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Abstract

This paper presents weak second and third order schemes for the Cox-Ingersoll-
Ross (CIR) process, without any restriction on its parameters. At the same time, it
gives a general recursive construction method to get weak second-order schemes that
extends the one introduced by Ninomiya and Victoir [17]. Combining these both re-
sults, this allows to propose a second-order scheme for more general affine diffusions.
Simulation examples are given to illustrate the convergence of these schemes on CIR
and Heston models. Algorithms are stated in a pseudocode language.

Keywords: simulation, discretization scheme, squared Bessel process, Cox-Ingersoll-
Ross model, Heston model, Affine Term Structure Models (ATSM).

Acknowledgments. Most part of this work has been done when I was at the TU Berlin,
thanks to the support of MATHEON. I would like to thank Vlad Bally (Univ. Marne-
la-Vallée) and Benjamin Jourdain (Ecole des Ponts) for fruitful comments, and Victor
Reutenauer (CALyon) for stimulating discussions on ATSM.

Introduction

In this paper, we are interested in discretization schemes for the Cox-Ingersoll-Ross process
(CIR for short), and more generally for multidimensional diffusion processes that contain
a square-root diffusion coefficient, like in Affine Term Structure and Heston models [9, 13].
Initially introduced in 1985 to model the short interest rate [8], the CIR process is now
widely used in finance because it presents interesting qualitative features such as positivity
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and mean-reversion. Moreover, it belongs to the class of affine models for which some
standard expectations are analytically or semi-analytically known. We will use in this
paper the following parametrization of the CIR process

{

Xx
t = x+

∫ t

0
(a− kXx

s )ds+ σ
∫ t

0

√

Xx
s dWs, t ∈ [0, T ]

x ≥ 0
(1)

with parameters (a, k, σ) ∈ R
∗
+ × R× R+. It is a nonnegative process. Moreover, if x > 0

and 2a ≥ σ2 the process (Xt, t ≥ 0) is always positive. We will exclude the trivial case
σ = 0 and assume σ > 0 in the whole paper.

First, let us say that exact simulation methods exist for the CIR process (see Glasser-
man [12]) and also for the Heston model (Broadie and Kaya [7]). With respect to dis-
cretization schemes, the drawback of these exact simulation methods is the computation
time that they require. This is analysed in Alfonsi [1], Broadie and Kaya [7], and Lord,
Koekkoek and van Dijk [16]. What comes out is that exact methods are competitive when
one has to simulate the process just at one time (or few times), for example to compute Eu-
ropean options prices with a Monte-Carlo algorithm. On the contrary, they are drastically
too slow if one has to simulate the process along a time-grid, which occurs when comput-
ing pathwise options prices. At least for that reason, it is worth studying discretization
schemes for square-root SDEs.

The main difficulty when discretizing the CIR process is located in 0, where the square-
root is not Lipschitzian. Usual schemes such as the Euler scheme or the Milstein scheme
are in general not well defined. They can indeed lead to negative values for which the
square root is not defined. One has therefore to modify them or to create ad-hoc schemes.
Discretization schemes dedicated to square-root diffusions have thus been studied in the
recent years by Deelstra and Delbaen [10], Bossy, Diop and Berkaoui ([11, 5]), Alfonsi [1],
Kahl and Schurz [15], Lord, Koekoek and van Dijk [16] and recently Andersen [2]. A
possible criteria to chose the scheme may be its capacity to support large values of σ (we
mean here σ2 ≫ 4a). In finance, such large values do not occur when the CIR diffusion is
used to represent the short interest rate. They are instead often observed when the CIR
stands for the default intensity in credit risk or the stock volatility like in the Heston model
(see [6] and [2] for numerical examples in these three cases). Heuristically, the larger is σ,
the more the CIR process spends time in the neighbourhood of 0 where the square-root is
very sensitive. This is intuitively why most of the schemes fail to be accurate for large σ.
The QE scheme proposed by Andersen is in fact the only one among those cited that
is really well suited for these large values, but no theoretical convergence result is given
for this scheme. In another direction, Ninomiya and Victoir [17] have proposed recently
a general method to get weak second-order discretization schemes for a broad class of
multidimensional SDEs. We will present their method in detail in the first part. They
apply it to the Heston model and get encouraging results in that case, but once again it is
restricted to small values of σ, because their scheme may not be defined for σ2 > 4a.

The main contribution of this paper is to present very efficient schemes for general affine
diffusions, without any restriction on the parameters. More precisely, we introduce second
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and third order discretization schemes for the CIR process that support even large values
of σ. We give theoretical results of convergence for these schemes, analyzing the weak error.
Moreover, we also present a simple recursive method to construct second order schemes in
a general framework that encompasses affine diffusions. This method allows to get a second
order scheme for Affine Term Structure Models (ATSM) and also a very efficient scheme
for the Heston model. Again, these schemes support large volatility coefficient values. The
paper is structured as follows.

The first part introduces notations and assumptions. It presents the analysis of the
weak error made by Talay and Tubaro [20] and then gives a recursive construction of
second order schemes for multidimensional SDEs that extends the results of Ninomiya and
Victoir [17]. This method relies on the idea of scheme composition, that dates back to
Strang [18] in the field of ODEs. Let us emphasize here that most of result presented in
this part are already known, but usually with C∞ SDE coefficients with uniformly bounded
derivatives, which is not satisfied by CIR and more general affine diffusions. The scope of
this part is thus to give a rigorous framework for the weak error analysis that embeds affine
diffusions. The second and third parts are respectively devoted to the construction of a
weak second and third order discretization scheme for the CIR. In both cases, our solution
consists in switching scheme near the origin in order to keep nonnegativity. The fourth part
presents schemes for ATSM and Heston models, putting into practice the general results
of the first part. Algorithms coming from these schemes are described in a pseudocode
language. Simulations results are gathered in the last part for the CIR process and for the
Heston model. European, Asian and exotic options prices are in particular computed. The
numerical behaviour of these schemes is really satisfactory.

1 Second order discretization schemes for SDEs.

1.1 Assumptions on the SDE and notations

We consider a dW -dimensional standard Brownian motion (Wt, t ≥ 0) and will denote in
the sequel (Ft)t≥0 its augmented associated filtration that satisfies the usual conditions.
Let d ∈ N

∗, and D ⊂ R
d a domain that we assume for sake of simplicity to be a product

of d intervals. Typically, we will consider D = R
d1
+ × R

d2 with d1 + d2 = d in this paper.

For any multi-index α = (α1, . . . , αd) ∈ N
d, we define ∂α = ∂α1

1 . . . ∂αd

d and |α| = ∑d
l=1 αl.

We introduce the following functional space:

C∞pol(D) = {f ∈ C∞(D,R), ∀α ∈ N
d, ∃Cα > 0, eα ∈ N

∗, ∀x ∈ D, |∂αf(x)| ≤ Cα(1 + ‖x‖eα)}

where ‖.‖ is a norm on R
d. We will say that (Cα, eα)α∈Nd is a good sequence for f ∈ C∞pol(D)

if one has ∀x ∈ D, |∂αf(x)| ≤ Cα(1 + ‖x‖eα).
Assumptions. We assume that b : D→ R

d and σ : D→Md×dW
(R) are such that for

1 ≤ i, j ≤ d, the functions x ∈ D 7→ bi(x) and x ∈ D 7→ (σσ∗)i,j(x) are in C∞pol(D). For
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x ∈ D, we introduce the general R
d-valued SDE:

t ≥ 0, Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dWs. (2)

We assume that for any x ∈ D, there is a unique weak solution defined for t ≥ 0, and
therefore

P(∀t ≥ 0, Xx
t ∈ D) = 1.

It satisfies then the strong Markov property (Theorem 4.20, p. 322 in [14]). The differential
operator associated to the SDE is given by

f ∈ C2(D,R), Lf(x) =

d
∑

i=1

bi(x)∂if(x) +
1

2

d
∑

i=1

d
∑

j=1

dW
∑

k=1

σi,k(x)σj,k(x)∂i∂jf(x). (3)

If f ∈ C∞pol(D), thanks to the regularity assumptions made on b and σ, all the iterated

functions Lkf(x) are well defined on D and belong to C∞pol(D) for any k ∈ N.

