B. Fournier, M. Sauzay, C. Caës, and M. Mottot, Analysis of the hysteresis loops of a martensitic steel. Part I : Study of the inuence of strain amplitude and temperature under pure fatigue loadings using an enhanced stress partitionning method, Materials Science & Engineering, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00144997

B. G. Gieseke, C. R. Brinkman, and P. J. Maziasz, The inuence of thermal aging on the microstructure and fatigue properties of modied 9Cr-1Mo steel

, Microstructures and mechanical properties of aging material, TMS The Minerals, Metals & Materials Society, 1993.

A. Nagesha, M. Valsan, R. Kannan, K. Bhanu-sankara-rao, and S. L. Mannan, Inuence of temperature on the low cycle fatigue behaviour of a modied 9Cr-1Mo ferritic steel, International Journal of Fatigue, vol.24, p.12851293, 2002.

S. Kim and J. R. Weertman, Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue, Metallurgical Transactions A, vol.19, p.9991007, 1988.

A. F. Armas, C. Petersen, R. Schmitt, M. Avalos, and I. Alvarez-armas, Mechanical and microstructural behaviour of isothermally and thermally fatigued ferritic/martensitic steels, Journal of Nuclear Materials, pp.509-513, 2002.

A. F. Armas, C. Petersen, R. Schmitt, M. Avalos, and I. Alvarez, Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels, Journal of Nuclear Materials, pp.329-333, 2004.

A. F. Armas, M. Avalos, I. Alvarez-armas, C. Petersen, and R. Schmitt, Dynamic strain ageing evidences during low cycle fatigue in ferritic-martensitic stainless-steels, Journal of Nuclear Materials, pp.258-263, 1998.

N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, and C. Levaillant, Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel, Materials Science & Engineering, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01715085

G. Ebi and A. J. Mcevily, Eect of processing on the high temperature low cycle fatigue properties of modied 9Cr-1Mo ferritic steel, Fatigue Engng. Mater. Struc, vol.7, p.299314, 1994.

M. Yaguchi and Y. Takahashi, Ratchetting of viscoplastic material with cyclic softening, part 1 : experiments on modied 9Cr-1Mo steel, International Journal of Plasticity, vol.21, p.4365, 2005.

T. Kruml and J. Polak, Fatigue softening of X10CrAl124 ferritic steel, Materials Science & Engineering, 2001.

Z. Zhang, D. Delagnes, and G. Bernhart, Anisothermal cyclic plasticity of martensitic steels, International Journal of Fatigue, vol.24, p.635648, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01715087

L. Kunz and P. Lukas, Cyclic stress-strain behavior of 9Cr-1Mo steel at positive mean stress, Materials Science & Engineering, 2001.

R. Vasina, P. Lukas, L. Kunz, and V. Sklenicka, Interaction of high cycle fatigue and creep in 9%Cr-1Mo steel at elevated temperature, Fatigue Fract. Engng Mater. Struct, vol.18, p.2735, 1995.

A. A. Tavassoli, M. Mottot, I. Bretherton, and J. Wareing, Fatigue and creepfatigue failure in wrought modied 9Cr 1Mo ferritic steel, 1997.

K. Aoto, R. Komine, F. Ueno, H. Kawasaki, and Y. Wada, Creep-fatigue evaluation of normalized and tempered modied 9Cr-1Mo, Nuclear Engineering & Design, vol.153, p.97110, 1994.

T. Goswami, Development of generic creep-fatigue life prediction, Materials & Design, vol.25, p.277288, 2004.

T. Sugiura, A. Ishikawa, T. Nakamura, and Y. Asada, Formulation of air environmental eect on creep-fatigue interaction, Nuclear Engineering & Design, vol.153, p.8795, 1994.

B. K. Choudhary, K. Bhanu-sankara-rao, S. L. Mannan, and B. Kashyap, Low cycle fatigue, creep and creep-fatigue behaviour of forged thick section tube plate of 9Cr-1Mo ferritic steel, Euromat, vol.96, 1996.

