.1) a(2.3.1.2)

b(2.3.2)

Figure 16: The resultt3 of the substitutiont1 /x t2.

A factorization of a treet is a sequence of substitutions whose final result ist. Put
in formal terms:

Definition 12 (Factorization).
A factorizationof a treet ∈ T (U) is a pair [s, v ], wheres is a sequence of trees
(t1, . . . , tn) and wherev is a sequence of variables(v1, . . . , vn−1) such that:

• t1 /v1 . . . /vn−1 tn = t;

• ∀i ∈ J1, nK, |{p ∈ Pos(t′i)| t′i@p = vi}| = 1, wheret′i = t1 /v1 . . . /vi−1 ti.

The second condition expresses an essential restriction in our model: each substi-
tution in the factorization must operate exactly on one node. In the following, we will
consider two different notations for factorizations.
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Two factorizations that only differ in the naming of variables can be considered
equivalent, which is formalized as follows. Letm : V1 → V2 be a bijective renaming
of variables; by extension,m(t) denotes the treet in which each variablev of V1 has
been replaced by the corresponding variablem(v) in V2. For a factorization[s, v] with
s = (t1, . . . , tn) andv = (v1, . . . , vn−1), we will also note

m([s, v]) = [(m(t1), . . . ,m(tn)), (m(v1),m(v2), . . . ,m(vn−1))].

Since the renaming of variables is bijective, if[s, v ] is a factorization oft, thenm([s, v ])
is also a factorization oft. Moreover, if we write[s, v ] ∼ [s ′, v ′] if and only if there
exists a bijective renaming of variablesm from {vi}i∈J1,n−1K to {v′i}i∈J1,n−1K such
thatm([s, v ]) = [s ′, v ′], then∼ defines an equivalence relation.

In the following, we consider two differentprojection mapsto refer to an equiva-
lence class of factorizations using a particular representative of this class. In the first
one, termed the “N notation”, variables are denoted by their positions in the factoriza-
tion, i.e. for a factorization[s, v] with s = (t1, . . . , tn) andv = (v1, . . . , vn−1), we
have∀i ∈ J1, n− 1K, N(vi) = i, i.e.:

N([s, v]) = [(N(t1), . . . , N(tn)), (1, 2, . . . , n− 1)].

In the second one, termed the “P notation”, variables are denoted by the (unique)
position in the tree where the substitution takes place, i.e.:

P ([s, v]) = [(P (t1), . . . , P (tn)), (p1, p2, . . . , pn−1)],
with ∀i ∈ J1, n− 1K, (t1 /v1 . . . /vi−1 ti)@pi = vi.

We will say that a factorization[s, v ] is anN -factorization (resp. aP -factorization) if
N([s, v ]) = [s, v ] (resp.P ([s, v ]) = [s, v ]). By construction, there is only oneN -
factorization and oneP -factorization per equivalence class. In the following, we will
only considerP -factorizations whose first tree to rewrite is the empty treeε.

5.2 Analogical Proportions between Trees

Provided with the basic notions of substitution and factorization, we first introduce,
and then discuss, a general definition of proportions between labeled trees.

Definition 13 (Analogical proportion between trees).
For (x, y, z, t) ∈ T (U)4, we havex : y :: z : t if and only if there exist four factoriza-
tions[sx, v], [sy, v], [sz, v], [st, v] of x, y, z, andt respectively, such that:

sx = (x1, . . . , xn),
sy = (y1, . . . , yn),
sz = (z1, . . . , zn),
st = (t1, . . . , tn),

with ∀i ∈ J1, nK, (yi, zi) ∈ {(xi, ti), (ti, xi)}. As an additional restriction, we impose
that the variables involved in the proportion appear in the same factors, i.e.

∀i ∈ J1, nK,V(xi) = V(yi) = V(zi) = V(ti).

This definition is a direct adaptation of definition 2, in which subtrees are combined
via substitutions. However, instead of using only one operator, we consider here a set
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of operators (one for each variable) and require that the variables involved in the four
factorizations be identical. The first merit of this definition is thus its consistency with
our general understanding of proportions.

It can moreover be shown that, given this definition, the “syntactic” proportion
illustrated in section 2.2 holds (cf. Figure 1), as well as the more morphologically-
oriented example in Figure 17 (a). Figure 17 (b) uncovers the factorizations underlying
this proportion. See also Figure 18 for a detailed view of the example in Figure 1.

(a)

N

military
:

N

V

V |.V

de

V

N

military

V |N.

ize

N |V.

ation

::

N

colony
:

N

V

V |.V

de

V

N

colony

V |N.

ize

N |V.

ation

v1

N

V

V |.V

de

V

v1 V |N.

ize

N |V.

ation

v1

N

V

V |.V

de

V

v1 V |N.

ize

N |V.

ation

(b) : :: :
v1 → N

military

v1 → N

military

v1 → N

colony

v1 → N

colony

Figure 17: military : demilitarization :: colony : decolonization (with implicit
(a) and explicit (b) factorizations).