Definition 1.1. We will say (for short) that the operator L satisfies the required assump-
tions on D if it is defined by (3) for some functions b(x) and σ(x) and satisfies all the
assumptions above.

Now, let us turn to discretization schemes for the SDE (2). Let us fix a time horizon
T > 0. We will consider in the whole paper the time interval [0, T ] and the regular time
discretization tni = iT/n for i = 0, 1, . . . , n.

Definition 1.2. A family of transition probabilities (p̂x(t)(dz), t > 0, x ∈ D) on D is such
that p̂x(t) is a probability law on D for t > 0 and x ∈ D.

A discretization scheme with transition probabilities (p̂x(t)(dz), t > 0, x ∈ D) is a se-
quence (X̂n

tni
, 0 ≤ i ≤ n) of D-valued random variables such that:

• for 0 ≤ i ≤ n, X̂n
tni

is a Ftni -measurable random variable on D,

• the law of X̂n
tni+1

is given by E[f(X̂n
tni+1

)|Ftni ] =
∫

D
f(z)p̂X̂n

tn
i

(T/n)(dz) and thus only

depends on X̂n
tni

and T/n.

For convenience, we will denote, for t > 0 and x ∈ D, X̂x
t a random variable distributed

according to the probability law p̂x(t)(dz). The law of a discretization scheme (X̂n
tni
, 0 ≤

i ≤ n) is thus entirely determined by its initial value and its transition probabilities. Since
the initial value is quite always taken equal to the initial value of the SDE, we will identify
with a slight abuse of language the scheme (X̂n

tni
, 0 ≤ i ≤ n) with its transition probabilities

(p̂x(t)(dz) or X̂x
t ).

Definition 1.3. Let us denote C∞K (D,R) the set of the C∞ real valued functions with a
compact support in D. Let x ∈ D. A discretization scheme (X̂n

tni
, 0 ≤ i ≤ n) is a weak

νth-order scheme for the SDE (Xx
t , t ∈ [0, T ]) if:

∀f ∈ C∞K (D,R), ∃K > 0, |E(f(Xx
T ))− E(f(X̂n

tnn
))| ≤ K/nν .

The quantity E(f(Xx
T ))− E(f(X̂n

tnn
)) is called the weak error associated to f .
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1.2 Analysis of the weak error

In this section, we develop in our setting the weak error analysis of Talay and Tubaro [20].
For that purpose, we introduce the following definitions.

Definition 1.4. A discretization scheme (X̂n
tni
, 0 ≤ i ≤ n) has uniformly bounded moments

if one has
∃n0 ∈ N

∗, ∀q ∈ N
∗, sup
n≥n0,0≤i≤n

E[‖X̂n
tni
‖q] <∞.

Proposition 1.5. Let us suppose that there is η > 0 such that for t ∈ (0, η),

∀q ∈ N
∗, ∃Cq > 0, ∀x ∈ D, E[‖X̂x

t ‖q] ≤ ‖x‖q(1 + Cqt) + Cqt. (4)

Then, the discretization scheme has uniformly bounded moments.

Proof. If n > T/η, we have clearly E[‖X̂n
tn
i+1
‖q] ≤ (1 + CqT/n)E[‖X̂n

tn
i
‖q] + CqT/n and

thus E[‖X̂n
tni
‖q] ≤ ui where u0 = ‖X̂n

tn0
‖q and ui+1 = (1 + CqT/n)ui + CqT/n. Since ui =

(1 + CqT/n)iu0 − 1 ≤ ‖X̂n
tn0
‖qeCqT , we get the desired result.

Definition 1.6. Let us consider a mapping f ∈ C∞pol(D) 7→ Rf such that Rf : R
∗
+×D→ R.

It is a remainder of order ν ∈ N if for any function f ∈ C∞pol(D) with a good sequence
(Cα, eα)α∈Nd, there exist positive constants C, E, and η depending only on (Cα, eα)α∈Nd

such that
∀t ∈ (0, η), ∀x ∈ D, |Rf(t, x)| ≤ Ctν(1 + ‖x‖E).

The upper bound of a remainder is thus assumed to be the same for two functions that
have the same good sequence. To get upper bounds, we will say in the following with
a slight abuse of language that a constant depends on a good sequence of f when this
constant can be chosen only with a good sequence of f , independently from f itself. From
the definition, we get the following straightforward properties.

Proposition 1.7. Let ν ∈ N, and R1 and R2 be remainders of order ν. Then, R1 + R2

and µR1 (with µ ∈ R) are remainders of order ν. If ν ′ ≤ ν, R1 is also a remainder of
order ν ′.

Definition 1.8. For any scheme (p̂x(t)(dz), t > 0, x ∈ D) we define

∀f ∈ C∞, Rp̂(t)
ν+1f(x) = E[f(X̂x

t )]−
[

f(x) +

ν
∑

k=1

1

k!
tkLkf(x)

]

.

as soon as E[|f(X̂x
t )|] <∞.

We will say that p̂x(t)(dz) is a potential weak νth-order scheme for the operator L if

R
p̂(t)
ν+1f(x) is defined for f ∈ C∞pol(D) and t > 0, and is a remainder of order ν + 1.
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Thanks to the previous proposition, a potential weak νth-order scheme X̂x
t for the

operator L is also a potential weak ν ′th-order scheme for the operator L when ν ′ ≤ ν. In
particular taking ν ′ = 0, there are constants C ,E , η > 0 that depend only on a good
sequence of f ∈ C∞pol(D) such that

∀t ∈ (0, η), |E[f(X̂x
t )]| ≤ C(1 + ‖x‖E). (5)

Now, we state the following key result which is a direct consequence of the weak error
analysis proposed by Talay and Tubaro [20]. Its proof is left in Appendix A.

Theorem 1.9. Let us consider an operator L that satisfies the required assumptions on D

and a discretization scheme (X̂n
tni
, 0 ≤ i ≤ n) with transition probabilities p̂x(t)(dz) on D

that starts from X̂n
tn0

= x ∈ D. We assume that

1. the scheme has uniformly bounded moments and is a potential weak νth-order dis-
cretization scheme for the operator L.

2. f : D → R is a function such that u(t, x) = E[f(Xx
T−t)] is defined on [0, T ]× D, C∞,

solves ∀t ∈ [0, T ], ∀x ∈ D, ∂tu(t, x) = −Lu(t, x), and satisfies:

∀l ∈ N, α ∈ N
d, ∃Cl,α, el,α > 0, ∀x ∈ D, t ∈ [0, T ], |∂lt∂αu(t, x)| ≤ Cl,α(1+‖x‖el,α). (6)

Then, there is K > 0, n0 ∈ N, such that |E[f(X̂n
tnn

)]− E[f(Xx
T )]| ≤ K/nν for n ≥ n0.

In this statement, the first assumption 1 concerns the discretization scheme and the
second one mainly relies on the test function f and the diffusion coefficients b and σ. When
D = R

d, f ∈ C∞pol(D), b and σ are C∞ with bounded derivatives, Talay [19] has shown that
the second point is automatically satisfied. In that case, a potential weak νth-order scheme
leads indeed to a weak error of order ν.

Let us give now on the one hand two Propositions that allow to extend easily potential
weak νth-order scheme, when a coordinate is simply a function of the time and of the other
coordinates. On the other hand, we check that exact schemes are indeed potential weak
νth-order schemes for any ν. Their proof is left in Appendix A.

Proposition 1.10. If X̂x
t is a potential weak νth-order scheme for the operator L on D,

then (X̂x
t , t) is a potential weak νth-order scheme for the operator L+ ∂t on D× R+.

Proposition 1.11. Let h ∈ C∞pol(D). We define the operator Lh for f ∈ C∞pol(D × R) by

Lhf(x) = Lf̃(x) where f̃(x) = f(x, h(x)). If X̂x
t is a potential weak νth-order scheme for

the operator L, then (X̂x
t , h(X̂

x
t )) is a potential weak νth-order scheme for the operator Lh.