T. Gegenbach and A. Klenk, Creep, creep-fatigue crack intiation and growth in 9-12% chromium steels, OMMI, vol.3, 2004.

S. R. Holdsworth, Creep-fatigue properties of high temperature turbine steels, Materials at high temperature, vol.18, p.261265, 2001.

S. L. Mannan and M. Valsan, High-temperature low cycle fatigue, creep-fatigue and thermomechanical fatigue of steels and their welds, International Journal of Mechanical Sciences, 2006.

K. Taguchi, M. Ueta, K. Douzaki, M. Sukekawa, H. Koto et al., Creepfatigue life prediction for modied 9Cr-1Mo steel. High temperature service and time-dependent failure, ASME, 1993.

Y. Asada, Eect of air environment on creep-fatigue behavior of some commercial steels. High temperature service and time-dependent failure, ASME, PVP conference, 1993.

S. Straub, P. Polcik, D. Henes, and W. Blum, Simulation of the long-term cyclic creep behaviour of a low alloyed ferritic chromium steel, Materials Science & Engineering, 1997.

R. Raj, Crack initiation in grain boundaries under conditions of steady-state and cyclic creep, Transactions of the ASME, p.122, 1976.

M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi, and K. Kanazawa, Microstructures of creep-fatigued 9-12% Cr ferritic heat-resisting steels, International Journal of fatigue, vol.28, p.300308, 2006.

J. S. Dubey, H. Chilukuru, J. K. Chakravartty, M. Schwienheer, A. Scholz et al., Eects of cyclic deformation on subgrain evoution and creep in 9-12% cr-steels, Materials Science & Engineering, vol.406, p.152159, 2005.

A. Pineau, Mechanisms of creep-fatigue interactions, Advances in Fatigue Science and Technology, 1989.

K. Sadananda and P. Shahinian, Creep-fatigue crack growth. in Cavities and cracks in creep and fatigue, Applied science publishers LTD, 1981.

R. H. Priest and E. G. Ellison, A combined deformation map-ductility exhaustion approach and creep fatigue analysis, Materials Science & Engineering, vol.49, p.717, 1981.

W. Beere, Mechanism maps. in Cavities and cracks in creep and fatigue, Applied science publishers LTD, 1981.

P. Polcik, T. Sailer, W. Blum, S. Straub, J. Bursik et al., On the microstructural development of the tempered martensitic Cr-steel P 91 during long-term creep -a comparison of data, Materials Science & Engineering, vol.260, p.252259, 1999.

J. Pesicka, R. Kuzel, A. Dronhofer, and G. Eggeler, Long-term creep behavior of 9-12%Cr power plant steels, Acta Materialia, vol.51, p.48474862, 2003.

W. B. Jones, C. R. Hills, and D. H. Polonis, Microstructural evolution of modied 9Cr-1Mo steel, Metallurgical Transactions, vol.22, p.1049, 1991.

P. J. Ennis, A. Zielinska-lipiec, and A. Czyrska-filemonowicz, Quantitative microscopy and creep strength of 9% chromium steels for advanced power stations. Parsons 2000 avanced materials for 21st century turbines and power plant, Proceedings of the fth international Charles Parsons turbine conference, 2000.

K. Kimura, K. Kushima, F. Abe, K. Suzuki, S. Kumai et al., Microstructural change and degradation behaviour of 9Cr-1Mo-V-Nb steel in the long term. Parsons 2000 avanced materials for 21st century turbines and power plant, Proceedings of the fth international Charles Parsons turbine conference, 2000.

P. J. Ennis and A. Czyrska-filemonowicz, Recent advances in creep resistant steels for power plant application. OMMI, 1, 1920.

J. Cadek, V. Sustek, and M. Pahütova, An analysis of a set of creep data for a 9Cr-1Mo-0.2V (P91 type) steel, Materials Science & Engineering, vol.5, p.165168, 1998.

Y. Qin, G. Götz, and W. Blum, Subgrain structure during annealing and creep of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1, Materials Science & Engineering, vol.341, p.211215, 2003.