5.3 Computing Proportions between Trees

This section is devoted to a study of the computational implications of this definition.
We first present an exact algorithm for deciding whether four trees form a propor-
tion and explain how to turn it into a solver. This algorithm however has an (at least)
exponential worst case complexity. We thus consider approximate algorithms for ver-
ifying and solving proportional equations, which essentially put to use various tree
linearization procedures and the available verifier and solver for proportions between
sequences. These approximations are only valid for a more restrictive notion of pro-
portions between trees.
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: :: :
v1 → the police v1 → the police v1 → the mouse v1 → the mouse
v2 → impounded v2 → impounded v2 → eaten v2 → eaten
v3 → his car v3 → his car v3 → the cat v3 → the cat

Figure 18: Active/passive proportion (see Figure 1): explicit factorizations.

5.3.1 Validating Proportions between Trees

The algorithm we propose for validating proportions between trees is aconstructive
algorithm, which tries to build factorizations supporting the proportion. This algorithm
is a two-step process:

1. For each treeα in {x, y, z, t}, create a finite-state automatonAα representing all
theP -factorizations ofα (cf. Algorithm 1).

2. Search for compatible factorizations within these automata, where compatibil-
ity is defined as in definition 13. This step puts to use some of the algorithms
introduced in Section 3.4.3 to compute and validate proportions between words.

These steps are detailed in the following paragraphs.

Construction of the Automaton Algorithm 1 is essentially a recursive exploration
of all the possible decompositions of treeα in subtrees. Each state defines a set of
positions where the variables are located, and where substitution will take place. Each
transition corresponds to a substitution, which replaces a variable with a tree. Ift is a
leaf node, there are only two states, an initial statei associated to the variable position
ε, and a final statef associated with the empty set∅ – which means there is no variable
to substitute. A (loop) transition oni substitutesε with itself; a transition betweeni
andf rewritesε into l, the label of the unique node oft (Lines 1-4). If the treet is
not empty, we initialize the set of states with the initial state (associated to the variable
positionε), and the set of transitions with the loop over this initial state (Lines 5-6). We
then build the automataAj for all the childrentj of the root oft (Lines 7-8); indeed,
a substitution can occur in any of these children, leaving the rest untouched, and we
thus have to consider all the possible combinations of states (Lines 9-11). Transitions
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Algorithm 1 : ConstructAutomaton (t,p)

Input : A treet = l(t1, . . . , tn)
Output : An automataA = 〈Q,E, i, f〉
i← {ε}1

f ← ∅2

if n = 0 then3

return 〈{i, f}, {(i, i, ε→ ε), (i, f, ε→ l)}, i, f〉4

Q← {i}5

E ← {(i, i, ε→ ε)}6

for j ← 1 to n do7

Aj = 〈Qj , Ej , ij , fj〉 ← ConstructAutomaton( tj)8

for (q1, . . . , qn) ∈ Q1 × · · · ×Qn do9

q ← 1.q1 ∪ . . . · · · ∪ n.qn10

Q← Q ∪ {q}11

for j ← 1 to n do12

for (qj , q
′
j , p→ u) ∈ Ej do13

q′ ← 1.q1 ∪ · · · ∪ (j − 1).qj−1 ∪ j.q′j ∪ (j + 1).qj+1 ∪ · · · ∪ n.qn14

E ← E ∪ (q, q′, j.p→ add_pref(j, u))15

E ← E ∪ (i, q, ε→ γ−1(q))16

return 〈Q, E, i, f〉17

are built upon the set of substitutions (Lines 13-15) that occur in each child (loop in
Line 12); add_pref(j, u) denotes the treeu in which the prefixj is added to all the
variables (so as to turn a subtree oftj into a proper subtree oft). Finally, a substitution
can directly rewriteε, hence Line 16.16 An example of a treet and the associated
At is displayed in Figure 19. The proof of the following proposition can be found in
Appendix B.

Proposition 12.
The successful paths inAt are theP -factorizations oft.

Uncovering Consistent Factorizations In order to validate a proportion, we now
have to find factorizations that meet the requirements imposed by definition 13, i.e.
factorizations involving alternating substitutions. In order to do this, our algorithm
proceeds in two steps:17

16Each stateq can be associated to a tree, which is the result of the applications of the substitutions leading
to q; γ−1(q) denotes this tree. See Appendix B for a formal and detailed explanation.