Proposition 1.12. Let b : D→ R
d and σ : D→Md×dW

(R) such that ‖b(x)‖ + ‖σ(x)‖ ≤
C(1+‖x‖) for some C > 0, and assume that the associated operator L satisfies the required
assumption on D. Then, for any ν ∈ N, the exact scheme is a potential weak νth-order
scheme for L.
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1.3 Composition of discretization schemes

In this section, we will introduce the notion of composition of discretization schemes via
their transition probabilities.

Definition 1.13. Let us consider two transition probabilities p̂1
x(t)(dz) and p̂2

x(t)(dz) on D.
Then, we define the composition p̂2(t2) ◦ p̂1

x(t1)(dz) simply as

p̂2(t2) ◦ p̂1
x(t1)(dz) =

∫

D

p̂1
y(t2)(dz)p̂

1
x(t1)(dy).

This amounts to first use the scheme 1 with a time step t1 and then the scheme 2 with a

time step t2 with independent samples. We name X̂2◦1,x
t2,t1 = X̂

2,X̂1,x
t1

t2 a random variable with
the law p̂2(t2) ◦ p̂1

x(t1)(dz).
More generally, if one has m transition probabilities p̂1

x, . . . , p̂
m
x on D, we define p̂m(tm)◦

· · · ◦ p̂1
x(t1)(dz) as the composition of p̂m−1(tm−1) ◦ · · · ◦ p̂1

x(t1)(dz) and then p̂mx (tm).

Remark 1.14. The criterion (4) that ensures the uniform boundedness of the moments is
easy to use with the scheme composition. Indeed, let us fix λ1, λ2 > 0. One checks easily
that if p̂1

x(t)(dz) and p̂2
x(t)(dz) satisfy (4), then p̂2(λ2t) ◦ p̂1

x(λ1t)(dz) satisfies also (4) and
has thus uniformly bounded moments.

Proposition 1.15. Let L1 and L2 be two operators that satisfy the required assumptions
on D, and assume that p̂1

x(t)(dz) and p̂2
x(t)(dz) are respectively potential weak νth-order

discretization schemes on D for these operators. Then, for λ1, λ2 > 0, p̂2(λ2t)◦ p̂1
x(λ1t)(dz)

is such that for f ∈ C∞pol(D):

E[f(X̂2◦1,x
λ2t,λ1t

)] =
∑

l1+l2≤ν

λl11 λ
l2
2

l1!l2!
tl1+l2Ll11 L

l2
2 f(x) +Rp̂2(λ2t)◦p̂1(λ1t)f(x)

where Rp̂2(λ2t)◦p̂1(λ1t)f(x) is a remainder of order ν + 1.

The proof is left in Appendix A. Thanks to that result, one can think a potential scheme
of order ν with a time step t as an operator I + tL+ · · ·+ tν

ν!
Lν + rem on f where rem is a

remainder of order ν+1. The composition of two schemes is thus simply the composition of

their operators (in the reverse order) because
∑

l1+l2≤ν
λ

l1
1 λ

l2
2

l1!l2!
tl1+l2Ll11 L

l2
2 f(x) = [I+λ1tL1 +

· · ·+ (λ1t)ν

ν!
Lν1 ][I + λ2tL2 + · · ·+ (λ2t)ν

ν!
Lν2 ]f(x). We deduce also the following result.

Corollary 1.16. Let us assume that p̂1
x(t)(dz) and p̂2

x(t)(dz) are potential weak νth-order
discretization scheme on D for the operators L1 and L2. If L1L2 = L2L1, then p̂2(t) ◦
p̂1
x(t)(dz) is a potential weak νth-order discretization scheme for L1 + L2.
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1.4 The Ninomiya-Victoir discretization scheme revisited

In this section, we extend in our framework the idea of the Ninomiya-Victoir scheme.

Theorem 1.17. Let L1, . . . , Lm be m operators that satisfy the required assumption on D.
Let us consider p̂1

x, . . . , p̂
m
x m potential second order discretization schemes on D for the

operators L1, . . . , Lm. Then, the transition probabilities

p̂m(t/2) ◦ · · · ◦ p̂2(t/2) ◦ p̂1(t) ◦ p̂2(t/2) ◦ · · · ◦ p̂mx (t/2) (7)
1

2

(

p̂m(t) ◦ · · · ◦ p̂2(t) ◦ p̂1
x(t) + p̂1(t) ◦ p̂2(t) ◦ · · · ◦ p̂mx (t)

)

(8)

are potential second order discretization schemes for the operator ΣL = L1 +L2 + · · ·+Lm.

Proof. Thanks to Proposition 1.15, the following expansions are justified. The first scheme
gives: (I + t

2
Lm + t2

8
L2
m + rem)× · · · × (I + t

2
L2 + t2

8
L2

2 + rem)(I + tL1 + t2

2
L2

1 + rem)(I +
t
2
L2 + t2

8
L2

2 + rem)× · · · × (I + t
2
L2 + t2

8
L2
m + rem) = I + tΣL+ t2

2
ΣL2 + rem where rem

denotes a remainder of order 3. In the same manner, (I + tL1 + t2

2
L2

1 + rem)× · · · × (I +

tLm + t2

2
L2
m + rem) = I + tL+ t2

2
(
∑m

j=1 L
2
j + 2

∑

j<k LjLk) + rem and therefore the second
scheme is also a potential second order discretization scheme for ΣL.

Let us discuss now which of the two schemes is the more efficient for computational
purposes. If we suppose that each transition requires one sample, the first one requires a
priori 2m − 1 samples for each step while the second one only m + 1 (m for the schemes
themselves and 1 to draw an independent Bernoulli random variable of parameter 1/2).
Since 2m−1 ≥ m+1 for m ≥ 2, the second one is therefore a priori more efficient. There is
however an exception when one of the scheme is deterministic. For example, let us assume
that p̂2

x(t) is a Dirac mass measure. Then, p̂2(t/2)◦ p̂1(t)◦ p̂2
x(t/2) requires only one sample

while the scheme 1
2
(p̂2(t) ◦ p̂1

x(t) + p̂1(t) ◦ p̂2
x(t)) needs two samples.

Theorem 1.18. (Ninomiya-Victoir) Let us consider the operator L defined by (3) that
satisfies the required assumptions on D. Let us assume that σ(x) is such that the operators

V0f(x) =

d
∑

i=1

bi(x)∂if(x)− 1

2

d
∑

i,j=1

dW
∑

k=1

∂jσi,kσj,k∂if(x)

Vkf(x) =

d
∑

i=1

σi,k(x)∂if for k = 1, . . . , dW .

are well defined on D and we assume that V0 and 1
2
V 2
k (for k = 1, . . . , dW ) satisfy the

required assumptions on the same domain D. Then, we have

L = V0 +
1

2

dW
∑

k=1

V 2
k .
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Defining vk : D → R
d as Vkf(x) =: vk(x).∇f for k = 1, . . . , dW , we assume that

∃K > 0, ‖vk(x)‖ ≤ K(1 + ‖x‖) and that X0(t, x) (resp. Xk(t, x), k = 1, . . . , dW ) is a
D-valued solution to the ODE

dX0(t, x)

dt
= v0(X0(t, x)), t ≥ 0 (resp.

dXk(t, x)

dt
= vk(Xk(t, x)), t ∈ R)

that starts from x ∈ D at t = 0. Let denote p̂0
x(t)(dz) (resp. p̂kx(t)(dz)) the law of X0(t, x)

(resp. Xk(
√
tN, x) where N ∼ N (0, 1), for k = 1, . . . , dW ).

Then, for any ν ∈ N
∗, p̂0

x(t)(dz) (resp. p̂kx(t)(dz)) is a potential νth-order scheme on D

for V0 (resp. 1
2
V 2
k ). Moreover

1

2

(

p̂0(t/2) ◦ p̂m(t) ◦ · · · ◦ p̂1(t) ◦ p̂0
x(t/2) + p̂0(t/2) ◦ p̂1(t) ◦ · · · ◦ p̂m(t) ◦ p̂0

x(t/2)
)

(9)

is well-defined and is a potential second order scheme on D for L.