H. Okamura, R. Ohtani, K. Saito, K. Kimura, R. Ishii et al., Basic investigation for life assessment technology of modied 9Cr-1Mo steel, Nuclear Engineering & Design, vol.193, p.243254, 1999.

S. Spigarelli, E. Cerri, P. Bianchi, and E. Evangelista, Interpretation of creep behaviour of a 9Cr-Mo-Nb-V-N (T91) steel using threshold stress concept, Materials Science and Technology, vol.15, p.14331440, 1999.

E. Cerri, E. Evangelista, S. Spigarelli, and P. Bianchi, Evolution of microstructure in a modied 9Cr-1Mo steel during short term creep, Materials Science & Engineering, vol.245, p.285292, 1998.

A. Orlova, J. Bursik, K. Kucharova, and V. Sklenicka, Microstructural development during high temperature creep of 9%Cr steel, Materials Science & Engineering, vol.245, p.3948, 1998.

T. Barkar and J. Agren, Creep simulation of 9-12% Cr steels using the composite model with thermodynamically calculated input, Materials Science & Engineering, vol.395, p.110115, 2005.

M. Sauzay, H. Brillet, I. Monnet, M. Mottot, F. Barcelo et al., Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel, Materials Science & Engineering, 2005.

B. Fournier, M. Sauzay, M. Mottot, H. Brillet, I. Monnet et al., Experimentally based modelling of cyclically induced softening in a martensitic steel at high temperature. Creep & Fracture in High Temperature Components -Design & Life Assessment Issues, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00160195

C. Gaudin and X. Feaugas, Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses, Acta Materialia, vol.52, pp.3097-3110, 2004.

J. Lemaitre and J. Chaboche, Mechanics of Solid Materials, 1987.

D. Zhou, J. C. Moosbrugger, Y. Jia, and D. J. Morrison, A substructure mixtures model for the cyclic plasticity of single slip oriented nicke single crystal at low plastic strain amplitudes, International Journal of Plasticity, vol.21, p.23442368, 2005.

T. Hoc and S. Forest, Polycrystal modelling of IF-Ti steel under complex loading path, International Journal of Plasticity, vol.17, p.6585, 2001.

H. K. Kim, M. I. Choi, C. S. Chung, and D. H. Shin, Fatigue properties of ultrane grained low carbon steel produced by equal channel angular pressing, Materials Science & Engineering, vol.340, p.243250, 2003.

S. R. Agnew and J. R. Weertman, Cyclic softening of ultrane grain copper, Materials Science & Engineering, vol.244, p.143153, 1998.

H. Mughrabi, H. W. Höppel, and M. Kautz, Fatigue and microstructure of ultrane-grained metals produced by severe plastic deformation, Scripta Materialia, vol.51, p.807812, 2004.

M. A. Meyers, A. Mishra, and D. J. Benson, Mechanical properties of nanocrystalline materials, Progress in Materials Science, vol.51, p.427556, 2005.

K. Sawada, K. Kimura, and F. Abe, Mechanical response of 9% cr heatresistant martensitic steels to abrupt stress loading at high temperature, Materials Science & Engineering, vol.358, p.5258, 2003.

M. Yaguchi and Y. Takahashi, Ratchetting of viscoplastic material with cyclic softening, part 2 : application of constitutive models, International Journal of Plasticity, vol.21, p.835860, 2005.

K. D. Challenger and P. G. Vining, Substructure and back stress changes resulting from the cyclic loading of 2.25Cr-1Mo steel at 755K, Materials Science & Engineering, 1983.

A. H. Cottrell, Dislocations and plastic ow in crystals, 1953.

J. Dickson, L. Handeld, and G. L'esperance, Cyclic softening and thermally activated deformation of titanium and zirconium, Materials Science & Engineering, vol.64, pp.3-7, 1983.

J. Dickson, J. Boutin, and L. Handeld, A comparison of two simple methods for measuring cyclic internal and eective stresses, Materials Science & Engineering, vol.64, pp.7-11, 1984.