17A proportion between trees involves substitutions that rewrite the same variables at the same time.
Consequently, when looking for proportions,N -factorizations, in which variables are represented by their
positions in thefactorization, are more adapted thanP -factorizations, in which variables are represented by
their positions in thetrees. However, it is more difficult to express the set ofN -factorizations in an efficient
way than it is forP -factorizations, hence the introduction of the two steps in our approach. First, candidate
factorizations are extracted from a compact representation of the set ofP -factorizations, then a consistency
check on variables is performed.
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Figure 19: From tree (a) to automaton (b). The transitive closure of the transition
relation andε loops in the automaton have been omitted for clarity.

• The first step extracts quadruples ofP -factorizationssx, sy, sz, st, with ∀α ∈
{x, y, z, t}, sα = [(α1, . . . , αn), (pα1 , . . . , pαn−1)], such that:

∀i ∈ J1, nK, d(xi) : d(yi) :: d(zi) : d(ti),

whered denotes the operation which replaces all variables by a dummy symbol
DUM. This extraction is achieved using the validation algorithm for strings
introduced in Section 3.4.3.18 Indeed, if this condition is verified, the paths
cx, cy, cz, ct defined forα ∈ {x, y, z, t} ascα = (DUM → α1, . . . ,DUM →
αn) form a valid proportion between strings (of “generalized” substitutions), and
conversely.

• The second step consists in checking that it is possible to find a consistent assign-
ment of the variables, consistent meaning here that the substitutions involved in
the factorizations actually rewrite the same variables at the same time. Given
the P -factorizationssx, sy, sz, st, and noting forα ∈ {x, y, z, t}, N(sα) =
[(α′1, . . . , α

′
n), (1, . . . , n− 1)], this is simply achieved by checking out that∀i ∈

J1, nK, (y′i, z
′
i) ∈ {(x′i, t′i), (t′i, x′i)}, andV(x′i) = V(y′i) = V(z′i) = V(t′i).

The correctness and completeness of the algorithm are proved as follows.

Proof. Correctness. By construction, the validation algorithm provides us with four
factorizationsfx, fy, fz, andft respectively ofx, y, z, andt such that

∀α ∈ {x, y, z, t}, N(fα) = [(α′1, . . . , α
′
n), (1, . . . , n− 1)],

18In particular, this step requires to build the shuffle productsA′
x • A′

t andA′
y • A′

z and the intersection
A′

x •A′
t ∩A′

y •A′
z , whereA′

α denotes the automatonAα in which the variables have been “generalized”
using a dummy symbol.
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with ∀i ∈ J1, nK, (y′i, z
′
i) ∈ {(x′i, t′i), (t′i, x′i)}, andV(x′i) = V(y′i) = V(z′i) = V(t′i).

We thus havex : y :: z : t.
Completeness.By definition of proportion between trees, there exist four factoriza-
tions[sx, v], [sy, v], [sz, v], [st, v] of x, y, z, andt respectively, such that

∀α ∈ {x, y, z, t}, sα = (α1, . . . , αn),

with ∀i ∈ J1, nK, (yi, zi) ∈ {(xi, ti), (ti, xi)} andV(xi) = V(yi) = V(zi) = V(ti).
By construction, forα ∈ {x, y, z, t}, the automatonAα contains theP -factorization
P ([sα, v]), which we noteP ([sα, v]) = [(α′1, . . . , α

′
n), (pα′1

, . . . , pα′n−1
)]. We have:

∀i ∈ J1, nK, (yi, zi) ∈ {(xi, ti), (ti, xi)},
so∀i ∈ J1, nK, (P (yi), P (zi)) ∈ {(P (xi), P (ti)), (P (ti), P (xi))},

and∀i ∈ J1, nK, (d(P (yi)), d(P (zi))) ∈ {(d(P (xi)), d(P (ti))), (d(P (ti)), d(P (xi)))}.

The validation algorithm will thus find the paths associated toP ([sα, v]) for α ∈
{x, y, z, t} and the first step of the algorithm will succeed. The last thing to check
is:

∀i ∈ J1, nK,(N(yi), N(zi)) ∈ {(N(xi), N(ti)), (N(ti), N(xi))}
andV(N(xi)) = V(N(yi)) = V(N(zi)) = V(N(ti)),

which, again, is a direct consequence of∀i ∈ J1, nK, (yi, zi) ∈ {(xi, ti), (ti, xi)} and
V(xi) = V(yi) = V(zi) = V(ti).

Complexity There is one state inAα for each antichain19 of Pos(α). In the general
case, the number of states is thus (at least) exponential with respect to the number of
internal nodes; for a treeα = l(α1, . . . , αn), the number of nodesπ(α) is computed
using the following recurrence, which can be established directly from Algorithm 1:{

π(l) = 2
π(l(α1, . . . , αn)) =

∏
1≤i≤n(1 + π(αi)).

In the case of a tree made of one root directly dominatingn− 1 leaves, this number is
π(α) = 3n−1. In the case of a balanced treeα of width k (the width is the constant
branching factor of the internal nodes inα), we haveπ(α) ≤ kC×n, whereC is a
constant which depends only onk.