This result is proven in Appendix A. A close look at the proof and especially (32)
shows that Xk(

√
tY, x) is a potential νth-order scheme for 1

2
V 2
k as soon as Y has uniformly

bounded moments and E[Y q] = E[N q] for q ≤ 2ν + 1. This gives the following corollary.

Corollary 1.19. Let Y be a random variable with finite moments of any order such that
E[Y q] = E[N q] for q ≤ 5 with N ∼ N (0, 1). Let us consider the framework of Theorem 1.18
but denote p̂kx(t)(dz) the law of Xk(

√
tY, x) for k = 1, . . . , dW . Then, p̂kx(t)(dz) is a potential

second order scheme on D for 1
2
V 2
k . Moreover,

1

2

(

p̂0(t/2) ◦ p̂m(t) ◦ · · · ◦ p̂1(t) ◦ p̂0
x(t/2) + p̂0(t/2) ◦ p̂1(t) ◦ · · · ◦ p̂m(t) ◦ p̂0

x(t/2)
)

(10)

is well-defined and is a potential second order scheme on D for L.

As an aside, we notice that when Y is chosen to be a discrete r.v. (such as in Example 2.3
later), the simulation of the scheme amounts to sample a discrete variable (a Bernoulli
variable and dW independent samples of Y ) and can easily be done with only one sample
of a uniform random variable on [0, 1].

Now, we would like to give a rather general way to split in two the operator L. Of course,
a recursive application of this method allow to split L as the sum of many operators. Let us
consider I ⊂ {1, . . . , dW} and denote W I

t the R
dW -valued process such that (W I

t )i = (Wt)i
if i ∈ I, and (W I

t )i = 0 if i 6∈ I. Let us assume that bI(x) and bI
c

(x) are such that
bI(x) + bI

c

(x) = b(x). Then, it is easy to see that L = LI +LI
c

where LI (resp. LI
c

) is the
operator associated to the SDE:

dXI
t = bI(XI

t )dt+ σ(XI
t )dW

I
t (resp. dXIc

t = bI(XIc

t )dt+ σ(XIc

t )dW Ic

t ).

The splitting of L proposed by Ninomiya and Victoir is easily obtained if one writes
the SDE of (Xt, t ≥ 0) with the Stratonovitch integral. The operator V0 is associated to

the ODE dX∅
t = v0(X

∅
t )dt and for k = 1, . . . , dW , 1

2
V 2
k is associated to dX

{k}
t = σ(X

{k}
t ) ⋆
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dW
{k}
t = vk(X

{k}
t ) ⋆ d(Wt)k where ⋆ denotes the Stratonovitch integral. This splitting has

the main advantage to reduce the problem to the resolution of ODEs instead of SDEs.
The laws of X0(t, x) and Xk(

√
tN, x) give exact schemes for their associated SDEs. If one

has exact or very accurate methods to integrate the ordinary differential equations (such
as Runge-Kutta method), one can get easily a weak second order scheme. Typically, the
numerical integration should be accurate up to t3 for X0(t, x) and up to t6 for Xk(t, x) to
get a remainder of order 3 and thus a potential second order scheme.

2 A second order scheme for the CIR process

In this section, we focus on the discretization scheme for the CIR process (1) and have
thus dW = 1 and D = R+. We introduce its operator

f ∈ C2(R+,R), LCIRf(x) = (a− kx)∂xf(x) +
1

2
σ2x∂2

xf(x)

that satisfies the required assumptions on D. The main result of this section is the con-
struction of a second order scheme for the CIR process without any restrictions on the CIR
parameters (a, k, σ) ∈ R

∗
+ × R× R

∗
+. When σ2 ≤ 4a, the scheme of Ninomiya and Victoir

is well defined and gives a second order scheme. For σ2 > 4a, this scheme is no longer
defined when the scheme comes near 0. Our solution consists in keeping the nonnegativity
of the discretization scheme, taking different schemes whether the discretization is in a
neighbourhood of 0 or not.

2.1 Ninomiya-Victoir’s scheme for the CIR.

We split the operator LCIR according to Theorem 1.18, and get LCIR = V CIR

0 + 1
2
(V CIR

1 )2

with

V CIR

0 f(x) = (a− kx− σ2

4
)f ′(x) and V CIR

1 f(x) = σ
√
xf ′(x).

In that case, we can solve explicitly the ODEs associated to V CIR

0 and V CIR

1 . Defining

ψk(t) =
1− e−kt

k
= t, k 6= 0 and ψ0(t) = t,

we get for x ≥ 0:

XCIR

0 (t, x) = xe−kt + (a− σ2/4)ψk(t), X
CIR

1 (t, x) = ((
√
x+

σ

2
t)+)2.

We have 1
2
(V CIR

1 )2f(x) = σ2

4
f ′(x) + 1

2
σ2xf ′′(x). It is easy to see that the assumptions of

Theorem 1.18 are satisfied for 1
2
(V CIR

1 )2 and for V CIR

0 when σ2 ≤ 4a. When σ2 > 4a, V0

does no longer satisfy the required assumptions on R+: we do not have ∀x ∈ R+, ∀t ≥
0, X0(t, x) ∈ R+. Thus, the Ninomiya-Victoir scheme is not well defined for in that case for
small values of x. Last, let us remark here that Ninomiya and Victoir consider X̃CIR

1 (t, x) =
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(
√
x + σ

2
t)2 instead of XCIR

1 (t, x), which does not satisfy
dX̃CIR

1 (t,x)

dt
= σ

√

X̃CIR

1 (t, x) when√
x + σ

2
t < 0. However, a close look at the proof of Theorem 1.18 convinces that a

similar expansion as (32) holds for E[f(X̃CIR

1 (
√
tN, x))] (N ∼ N (0, 1)), and therefore

X̃CIR

1 (
√
tN, x) defines as XCIR

1 (
√
tN, x) a potential ν-th order scheme for 1

2
(V CIR

1 )2. We
thus get the following result.

Proposition 2.1. When σ2 ≤ 4a, the Ninomiya-Victoir scheme writes for the CIR process
X̂x
t = ϕ(x, t,

√
tN) where N ∼ N (0, 1) and

ϕ(x, t, w) = e−
kt
2

(
√

(a− σ2/4)ψk(t/2) + e−
kt
2 x+

σ

2
w

)2

+ (a− σ2/4)ψk(t/2). (11)

It is well defined and is a potential second order scheme for LCIR.

When σ2 > 4a, the idea that we use here is to consider different schemes whether we
are or not in a neighborhood of 0, similarly as the QE scheme presented by Andersen [2].
Away from 0, it is natural to take the Ninomiya-Victoir scheme, provided that it is well
defined and keeps nonnegativity. Unfortunately, since the standard Gaussian variable has
a positive density over R, there is still a positive probability for which the scheme leads to
negative values. However, thanks to Corollary 1.19, we can replace the standard Gaussian
by any random variable Y with bounded moments that matches the five first moments:
this does not degrade the order of convergence of the scheme. Thus, choosing a bounded
variable, we are then able to control the sign of the discretization scheme thanks to the
following proposition.

Proposition 2.2. Assume σ2 > 4a and let A > 0. Then, XCIR

0 (t/2, XCIR

1 (
√
ty,XCIR

0 (t/2, x)))
is well defined and nonnegative for y ∈ [−A,A] if, and only if

x ≥ e
kt
2



(
σ2

4
− a)ψk(t/2) +

[
√

e
kt
2 [(

σ2

4
− a)ψk(t/2)] +

σ

2
A
√
t

]2


 .

In that case, XCIR

0 (t/2, XCIR

1 (
√
ty,XCIR

0 (t/2, x))) = ϕ(x, t,
√
ty).

The proof is easy to check if one observes thatXCIR

0 is increasing w.r.t x andXCIR

1 (
√
ty, x)

is increasing w.r.t x and y on {XCIR

1 (
√
ty, x) > 0}. One has just then to compute the re-

ciprocal image on 0 when y = −A. Let us turn to a practical example.

