Clustering a medieval social network by SOM using a kernel based distance measure

Abstract : In order to explore the social organization of a medieval peasant community before the Hundred Years' War, we propose the use of an adaptation of the well-known Kohonen Self Organizing Map to dissimilarity data. In this paper, the algorithm is used with a distance based on a kernel which allows the choice of a smoothing parameter to control the importance of local or global proximities.
Document type :
Conference papers
European Symposium on Artificial Neural Networks, Apr 2007, Bruges, Belgium. M. Verleysen, pp.31-36, 2007
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00145117
Contributor : Nathalie Villa-Vialaneix <>
Submitted on : Monday, May 7, 2007 - 6:56:27 PM
Last modification on : Monday, December 7, 2015 - 2:16:47 PM
Document(s) archivé(s) le : Wednesday, April 7, 2010 - 2:15:09 AM

Files

villa_boulet_ESANN2007_final.p...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00145117, version 1

Collections

Citation

Nathalie Villa, Romain Boulet. Clustering a medieval social network by SOM using a kernel based distance measure. European Symposium on Artificial Neural Networks, Apr 2007, Bruges, Belgium. M. Verleysen, pp.31-36, 2007. <hal-00145117>

Share

Metrics

Record views

150

Document downloads

62