The complexity of the extraction and verification step in the worst case is thus at
least exponential in the number of nodes of the trees. It is up to future work to establish
whether this decision problem isNP -complete.

5.3.2 Solving Analogical Equations between Trees

Based on the algorithm presented above, it is possible to derive a solver for analogical
equations between trees. Given three treesx, y, z, this solver constructs the automata
Ax, Ay, Az, then build the shuffle productA′

y •A′
z, and use the complementary opera-

tion with respect toA′
x to obtainA′

y •A′
z\A′

x, whereA′
α denotes the automatonAα in

which the variables have been “generalized” using a dummy symbol. This gives a set
of candidate sequences of substitutions. As is the case for verification, for each candi-
date we need to perform a check on variables to finally get the set of correct solutions
for the equationx : y :: z :?. The complexity of this solver is established in the same
manner as for the verification procedure.

19For a definition of the notion of an antichain, see the proof in Appendix B.
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5.3.3 Approximative Verification and Solving Algorithms

In this section, we present approximate algorithms aimed at validating analogical pro-
portions and solving analogical equations, which rely on tree linearization procedures.
These approximations are based on a more restrictive notion of proportions between
trees, which is detailed below.

A tree linearization is an injective application from a set of trees to some free
monoid; it establishes a unique correspondence between a tree and a string. We con-
sider here two different tree linearization procedures. The first is based on parenthe-
sized expressions; the second one is based on a prefix traversal of the tree, along which
each node label and arity are collected. These linearizations are more formally defined
as follows.

Definition 14 (Parenthesized expressions).
LetU be a set of labels and “(”, “ )” two symbols not inU . Ū denotesU ∪ {(, )}. The
parenthesized expressionof a treet is the wordp(t) ∈ Ū? inductively defined as:20

p(f(t1, . . . , tn)) = (.f.p(t1). . . . .p(tn).).

Example By considering the treet3 of Figure 16, we have:

p(t3) = (a(a)(b(b)(a)(a(b(a)(a))b))).

Definition 15 (Arity-based linearization).
Thearity-based linearizationof a treet is the wordab(t) ∈ (L×N)? inductively defined
as:

ab(f(t1, . . . , tn)) = (f, n).ab(t1). . . . .ab(tn).

Example By again consideringt3, we have:

ab(t3) = (a, 2)(a, 0)(b, 3)(b, 0)(a, 0)(a, 2)(b, 2)(a, 0)(a, 0)(b, 0).

In the following, we consider proportions in which factorizations involve variables
appearing in the same relative lexicographic order in the four trees, i.e. for a pro-
portionx : y :: z : t supported by the factorizations[(α1, . . . , αn), (v1, . . . , vn−1)] for
α ∈ {x, y, z, t}, we add the following constraints:

∀α, α′ ∈ {x, y, z, t},∀i ∈ J1, nK,∀vj , vk ∈ {v1, . . . , vn},
if (α1 /v1 . . . /vi−1 αi)@nj = vj , (α1 /v1 . . . /vi−1 αi)@nk = vk,

and(α′1 /v1 . . . /vi−1 α′i)@n′j = vj , (α′1 /v1 . . . /vi−1 α′i)@n′k = vk,

thennj < nk⇔n′j < n′k.

A proportion (between trees) satisfying these conditions will be notedx : y
C
:: z : t (C

standing here for “constrained”). The rationale behind this additional constraint is that,
in the case where it is verified, we can relate proportions between trees and proportions
between their linearizations. In particular, if a proportion between trees holds, then this
implies that there is also a proportion between their linearizations (seen as words). By
doing so, we lose some of the expressiveness of proportions between trees (for exam-
ple, a passive/active opposition cannot be captured); however, it makes the application
of efficient algorithms possible, as demonstrated by the following result.

20The concatenation operation is explicitly noted for readability.
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Proposition 13.
For (x, y, z, t) ∈ (T (U))4, we have:

x : y
C
:: z : t⇒ p(x) : p(y) :: p(z) : p(t).

Proof. First, let us remark that for a treet, and a variablev appearing exactly once in
t, if p(t) = u1vu2, then for any treet′, p(t /v t′) = u1p(t′)u2.

The proof is established by induction on the degreen of the proportion. We will

also prove that for any proportionx : y
C
:: z : t of degreen, if {v1, . . . , vk} is the set of

variables appearing inx,y,z, andt, in lexicographic order, we have:

∀α ∈ {x, y, z, t},∃(uαi)i∈J1,k+1K ∈ Ū?, so thatp(α) = uα1 v1 uα2 . . . vk uαk+1 ,

with ∀i ∈ J1, k + 1K, uxi : uyi :: uzi : uti .