Example 2.3. A suitable bounded variable that fits the five first moments of a standard
Gaussian variable is Y such that P(Y =

√
3) = 1

6
, P(Y = −

√
3) = 1

6
, and P(Y = 0) = 2/3.

If we set

K2(t) = 1{σ2>4a}e
kt
2



(
σ2

4
− a)ψk(t/2) +

[
√

e
kt
2 [(

σ2

4
− a)ψk(t/2)] +

σ

2

√
3t

]2


 ,

we have, for x ≥ K2(t), X
CIR

0 (t/2, XCIR

1 (
√
tY,XCIR

0 (t/2, x)) ≥ 0 and K2(t) ∼
t→0

[1
2
(σ

2

4
−a)+

(
√

1
2
(σ

2

4
− a) + σ

2

√
3)2]t for σ2 > 4a.
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From now on, we have a threshold above which the scheme composition is well-defined
and positive. Similarly as in Theorem 1.18, we are able to prove that it defines a potential
second order scheme above this threshold. This is stated in the following proposition.

Proposition 2.4. Let Y and K2(t) be defined as in Example 2.3. Then, for any f ∈
C∞pol(R+), there are positive constants η, C and E that depend on a good sequence of f
such that ∀t ∈ (0, η), ∀x ≥ K2(t),

∣

∣

∣

∣

E[f(ϕ(x, t,
√
tY ))]−

(

f(x) + tLCIRf(x) +
t2

2
(LCIR)2f(x)

)∣

∣

∣

∣

≤ Ct3(1 + |x|E). (12)

Remark 2.5. Looking for a scheme that writes X̂x
t = φ(x, t,

√
tN) with N ∼ N (0, 1) and

φ(x, t, w) =
∑

l+2l′≤4

φl,l′ (x)

l!l′!
wltl

′

, we can get by Taylor expansions necessary conditions to
obtain a second order scheme for the CIR process. In particular, a necessary condition is

σ(a− 3kx− σ2/4)

2
√
x

= 2φ1,1(x) + φ3,0(x),

which implies that φ1,1 or φ3,0 explodes in the neighborhood of 0 when σ2 6= 4a. Due
to this explosion, it is rather hard to control and get an upper bound on the remainder

|E[f(φ(x, t,
√
tN))] −

(

f(x) + tLCIRf(x) + t2

2
(LCIR)2f(x)

)

|. The splitting introduced by

Ninomiya and Victoir amounts to integrate the CIR when σ2 = 4a and is thus the right
splitting to get round that difficulty.

2.2 A potential second order scheme in a neighbourhood of 0.

From now on, we turn to the simulation of the CIR near 0, namely on [0,K2(t)]. Near
the origin, as soon as σ2 > 4a, it does not seem possible to find even a first-order scheme
that writes X̂x

t = ϕ(x, t,
√
tY ) with Y matching the two first moments of a standard Gaus-

sian variable, and that ensures nonnegativity. We therefore have to consider a different
kind of scheme when the discretization approaches 0 to keep nonnegativity, as it is also
done in Andersen [2]. Let us give at least two reasons for which it is really important to
preserve nonnegativity. First, the CIR diffusion itself is nonnegative and it seems natural
and preferable that its approximation have the same property. Second, keeping the non-
negativity ensures that the scheme is well-defined, or, more exactly, it avoids to define a
discretization scheme in the negative values. Beyond the fact that it sounds strange to
discretize a process where it is not defined, it is not clear how to do so and then control
the weak error to get a second order scheme (see remark below).

Remark 2.6. Defining a discretization scheme for negative values roughly amounts to
extend the CIR process (Xx

t , t ≥ 0) for x < 0, and find a scheme on the domain D = R for
this extension. This approach has already been considered in the literature. For example,
Deelstra and Delbaen [10] (resp. Lord and al. [16]) have chosen dXx

t = (a − kXx
t )dt +

σ
√

(Xx
t )

+dWt (resp. dXx
t = (a− k(Xx

t )
+)dt+ σ

√

(Xx
t )

+dWt) which boils down to extend
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LCIR by LCIRf(x) = (a − kx)f ′(x) (resp. LCIRf(x) = af ′(x)) on x < 0. Keeping in mind
the Talay and Tubaro method to control the weak error, it is required to have regularity
assumptions on the function u : (t, x) ∈ R+×R 7→ E[f(Xx

t )]. Since ∂kt u = (−LCIR)ku, one
should at least extend the CIR on R− to get spatially continuous iterated operators (LCIR)k,
which seems not obvious. For example, for the extension taken by Deelstra and Delbaen, we
have (LCIR)2f(0+) = −akf ′(0)+a(a+σ2/2)f ′′(0) and (LCIR)2f(0−) = −akf ′(0)+a2f ′′(0).

To approximate the CIR near 0 and keep nonnegativity, we decide here to take a discrete
random variable that matches the two first moments. Namely, we are looking for X̂x

t that
takes two possible values 0 ≤ x−(t, x) < x+(t, x) with respective probabilities 1 − π(t, x)
and π(t, x) such that

{

π(t, x)x+(t, x) + (1− π(t, x))x−(t, x) = ũ1(t, x)

π(t, x)x+(t, x)2 + (1− π(t, x))x−(t, x)2 = ũ2(t, x)
where ũq(t, x) = E((Xx

t )
q) for q ∈ N.

(13)
Some calculations give:

ũ1(t, x) = xe−kt + aψk(t) and ũ2(t, x) = ũ1(t, x)
2 + σ2ψk(t)[aψk(t)/2 + xe−kt]. (14)

Let us define γ±(t, x) = x±(t,x)
ũ1(t,x)

. The equations to solve write

{

π(t, x)γ+(t, x) + (1− π(t, x))γ−(t, x) = 1

π(t, x)γ+(t, x)2 + (1− π(t, x))γ−(t, x)2 = ũ2(t,x)
ũ1(t,x)2

.
(15)

We arbitrarily take γ+(t, x) = 1/(2π(t, x)) and γ−(t, x) = 1/(2(1 − π(t, x))) which
ensures the first equation and the positivity of the random variable when π(t, x) ∈ (0, 1).
One has thus from the last equation

π2(t, x)− π(t, x) + ũ1(t, x)
2/(4ũ2(t, x)) = 0.

The discriminant is ∆(t, x) = 1− ũ1(t, x)
2/ũ2(t, x) ∈ [0, 1], and since we want γ+ > γ−, we

take

π(t, x) =
1−

√

∆(t, x)

2
. (16)

We have thus 0 ≤ π(t, x) ≤ 1/2. Besides, we have ũ2(t, x)/ũ1(t, x)
2 ≤ 1 + σ2/a because

ũ1(t, x)
2 ≥ max(a2(1−e−kt

k
)2, 2a1−e−kt

k
xe−kt). Therefore, ∆(t, x) ≥ 1− 1/(1 + σ2/a) and we

get 0 < πmin = (1 −
√

1− 1/(1 + σ2/a))/2 ≤ π(t, x) ≤ 1/2. Since K2(t) ∼
t→0

[1
2
(σ

2

4
− a) +

(
√

1
2
(σ

2

4
− a) + σ

2

√
3)2]t, there is a constant C > 0 that depends on the CIR parameters

such that ũ1(t, x) ≤ Ct for x ∈ [0,K2(t)] and t ≤ 1. Therefore 0 ≤ X̂x
t ≤ C

2πmin
t and

∀t ∈ (0, 1), ∀x ∈ [0,K2(t)], ∀q ∈ N, E[(X̂x
t )
q] ≤

(

C

2πmin

)q

tq. (17)
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Proposition 2.7. Let U ∼ U([0, 1]). The scheme X̂x
t = 1{U≤π(t,x)}

ũ1(t,x)
2π(t,x)

+1{U>π(t,x)}
ũ1(t,x)

2(1−π(t,x))

is a potential second order scheme on x ∈ [0,K2(t)]: for any f ∈ C∞pol(R+), there are posi-
tive constants C and η that depend on a good sequence of f s.t.