L. Handeld, J. Dickson, and G. L'esperance, A comparison of cyclic deformation of two purities of zirconium, Canada, vol.7, 1985.

M. Sauzay, M. Mottot, L. Allais, M. Noblecourt, I. Monnet et al., Creep-fatigue behaviour of an AISI stainless steel at 550 ? C, Nuclear Engineering & Design, vol.232, p.219236, 2004.

C. Y. Jeong, S. W. Nam, and J. Ginztler, Activation processes of stress relaxation relaxation during hold time in 1Cr-Mo-V steel, Materials Science & Engineering, vol.264, p.188193, 1999.

X. Feaugas, Contribution à la compréhension des mecanismes de deformation plastique et d'endommagement des matériaux : un point de vue experimental. Memoire d'habilitation à diriger des recherches, 1999.

W. Blum and A. Finkel, New technique for evaluating long range internal back stresses, Acta Metallurgica, vol.30, p.17051715, 1982.

J. L. Martin, B. Lo-piccolo, T. Kruml, and J. Bonneville, Characterization of thermally activated dislocation mechanisms using transient tests, Materials Science & Engineering, vol.322, p.118125, 2002.

A. Orlova, J. Bonneville, and P. Spätig, Analogy between creep cycles and stress relaxation series for activation volume measurement, Materials Science & Engineering, vol.191, p.8589, 1995.

B. Lo-piccolo, P. Spätig, J. L. Martin, J. Bonneville, and T. Kruml, Characterising thermally activated dislocation mechanisms, Materials Science & Engineering, 2001.

B. Fournier, M. Sauzay, M. Mottot, V. Rabeau, A. Bougault et al., Fatigue crack initiation and propagation at high temperature in a softening martensitic steel, 2006.

R. L. Hecht, Mechanisms operating during high-temperature fatigue with hold periods in two chromium ferritic steels, 1992.

H. Nakamura, K. Murali, K. Minakawa, and A. J. Mcevily, Fatigue crack growth in ferritic steels as inuenced by elevated temperature and environment, Microstructure and Mechanical behaviour of materials, vol.1, p.4357, 1985.

L. Mikulova and F. Schubert, Investigation of creep and creep fatigue crack growth behaviour of P92 in dierent atmospheres at temperatures above 500 ? C. ECCC creep conference, Creep & Fracture in high temperature components -Design & life assessment issues, 2005.

G. Ward, B. S. Hockenhull, and P. Hancock, The eect of cyclic stressing on the oxidation of a low-carbon steel, Metallurgical Transactions, vol.5, p.14511455, 1974.

A. P. Gree, C. W. Louw, and H. C. Swart, The oxidation of industrial FeCrMo steel, Corrosion Science, vol.42, p.17251740, 2000.

A. S. Khanna, P. Rodriguez, and J. B. Gnanamoorthy, Oxidation kinetics, breakaway oxidation, and inversion phenomenon in 9Cr-1Mo steels, Oxidation of Metals, vol.26, 1986.

C. Ostwald and H. J. Grabke, Initial oxidation and chromium diusion. I. Eects of surface working on 9-20% Cr steels, Corrosion Science, vol.46, pp.1113-1127, 2004.

W. M. Stobbs, S. B. Newcomb, and E. Metcalfe, A microstructural study of the oxidation of Fe-Ni-Cr alloys. II 'Non-protective' oxide growth, Philosophical Transactions of the Royal London Society, vol.319, p.219247, 1986.

L. Martinelli, Mécanismes de corrosion de l'acier T91 par l'eutectique Pb-Bi utilisé comme matériau de spallation, 2005.

J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T. U. Kern et al., Anomalous temperature dependance of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550-650 ? C. Science, vol.46, p.23012317, 2004.

M. Schütze, Mechanical properties of oxide scales, Oxidation of Metals, vol.44, 1995.

A. Daniélou, J. Rivat, M. Robillard, J. Stolarz, and T. Magnin, Fatigue mechanisms in an interstitial free steel : analysis through the behaviour of UHP -iron doped with C and Mn, Materials Science & Engineering, 2001.