Let (x, y, z, t) ∈ (T (U))4 such thatx : y
C
:: z : t. By definition, there exist four

factorizations[sx, v], [sy, v], [sz, v], [st, v] of x, y, z, and t respectively, such that:
sα = (α1, . . . , αn) for α ∈ {x, y, z, t}, with ∀i ∈ J1, nK, (yi, zi) ∈ {(xi, ti), (ti, xi)}
andV(xi) = V(yi) = V(zi) = V(ti), and the additional specific constraint introduced

above for
C
::. If n = 1, the proportions are atomic, and since the variables appear in the

four trees in the same lexicographic order, it is also the case for the variables in their
linearizations. The implication is thus verified forn = 1.

We now assume that it also holds for any proportion of degreek < n. For α
in {x, y, z, t}, we setα′ = α1 /v1 . . . /vn−2 αn−1 andv = vn−1, so we can write
α = α′ /v αn. The proportionx′ : y′ :: z′ : t′ clearly holds and its degree is at most
n− 1. The induction hypothesis thus yields:

∀α ∈ {x, y, z, t},∃(uαi)i∈J1,k+1K ∈ Ū?, so thatp(α′) = uα1 . . . v . . . uαk+1 ,

with ∀i ∈ J1, k + 1K, uxi : uyi :: uzi : uti .

We then havep(α) = uα1 . . . p(αn) . . . uαk+1 . Moreover, since the variables
in xn, yn, zn, and tn appear exactly once and in the same relative order, we have
p(x) : p(y) :: p(z) : p(t), as well as the property added to the induction hypothesis.

Proposition 14.
For (x, y, z, t) ∈ (T (U))4, we have:

x : y
C
:: z : t⇒ ab(x) : ab(y) :: ab(z) : ab(t).

Proof. The demonstration is directly obtained by replacingp(w) by ab(w) in the proof
of proposition 13.

More generally, the proposition is true whenever the linearization respects the lex-
icographic order of the nodes.

These results warrant the use of an approximate verifier or solver based on tree
linearization procedures. Moreover, it is possible to stack several verifiers or solvers
based on various linearizations in order to get closer to the exact solutions. We can also
use these procedures as a generating device, which proposes analogical proportions
which will then be validated or filtered by the exact algorithm presented in the previous
section.
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5.4 Summary

In this section, we have defined two alternative notions of proportions between labeled
trees. The first one is more general and covers a wider range of linguistic phenomena.
Notably, it relates structures in which constituents are moved from one position in the
tree to another, as is the case in active/passive transformations. Based on this first
definition, we have presented an exponential algorithm for validating proportions, and
for solving equations.

The second definition is more restrictive, as it requires that constituents should
occur in the same positions in the trees. However, it lends itself to faster, albeit approx-
imate, algorithms, which can be used in a two-step validations procedure.

Both definitions can be further generalized in a manner similar to the generaliza-
tion discussed in Section 4: by replacing the condition that the labels occurring on
leaf nodes should match exactly by the less stringent requirement that they define a
proportion on sequences.

6 Conclusion and Perspectives

6.1 Conclusion

In this paper, we have introduced a formal algebraic framework for the notion of ana-
logical proportions. This framework applies to a large range of algebraic structures:
semigroups, free monoids, lattices, languages, and sets of trees. This framework is
based on the decomposition of objects into smaller parts that alternate. Depending on
the actual structure, the generic definition we propose may be simplified, and the veri-
fication and solving procedures may be more or less expensive. We discussed the algo-
rithmic complexity of these procedures in several cases. Efficient algorithms are avail-
able for strings, feature-structures, and sets. In the case of trees, we can build approx-
imate algorithms upon various linearizations. This yields a computational model suit-
able for most structured representations commonly used in NLP applications. More-
over, the examples of proportions we planned to model are covered by our definitions.

This framework has been implemented within the software ALANIS21 (A Learning-
by-ANalogy Inferencer for Structured data): learning devices that are based on analog-
ical proportions can benefit from this implementation and are now applicable to a wide
range of linguistics representations and NLP tasks. The results of several experiments
using this software are actually reported by Stroppa & Yvon (2005); Stroppa (2005);
Stroppa & Yvon (2006), for the following tasks: (i) grapheme-to-phoneme conversion,
(ii) inflectional analysis of word forms, and (iii) derivational analysis of word forms. In
the first task, inputs and outputs are strings (sequences of graphemes and phonemes).
In the second one, we look for the lemma and the morphological features associated
to a given word form; inputs are strings and outputs are pairs of string and (flat) fea-
ture structures. The goal of the third task is to find the hierarchical decomposition of
a wordform into morphemes; inputs are strings and outputs are labeled trees. These
experimental results show that state-of-the-art performances can be achieved for these
three tasks.