∀t ∈ (0, η), ∀x ∈ [0,K2(t)], |E[f(X̂x
t )]− f(x)− tLCIRf(x)− t2

2
(LCIR)2f(x)| ≤ Ct3.

Proof. Let us consider a function f ∈ C∞pol(R+). From Proposition 1.12, the exact scheme
is a potential second order scheme, i.e. it exists positive constants C, E, η depending on a
good sequence of f ∈ C∞pol(R+) s.t.

∀x ≥ 0, ∀t ∈ (0, η), |E[f(Xx
t )]− f(x)− tLCIRf(x)− t2

2
(LCIR)2f(x)| ≤ Ct3(1 + xE).

It is therefore sufficient to check that one has ∀x ∈ [0,Kt], |E(f(X̂x
t )) − E(f(Xx

t ))| ≤ Ct3

for a constant C that depends on a good sequence of f . We make a Taylor expansion of f
up to order 3:

x ≥ 0, f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

∫ x

0

(x− y)2

2
f (3)(y)dy.

Since X̂x
t matches the two first moments and |f (3)(y)| ≤ C3(1 + |y|q), we get |E(f(X̂x

t ))−
E(f(Xx

t ))| ≤ C3E[(X̂x
t )3 + (X̂x

t )
q+3 + (Xx

t )
3 + (Xx

t )
q+3]. We have shown in (17) that

E[(X̂x
t )
q] ≤

(

C
2πmin

)q

tq for q ∈ N and t ∈ (0, 1). We have dũq(t,x)
dt

= [aq + 1
2
q(q −

1)σ2]ũq−1(t, x)− kqũq(t, x) , we can prove by induction using Gronwall lemma that ∃Kq >
0, ∀x ∈ [0,K2(t)],E[(Xx

t )
q] ≤ Kqt

q. Therefore, there is a constant K > 0, such that

∀t ≤ 1,E[(X̂x
t )

3+(X̂x
t )
q+3+(Xx

t )
3+(Xx

t )
q+3] ≤ Kt3. We finally get ∀t ∈ (0, 1), |E[f(X̂x

t )]−
f(x)− tLCIRf(x)− t2

2
(LCIR)2f(x)| ≤ C3Kt

3. Last, we observe that C3K depends on f only
through C3 and q and thus just depends on a good sequence of f .

2.3 The second order scheme

Theorem 2.8. Let Y and K2(t) be defined as in Example 2.3, ϕ the function defined
in (11), ũ1(t, x) and π(t, x) the quantities defined in (14) and (16). Let us define for t > 0,
p̂x(t)(dz) the law of ϕ(x, t,

√
tY ) for x ≥ K2(t) and p̂x(t)(dz) = π(t, x)δ ũ1(t,x)

2π(t,x)

(dz) + (1 −
π(t, x))δ ũ1(t,x)

2(1−π(t,x))

(dz) for 0 ≤ x < K2(t). The scheme (X̂n
tni
, 0 ≤ i ≤ n) associated to the

transition probabilities (p̂x(t)(dz), t > 0) and starting from X̂n
tn0

= x ∈ R+ is well defined
and nonnegative. It is a second order scheme:

∀f ∈ C∞pol(R+), ∃K > 0, ∀n ∈ N
∗, |E[f(X̂n

tnn
)]− E[f(Xx

T )]| ≤ K/n2.

The main advance made here with respect to the scheme proposed by Ninomiya and
Victoir is that we have a second order scheme well defined, without restriction on the
parameters. To get this result, we need before the following technical result stated in [1].
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Proposition 2.9. Let us assume that f ∈ C∞pol(R+). Then, u(t, x) = E[f(Xx
T−t)] is C∞,

solves ∂tu(t, x) = −LCIRu(t, x) on (t, x) ∈ [0, T ]× R+ and its derivatives satisfy

∀l, α ∈ N, ∃Cl,α, el,α > 0, ∀x ∈ R+, t ∈ [0, T ], |∂lt∂αu(t, x)| ≤ Cl,α(1 + xel,α). (18)

Proof of Theorem 2.8. The fact that the scheme is well defined is clear since the domain
R+ is preserved by the schemes. The uniform boundedness of the moments is ensured
by (17), Proposition 1.5 and Remark 1.14 since for each q, there is Cq > 0 s.t. ∀x ≥
0,max(E[XCIR

1 (
√
tY, x)q], XCIR

0 (t, x)q) ≤ xq(1 + Cqt) + Cqt. Last, p̂x(t) defines a potential
scheme of order 2 thanks to Propositions 2.4 and 2.7. Point 1 of Theorem 1.9 is thus
satisfied, and the second point is given by Proposition 2.9, which concludes the proof.

function CIR_O2 (x):

if (x ≥ K2(t)) x← ϕ(x, t,
√
tY )

else π ← 1−
√

1−ũ1(t,x)2/ũ2(t,x)

2
if (U < π) x← ũ1(t,x)

2π
else x← ũ1(t,x)

2(1−π)

Table 1: Algorithm computing the value at the next time-step of the 2nd-order scheme of
the CIR, U (resp. Y ) being sampled uniformly on [0, 1] (resp. as Example 2.3).

3 A third-order scheme for the CIR process

In this section, we present a third-order scheme for the CIR diffusion using the same tech-
nique as for the second order scheme. This enlightens the key ingredients to get a ν-th order
scheme for the CIR. Roughly speaking, it is sufficient to have on the one hand a potential
ν-order scheme for x ≥ Kν(t) that preserves nonnegativity with a threshold satisfying
Kν(t) =

t→0
O(t) and, on the other hand, to sample under that threshold a nonnegative

random variable that matches the ν first moments of the CIR process.

3.1 A third-order scheme away from a neighbourhood of 0.

Our construction will rely on the following remark. Let us assume that L1 and L2 are
operators such that L1L2 = L2L1 + L2

3 for some operator L3. Let Si(t) denote the formal
series Si(t) = I + tLi +

t2

2
L2
i + t3

6
L3
i + . . . where the dots represent the terms of order 4 and

more. Then, we have

1

6

∑

ε∈{−1,1}
[S2(t)S1(t)S3(εt) + S2(t)S3(εt)S1(t) + S3(εt)S2(t)S1(t)]

= I + t(L1 + L2) +
t2

2
(L1 + L2)

2 +
t3

6
(L1 + L2)

3 + . . . . (19)

Indeed, it is easy to check the first order term. The second (resp. third) order term is
t2

2
(L2

1+L
2
2+2L2L1+L

2
3) (resp. t3

6
(L3

1+L
3
2+3L2L

2
1+3L2

2L1+2L2
3L1+2L2L

2
3+L1L

2
3+L

2
3L2)),
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and since L2
3 = L1L2−L2L1, it is equal to t2

2
(L1 +L2)

2 (resp. t3

6
(L1 +L2)

3). Thanks to the
results stated in Section 1 and especially Proposition 1.15, if one has potential third-order
schemes p̂ix(t) for Li, i ∈ {1, 2, 3},

1

6





∑

ε∈{−1,1}
p̂3(εt) ◦ p̂1(t) ◦ p̂2

x(t) + p̂1(t) ◦ p̂3(εt) ◦ p̂2
x(t) + p̂1(t) ◦ p̂2(t) ◦ p̂3

x(εt)



 (20)

is a potential third-order scheme for L1 + L2. This construction requires also L3 to be a
first-order operator, because it has to be approximated for negative times when ε = −1.

We are going to illustrate this method on the CIR. We know from Theorem 1.18 that
XCIR

0 (t, x) and XCIR

1 (
√
tN, x) are potential third-order schemes for V CIR

0 and 1
2
(V CIR

1 )2.

Looking at its proof, we get easily that XCIR

1 (
√
tY, x) is a potential third-order scheme for

1
2
(V CIR

1 )2 for any random variable Y with bounded moments that matches the seven first
moments of N (0, 1). Like in the second order case, we consider a random variable Y that
is bounded in order to control the sign of the discretization scheme.