K. Milicka and F. Dobes, Constant structure creep in a P91 type steel. Engineering Mechanics, vol.5, p.165168, 1998.

H. J. Frost and M. F. Ashby, Deformation-mechanism maps, 1982.

P. Delobelle and C. Oytana, Experimental study of the ow rules of a 316 stainless steel at high stresses, Nuclear Engineering & Design, vol.83, p.333348, 1984.

S. Catalao, X. Feaugas, and P. Pilvin, , 2004.

J. C. Gibeling and W. D. Nix, A numerical study of long range internal stresses associated with subgrain boundaries, Acta Metallurgica, vol.28, p.17431752, 1980.

M. F. Felsen and J. Tortel, Fluage sous contrainte variable. Fluage sous contrainte croissante. Fluage sous relaxation, Proceedings of the 23ème colloque de metallurgie -Fluage, Fatigue-uage, 1981.

F. Abe, Coarsening behavior of lath and its eects on creep rates in tempered martensitic 9Cr-W steels, Materials Science & Engineering, 2004.

H. J. Mcqueen, The production and utility of recovered dislocation substructures, Metallurgical Transactions A, vol.8, p.807, 1977.

D. Caillard and J. L. Martin, Microstructure of aluminium during creep intermediate temperature -II. In situ study of subboundary properties, Acta Metallurgica, vol.30, p.791798, 1982.

W. Blum, Creep of crystalline materials : experimental basis, mechanisms and models, Materials Science & Engineering, 2001.

F. Abe, T. Horiuchi, M. Taneike, and K. Sawada, Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature, Materials Science & Engineering, vol.378, p.299303, 2004.

F. Abe, T. Horiuchi, M. Taneike, K. Kimura, S. Muneki et al., Creep strain behavior during microstructure evolution in tempered martensitic advanced 9Cr steels, Proceedings of the 10th joint International Conference on Creep & Fracture of Engineering Materials and Structures, 2001.

J. C. Li, Some elastic properties of an edge dislocation wall, Acta Metallurgica, vol.8, 1960.

G. Sachs, Zeitschrift Verein. Deut. Ing, vol.2, p.734736, 1928.

G. I. Taylor, Plastic strains in metals, J. Inst. Metals, vol.62, p.307324, 1938.

M. Bornert, T. Bretheau, and P. Gilormini, Homogénéisation en mécanique des matériaux 1. Hermes science, 2000.

O. B. Pedersen, Mechanism maps for cyclic plasticity and fatigue of single phase materials, Acta Metallurgica Materialia, vol.38, p.12211239, 1990.

R. A. Lebensohn, Y. Liu, and P. Castaneda, On the accuracy of the selfconsistent approximation for polycristals : comparison with full-lled numerical simulations, Acta Materialia, vol.52, p.53475361, 2004.

O. B. Pedersen and J. V. Carstensen, Internal stresses and dislocation dynamics in cyclic plasticity and fatigue of metals, Materials Science & Engineering, vol.285, p.253264, 2000.

M. Berveiller and A. Zaoui, An extension of the self-consistent scheme to plastically-owing polycrystals, Journal of the Mechanics and Physics of Solids, vol.26, p.325344, 1978.

M. Janecek, F. Louchet, B. Doisneau-cottignies, Y. Bréchet, and N. Guelton, Specic dislocation multiplication mechanisms and mechanical properties in nanoscaled multilayers : the example of pearlite, Philosophical Magazine, vol.80, p.16051619, 2000.

H. De-cicco, M. I. Luppo, H. Raaeli, J. D. Gaetano, L. M. Gribaudo et al., Creep behavior of an A286 type stainless steel. Materials Characterization, vol.55, p.97105, 2005.

K. K. Pandey, O. Prakash, and B. Bhattacharya, Variation of activation volume with temperature for Fe, Si, and Ge, Materials Letters, vol.57, p.43194322, 2003.