21This software is freely available fromhttp://www.computing.dcu.ie/~nstroppa/index.
php?page=softwares .
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6.2 Perspectives

The work reported in this paper has deliberately concentrated on the computation of
proportions: this is, of course, only half of the story and a lot of efforts are required to
put these algorithms to use in realistic machine learning applications. This aspect of
the work is still on-going, even if promising results have been obtained in a variety of
applications and for various languages (see the references cited above).

Current development is active on two separate fronts. On the experimental front,
we intend to widen the range of applications of analogical learning, by considering
more language types (especially languages exhibiting complex and/or non concatena-
tive morphological phenomena), and by considering novel natural language processing
tasks, such as, for instance, word sense disambiguation, which seems to be a promising
test-bed for analogical approaches (see the discussion in (Pirrelli & Yvon, 1999) and
the references cited therein).

On the more theoretical front, the main computational burden of a machine learning
approach based on analogical proportions remains the search, in the database of known
instances, of candidate analog triples on which to ground the inference procedure. A
brute force approach would require to evaluate a number of proportions that grows
as the cube of the number of training instances, which, given the complexity of the
algorithms discussed in this paper, and the typical size of dictionaries or tree-banks, is
prohibitive. We believe that the search step could be made considerably faster if we
could somehow restrict this search to a subset ofpromisingtriples. In other terms, what
we need are procedures allowing torank candidates based on some numerical scores.
Propositions for defining a gradual notion of analogical proportions have been made in
(Yvon et al., 2004) and our next step will be to reevaluate these propositions and see
how they can help improve the search procedure.

6.3 An Algorithmic Vision of Analogical Proportions

As a concluding note, we would finally like to emphasize the relationship between our
work and some conceptions of analogical proportions that are prevalent in some Arti-
ficial Intelligence (AI) circles. In particular, we would like to show that our framework
can be extended to take into account more complex proportions, such as those studied
in AI.

In our framework, proportions are mainly based on the notions of decomposition
and alternation (cf. Section 3). This is suited to the “simple” case of semigroup and
its derivatives, where only one operator is available. However, two directions have
already been explored, which enhance the expressiveness of the approach: (i) the use
of multi-level proportions, which stack structures recursively, and (ii) the addition of
operators, which enrich the composition mechanism; these kinds of extensions have
been introduced to handle languages (cf. Section 4.2) and have also proved necessary
to handle the case of trees (cf. Section 5).

By using unrestricted operators and unlimited recursive schemes, we are actually
heading towards a situation where proportions can be defined for any computable ob-
jects. The decomposition of an object is simply an algorithmic procedure computing
this object:u(x1, . . . , xn) = x is an “algorithmic factorization”ux of x, whereu is an
algorithm andx1, . . . , xn some parameters. By convention, we will noteux(0) = u
and∀i ∈ J1, nK, ux(i) = xi. A definition of analogical proportion which applies to
any computable object can be derived from these considerations.
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Definition 16 (Analogical proportions between computable objects).
For a quadruple(x, y, z, t), we havex : y :: z : t if and only if there exist four algo-
rithmic factorizationsux, uy, uz, ut of x, y, z, andt respectively, such that:

∀i ∈ J0, nK, (uy(i), uz(i)) ∈ {(ux(i), ut(i)), (ut(i), ux(i))}

This definition is completely general and consistent with the work of Schmidet al.
(2003). It can also be used to model complex analogies: most of the examples studied
by Hofstadter & the Fluid Analogies Research Group (1995) can be expressed in this
framework. For example, in order to modelabc : abd :: ijk : ijl, it is sufficient to write
u(a1, a2, a3, a4) = a1.a2.(a3 + a4), which yields:

u(a, b, c, 0) = abc, u(a, b, c, 1) = abd, u(i, j, k, 0) = ijk, u(i, j, k, 1) = ijl.

The relationship between the lettersa, b, and c can also be exploited: if we note
u(a1, a2) = a1.(a1 + 1).(a1 + 2 + a2), we have

u(a, 0) = abc, u(a, 1) = abd, u(i, 0) = ijk, u(i, 1) = ijl.

This also applies to proportions such asabc : abd :: mrrjjj : mrrkkk.
The algorithms used in the case of strings (cf. Section 3.4), are very simple: they

can only concatenate strings. The less strings they are concatenating, the less complex
they are considered (cf. notion of degree), and better is the proportion. In the algo-
rithmic context, the (Kolmogorov) algorithmic complexity (as described e.g. by Li &
Vitányi (1997)) seems to be a reasonable criterion to qualify a proportion:22 the less
complex the algorithms involved in proportion, the better the proportion, and the more
likely this proportion will match the intuition. In other words, we have recasted the
problem of recognizing and verifying analogies into the problem of finding algorithms
with small complexities. We do not plan to develop our work along those lines any
further and intend to continue focusing on those specific structures that are commonly
used in NLP applications; it is however comforting to realize that our work is consistent
with general purpose, cognitively-oriented visions of analogical proportions.