Example 3.1. A suitable bounded variable that fits the seven first moments of a standard

Gaussian variable is Y such that P(Y =
√

3 +
√

6) = P(Y = −
√

3 +
√

6) =
√

6−2
4
√

6
, and

P(Y =
√

3−
√

6) = P(Y = −
√

3−
√

6) = 1
2
−

√
6−2

4
√

6
. This can be easily obtained thanks

to Lemma 3.5 matching the moments of N2 where N ∼ N (0, 1).

We first focus on the particular case k = 0, where we simply have:

1

2

(

V CIR

0 (V CIR

1 )2 − (V CIR

1 )2V CIR

0

)

=
σ2

2

(

a− σ2

4

)

∂2
x (21)

Let us define

X̃(t, x) = x+ t
σ√
2

√

∣

∣

∣

∣

a− σ2

4

∣

∣

∣

∣

, (22)

the solution to the ODE associated to the operator L̃ = σ√
2

√

∣

∣a− σ2

4

∣

∣∂x. We are then

exactly in the framework described above with L1 = V CIR

0 , L2 = 1
2
(V CIR

1 )2 (resp. L1 =
1
2
(V CIR

1 )2, L2 = V CIR

0 ) and L3 = L̃ when σ2 ≤ 4a (resp. σ2 > 4a). We just have to find
conditions similar as those given in Proposition 2.2 that ensure that all the compositions
in (20) are well defined.

Proposition 3.2. Assume k = 0 and let A > 0.

• If σ2 ≤ 4a, the compositions X̃(εt,XCIR

0 (t, XCIR

1 (
√
ty, x))), XCIR

0 (t, X̃(εt,XCIR

1 (
√
ty, x)))

andXCIR

0 (t, XCIR

1 (
√
ty, X̃(εt, x))) are well defined and nonnegative for any y ∈ [−A,A],

ε ∈ {−1, 1} if, and only if,














x ≥ t σ√
2

√

a− σ2/4 when σ2 ≤ 4
3
a

x ≥ tmax





σ√
2

√

a− σ2/4,

(

√

σ2

4
− a + σ√

2

√

a− σ2

4
+ σ

2
A

)2


 when 4
3
a < σ2 < 4a,
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and without any restriction on x ≥ 0 when σ2 = 4a.

• If σ2 > 4a, the compositions X̃(εt,XCIR

1 (
√
ty,XCIR

0 (t, x))), XCIR

1 (
√
ty, X̃(εt,XCIR

0 (t, x)))
andXCIR

1 (
√
ty,XCIR

0 (t, X̃(εt, x))) are well defined and nonnegative for any y ∈ [−A,A],
ε ∈ {−1, 1} if, and only if,

x ≥ t





σ2

4
− a +





√

σ√
2

√

σ2

4
− a+

σ

2
A





2

 .

The proof is given in Appendix A. Let us observe that when A ≥
√

2 and 4a/3 < σ2 <

4a, σ√
2

√

a− σ2/4 ≤ σ2

2
≤
(

√

σ2

4
− a+ σ√

2

√

a− σ2

4
+ σ

2
A

)2

.

Proposition 3.3. Let ε and ζ be respectively independent uniform r.v. on {−1, 1} and {1, 2, 3},
and Y be sampled independently according to Example 3.1. Let

K3(t) = ψ−k(t)



1{4a/3<σ2<4a}





√

σ2

4
− a+

σ√
2

√

a− σ2

4
+
σ

2

√

3 +
√

6





2

(23)

+1{σ2≤4a/3}
σ√
2

√

a− σ2/4 + 1{4a<σ2}





σ2

4
− a+





√

σ√
2

√

σ2

4
− a +

σ

2

√

3 +
√

6





2





 .

For σ2 ≤ 4a (resp. σ2 > 4a), the following scheme

X̂x,k=0
t =











X̃(εt,XCIR

0 (t, XCIR

1 (
√
tY, x))) (resp. X̃(εt,XCIR

1 (
√
tY,XCIR

0 (t, x)))) if ζ = 1,

XCIR

0 (t, X̃(εt,XCIR

1 (
√
tY, x))) (resp. XCIR

1 (
√
tY, X̃(εt,XCIR

0 (t, x)))) if ζ = 2,

XCIR

0 (t, XCIR

1 (
√
tY, X̃(εt, x))) (resp. XCIR

1 (
√
tY,XCIR

0 (t, X̃(εt, x)))) if ζ = 3,

(24)
is well defined and nonnegative for t ≥ 0 and x ≥ K3(t)t/ψ−k(t). Then, for x ≥ K3(t),
the scheme

X̂x
t = e−ktX̂x,k=0

ψ−k(t) (25)

is a potential third-order scheme, i.e. for any f ∈ C∞pol(R+), there are positive constants η,
C and E that depend on a good sequence of f such that ∀t ∈ (0, η), ∀x ≥ K3(t),

∣

∣

∣

∣

E[f(X̂x
t )]−

(

f(x) + tLCIRf(x) +
t2

2
(LCIR)2f(x) +

t3

6
(LCIR)3f(x)

)∣

∣

∣

∣

≤ Ct4(1 + |x|E).

(26)

Here, for sake of clearness, we have written the scheme using three random variables
ε, ζ and Y . Since these variables are discrete and independent, the scheme just requires to
sample only one random variable (ε, ζ, Y ) that takes 24 values.
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Proof. The fact that X̂x,k=0
t is well defined is a direct consequence of Proposition 3.2.

When k = 0, (26) comes from (19) and Proposition 1.15. When k 6= 0, since X̂x,k=0
t

is a potential third-order scheme for LCIR

k=0 and since the multiplication by e−kt is the
exact scheme associated to Λ = −kx∂x, it is sufficient by Proposition 1.15 to check that

(I + ψ−k(t)LCIR

k=0 +
ψ−k(t)2

2
(LCIR

k=0)
2 +

ψ−k(t)3

6
(LCIR

k=0)
3 + . . . )(I + tΛ + t2

2
Λ2 + t3

6
Λ3 + . . . ) =

(I + tLCIR + t2

2
(LCIR)2 + t3

6
(LCIR)3 + . . . ) where LCIR

k=0 denotes the operator associated
to the CIR diffusion when k = 0. This can be done by some calculations using that
ψ−k(t) = t+ k

2
t2 + k2

6
t3 + . . . , LCIR = LCIR

k=0 + Λ and LCIR

k=0Λ− ΛLCIR

k=0 = −kLCIR

k=0.

Remark 3.4. When k ∈ R, one has 1
2
(V CIR

0 (V CIR

1 )2 − (V CIR

1 )2V CIR

0 ) = σ2

2
(a− σ2

4
+kx)∂2

x+

σ2

4
k∂x = sign(a− σ2

4
+ kx)× ( σ√

2

√

|a− σ2

4
+ kx|∂x)2. Unless a− σ2

4
+ kx does not change

sign on x ≥ 0, it is not clear how to apply directly the method (20), mainly because the
sets {a − σ2

4
+ kx ≥ 0} and {a − σ2

4
+ kx ≤ 0} are then no longer stable for the schemes

XCIR

0 (t, x) and XCIR

1 (
√
tY, x). To avoid that difficulty and to extend the third-order scheme

when k 6= 0, we have used here instead the identity (Xx
t , t ≥ 0)

law
= (e−ktXx,k=0

ψ−k(t), t ≥ 0)
between the CIR process and the CIR process with the same parameters but k = 0.

3.2 A potential third-order scheme in a neighbourhood of 0.

On x ∈ [0,K3(t)], we will approximate the CIR with a discrete random variable that
matches the three first moments of the CIR. We will use the following lemma.

Lemma 3.5. Let us consider a (non constant) random variable X such that for i ∈
{1, 2, 3}, E[|X|i] < ∞, and set mi = E[X i]. Let s = m3−m1m2

m2−m2
1

and p =
m1m3−m2

2

m2−m2
1

. Then,

∆ = s2 − 4p > 0 and defining x± = s±
√

∆
2

and π = m1−x−
x+−x− , the random variable defined by:

x+1{U≤π} + x−1{U>π} with U ∼ U([0, 1])

matches the three first moments of X. Moreover, it is nonnegative if X ≥ 0.