A Proof of Proposition 10

Proof. Let x : y :: z : t be an analogical proportion with

D = D(x : y :: z : t), O = Oε(x : y :: z : t, x) andD > O > 1.

By hypothesis, there exist some factorizations(fx, fy, fz, ft) of sizen and an interval
J = Ji, jK such thatfx(J) = ε, |J | = O and for all intervalI ⊆ J1, nK with |I | > O,
fx(I) 6= ε. SinceD > O, one factor inx is not empty and we have eitheri > 1
or j < D. For symmetry reasons, we can assume without loss of generality that
i > 1. The proof is achieved by building new factorizations ofx, y andz obtained by
permuting the factors at positioni andi + 1 in x, y andz. For α ∈ {x, y, z, t}, we
define

f̂α(k) = fα(k) if k < i− 1,

f̂α(i− 1) = fα(i− 1)fα(i + 1),
f̂α(i) = fα(i),
f̂α(k) = fα(k + 1) if i < k < D.

22Describing objects thanks to the algorithms that can generate them is the basis of the algorithmic com-
plexity.
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Since|J | > 1, we havei+1 ∈ J andfx(i+1) = ε. Moreover, for symmetry reasons,
we can assume that(fx(i), ft(i)) = (fy(i), fz(i)) and(fx(i+1), ft(i+1)) = (fz(i+
1), fy(i + 1)). In particular, sincefx(i) = fy(i) = ε andfx(i + 1) = fz(i + 1) = ε,
we havefα(i + 1)fα(i) = fα(i − 1)fα(i) for α ∈ {x, y, z}, and permuting these
chunks yields proper factorizations ofx, y andz. The result of this construction is a
factorizationf̂t for a wordt̂ such thatx : y :: z : t̂ with

D(x : y :: z : t̂) = | f̂x | = |fx | − 1 = D − 1.

Moreover, the “local” degree of these new factorizations has decreased by1, so the
equalityOε(x : y :: z : t̂, x) = Oε(x : y :: z : t, x) − 1 is obtained by applying the
same permutations for all the intervalsJ such thatfx(J) = ε and|J | = O.

Finally, since

(fx(i), ft(i)) = (fy(i), fz(i)) with fx(i) = fy(i) = ε

and

(fx(i + 1), ft(i + 1)) = (fz(i + 1), fy(i + 1)) with fx(i + 1) = fz(i + 1) = ε,

we have

max(|fx(i− 1) |, |ft(i− 1) |) + max(|fx(i) |, |ft(i) |)
+max(|fx(i + 1) |, |ft(i + 1) |)

= max(|fx(i− 1) |, |ft(i− 1) |) + |fz(i) |+ |fy(i + 1) |
≤ max(|fx(i− 1) |, |ft(i− 1) |+ |fy(i + 1) |) + |fz(i) |,

which yields
T (x : y :: z : t̂) ≤ T (x : y :: z : t).

B Proof of Proposition 12

In the following, we show that, for a treet, the Algorithm 1 constructs an automaton
At such that the successful paths inAt are exactly theP -factorizations oft.

Let us first remark that the set of nodesPos(t) of a treet is equipped with a natural
partial order23 ≤ defined as follows:∀(pi, pj) ∈ Pos(t)2, pi ≤ pj if and only if
∃p ∈ N∗ such thatpi = pj .p. This simply states thatpi ≤ pj if and only if pi

is a descendant ofpj , i.e. pj dominatespi. An antichainwith respect to this partial
order is a subseta ∈ Pos(t) in which each pair of elements is incomparable, that is:
∀(x, y) ∈ a2, neitherx ≤ y nory ≤ x (no node is dominating another node). Given an
antichaina = {p1, . . . , pn} of Pos(t), replacing the subtrees rooted at(p1, . . . , pn) in t
with the variables(p1, . . . , pn) results in a treet′ such thatVPos(t′) = a.24 Moreover,
the applicationVPos is defined for any sucht′; VPos is thus bijective. For readability,
VPos is notedγ in the following.

Lemma 2. A bijective correspondence can be established between anyP -factorization
[(t1, . . . , tn), (p1, . . . , pn−1)] of a treet and the sequence of antichains(a1, . . . , an)
defined as∀i ∈ J1, nK, ai = γ(t1 /v1 . . . /vi−1 ti−1). This sequence verifiesan = ∅,
and∀i ∈ J1, nK, ai+1 = ai \ {pi} ∪ pi.γ(ti).

23Trees can indeed be defined as particular partially ordered sets.
24The so-calledfrontier operationin the Data-Oriented Parsing litterature.
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Proof. Let [(t1, . . . , tn), (p1, . . . , pn−1)] be aP -factorization oft. We note fori in
J1, nK, t′i = t1/v1 . . ./vi−1 ti−1. The treet′i+1 is obtained by replacing int′i the variable
pi at positionpi with ti. It is thus routine to verify thatγ(t′i+1) = γ(t′i)\{pi}∪pi.γ(ti),
andγ(t′n) = γ(t) = ∅.

Conversely, let(a1, . . . , an) be a sequence of antichains such thatan = ∅, and for
i ∈ J1, nK, there exists a positionpi and a treeti with ai+1 = ai \ {pi} ∪ pi.γ(ti).
For i ∈ J1, nK, we set andt′i = γ−1(ai). We have∀i ∈ J1, nK, t′i+1 = t′i /pi

ti, and
t′n = γ−1(∅) = t, so[(t1, . . . , tn), (p1, . . . , pn−1)] defines aP -factorization oft.

Lemma 3. LetAt = 〈Q, E, i, f〉 =ConstructAutomaton (t). There exists a bijec-
tionβ from the set of statesQ to the set of antichains overPos(t) such thatβ(i) = {ε},
β(f) = ∅, and(q1, q2, p1 → t1) ∈ E if and only ifa2 = a1 \ {p1} ∪ p1.γ(t1), where
a1 = β(q1), a2 = β(q2).

Proof. By induction on the size of the tree. Let us consider the treet = l(t1, . . . , tn) of
sizest. If st = 1, the only antichains oft area1 = {ε} anda2 = ∅, which correspond
exactly to the two states of the automaton constructed byConstructAutomaton (t)
(respectivelyi andf ). The variableε in γ−1(a1) can rewrite either to itself or tol;
these are the two transitions inE, which proves the result forst = 1 (see Lines 1-4).

We now assume the result is true for any tree of sizes < st. Let a be an antichain
of t; by definition of an antichain, eithera = {ε} or ε /∈ a. The first case corre-
spond to the initial state, added to the set of states (Line 5). In the second case, since
ε /∈ a, a can be rewritten asa = 1.a1 ∪ · · · ∪ n.an, whereai is an antichain ofti for
i ∈ J1, nK. Conversely, ifai is an antichain ofti for i ∈ J1, nK, 1.a1 ∪ · · · ∪ n.an

defines an antichain ofa such thatε /∈ a. By induction hypothesis, there exists a bijec-
tion between the antichains ofPos(ti) and the states ofConstructAutomaton (ti).
Consequently, there is also a bijection between the antichains ofPos(t) and the states
of ConstructAutomaton (t) (Lines 7-11).

A replacement int of variablei.p with a treeu at positioni.p, with i ∈ J1, nK,
corresponds to a replacement inti of variablep with a treeu′ at positionp such that
u′ = add_pref(i, u), and vice-versa, so by induction hypothesis, the required property
over the transitions is verified (Lines 12-15). A replacement in an empty tree of the
variableε with a treeu corresponds to a transition from the initial statei to the stateq
such thatγ(u) = q (Lines 6 and 16), which ends the proof.

Proof. Finally, to prove that the successful paths inAt are exactly theP -factorizations
of t, it is sufficient to note that theP -factorizations exactly correspond to the sequences
of antichains that verify certain conditions (Lemma 1), and that these very sequences
of antichains correspond to the sucessful paths inAt (Lemma 2).

C Implementation Details

The general algebraic analogical framework presented in this paper has been partly im-
plemented in a software package called ALANIS (A Learning-b ANalogy Inferencer
for Structured data). The goal of this implementation is to make concrete the math-
ematical foundations by furnishing the algorithms needed to compute analogical pro-
portions. Moreover, we want these algorithms to work on the large variety of structures
covered by the formal model.
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In order to achieve this goal of genericity, our implementation is based on the
design-pattern underlying the Vaucanson library (Lombardyet al., 2003). This design-
pattern has first been conceived to manipulate generalized automata, i.e. automata
whose transitions may be labeled by letters, but also words or series (Sakarovitch,
2003). The great particularity of this design-pattern is to completely separate the al-
gebraic structures (e.g. alphabets, monoids, semirings and series) from their imple-
mentations (e.g. characters, strings, vectors or maps). This genericity heavily relies on
static-linking techniques which ensure that the framework does not suffer from run-
time overhead (Régis-Gianas & Poss, 2003).

This design-pattern forms the core of our framework: the algebraic structures (which
give a meaning to analogical proportions) and their concrete implementations are to-
tally separated. For examplefloat or double may be used to modelize elements of
(R,+) or (R∗,×) andintegers may be used to modelize elements of(Z,+). In ev-
ery case, the underlying algebraic structure is an abelian group and there is a single
algorithm to handle all these situations. Moreover, it is possible to specialize an algo-
rithm with respect to its implementation: additional optimizations can be performed
when the underlying implementation of a data structure has some features we can take
advantage of while preserving the framework core.
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