Proof. We look for a random variable taking two values x− < x+ such that πxi+ + (1 −
π)xi− = mi for i ∈ {1, 2, 3}. Some calculations show that this is equivalent to the following
system:

π =
m1 − x−
x+ − x−

, s =
m3 −m1m2

m2 −m2
1

, p =
m1m3 −m2

2

m2 −m2
1

,

where s = x1 + x+ and p = x−x+. We thus consider the polynomial function P (x) =
x2− sx+ p. Introducing the cumulants κi = E((X −m1)

i), we check that its discriminant
writes ∆ = (4κ3

2 + κ2
3)/κ2 > 0. Since P (m1) = −κ2 < 0, we get that m1 ∈ (x−, x+) and

thus π ∈ (0, 1). Last, when X is nonnegative, Cauchy-Schwarz inequality gives that s
and p are nonnegative and therefore x+ ≥ x− ≥ 0.
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Some calculations give the following formula for the third moment of the CIR:

ũ3(t, x) = ũ1(t, x)ũ2(t, x) + σ2ψk(t)[2x
2e−2kt + ψk(t)(a+

σ2

2
)(3xe−kt + aψk(t))] (27)

Let us denote from now and till the end of Section 3 π(t, x), x+(t, x) and x−(t, x) the
parameter of the discrete random variable matching the three moments ũ1(t, x), ũ2(t, x)
and ũ3(t, x) given by Lemma 3.5. Let X̂x

t = x+(t, x)1{U≤π(t,x)} + x−1{U>π(t,x)} with U ∼
U([0, 1]). By Lemma 3.5, we obtain from (14) and (27) that for t ≥ 0 and 0 ≤ x ≤ K3(t),

x+(t, x)+x−(t, x) =
2x2e−2kt+ψk(t)(a+ σ2

2
)(3xe−kt+aψk(t))

aψk(t)/2+xe−kt ≤ 4e−2kt

a
K3(t)2

ψk(t)
+(2+σ2/a)(3K3(t)e

−kt+

aψk(t)) =
t→0

O(t). Thus, we get a result analogous to (17), i.e. there is a constant C > 0

such that
∀t ∈ (0, 1), ∀x ∈ [0,K3(t)], ∀q ∈ N, E[(X̂x

t )
q] ≤ Cqtq,

and we can show the following result exactly like in Proposition 2.7, just doing a Taylor
expansion one order further.

Proposition 3.6. The scheme X̂x
t = 1{U≤π(t,x)}x+(t, x) + 1{U>π(t,x)}x−(t, x) is a potential

third-order scheme on x ∈ [0,K3(t)]: for any f ∈ C∞pol(R+), there are positive constants C
and η that depend on a good sequence of f s.t. for t ∈ (0, η) and x ∈ [0,K3(t)],

|E[f(X̂x
t )]− f(x)− tLCIRf(x)− t2

2
(LCIR)2f(x)− t3

6
(LCIR)3f(x)| ≤ Ct4.

3.3 The third-order scheme

Like for the second-order scheme, Propositions 3.3, 3.6 and 2.9 give easily, thanks to
Theorem 1.9, the following result. The corresponding algorithm is given in Table 2.

Theorem 3.7. Let K3(t) be defined as in (23), X̂x
t the scheme defined in Proposition 3.3

(resp. Proposition 3.6) for x ≥ K3(t) (resp. x < K3(t)) and p̂x(t)(dz) the law of X̂x
t .

Then, p̂x(t)(dz) is a potential third-order scheme for LCIR on R+. Moreover, the scheme
(X̂n

tni
, 0 ≤ i ≤ n) associated to the transition probabilities (p̂x(t)(dz), t > 0) and starting

from X̂n
tn0

= x ∈ R+ is a third-order scheme:

∀f ∈ C∞pol(R+), ∃K > 0, ∀n ∈ N
∗, |E[f(X̂n

tnn
)]− E[f(Xx

T )]| ≤ K/n3.

4 Application to Affine Term Structure Models

4.1 A second order scheme for general affine diffusions

In this section, we deal with the discretization of general affine diffusions (Xt, t ≥ 0). These
diffusions write in their general form,

dXt = (A−KXt)dt+ Σ
√

DtdWt, (28)
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function X0(x): x← x+ (a− σ2/4)ψ−k(t)

function X1(x): x← ((
√
x+ σ

√

ψ−k(t)Y/2)+)2

function Xt(x): x← x+ σ√
2

√

|a− σ2/4|εψ−k(t)

function CIR_O3(x):
if (x ≥ K3(t)) {
if (ζ = 1) { if (σ2 ≤ 4a) { X1(x) X0(x) Xt(x) } else { X0(x) X1(x) Xt(x) } }

if (ζ = 2) { if (σ2 ≤ 4a) { X1(x) Xt(x) X0(x) } else { X0(x) Xt(x) X1(x) } }

if (ζ = 3) { if (σ2 ≤ 4a) { Xt(x) X1(x) X0(x) } else { Xt(x) X0(x) X1(x) } }

x← xe−kt }

else { s← ũ3(t,x)−ũ1(t,x)ũ2(t,x)
ũ2(t,x)−ũ1(t,x)2

, p← ũ1(t,x)ũ3(t,x)−ũ2(t,x)2

ũ2(t,x)−ũ1(t,x)2
, δ =

√

s2 − 4p, π ← ũ1−(s−δ)/2
δ

if (U < π) x← (s+ δ)/2 else x← (s− δ)/2 }

Table 2: Algorithm computing the 3rd-order scheme next value, starting from x with a time-
step t. Here, U is sampled uniformly on [0, 1] and ε, ζ and Y as stated in Proposition 3.3.

where A ∈ R
d, K,Σ ∈ R

d×d, Dt is a diagonal matrix such that (Dt)ii = γi0+
∑d

j=1 γij(Xt)j ,
and (Wt, t ≥ 0) is a standard d-dimensional Brownian motion. We consider here the
following canonical parametrization that ensures that the process is well-defined on the
domain D = R

d′

+ × R
d−d′ :

1. A,X0 ∈ D, Σ = Id,

2. (Kij)1≤i≤d′,d′+1≤j≤d = 0 and Kij ≤ 0 for 1 ≤ i, j ≤ d′, i 6= j,

3. for 1 ≤ i ≤ d′, γii ≥ 0 and γij = 0 for j 6= i,

4. for m+ 1 ≤ i ≤ d, γij ≥ 0 for 0 ≤ j ≤ d′ and γij = 0 for d′ + 1 ≤ j ≤ d.

Then, more general admissible affine diffusions can be obtained from these canonical affine
processes by affine transformations, diffusion rescaling and Brownian rotation. We refer
to [9] for further details. However, for simulation purposes, it is therefore sufficient to be
able to generate paths of affine processes that satisfy the four properties above. In that
case, the associated operator is given by

f ∈ C∞pol(D), Lf = LAf + LBf + LCf, with (29)

LAf =

d′
∑

i=1

(

(Ai −Kiixi)∂i +
γii
2
xi∂

2
i

)

, LBf = −
d
∑

i=1

d
∑

j=1

K̃ijxj∂if,

LCf =

d
∑

i=d′+1

(

Ai∂if +
1

2
(γi0 +

d′
∑

j=1

γijxj)∂
2
i f

)

,

where K̃ij = 0 if 1 ≤ i = j ≤ d′, and K̃ij = Kij otherwise. We have already written the
splitting that we use here to get a potential second-order scheme. First, LA is the operator
associated with d′ independent CIR processes and one gets from Theorem 2.8 (or even
Theorem 3.7) a second-order scheme for LA, taking d′ independent samples. We denote
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pAx (t) such a scheme. Let pBx (t) be the Dirac mass in exp(−K̃t)x: this solves exactly the
ODE associated to LB. Last, the SDE associated to LC can be solved also exactly and for
x = (x1, . . . , xd)

′, we denote pCx (t) the law of (x1(t), . . . , xd(t))
′ with xi(t) = xi for i ≤ d′

and xi(t) = xi +Ait+
√

γi0 +
∑d′

j=1 γijxj × (Wt)i for i > d′. We draw the attention on the

fact that the domain D is stable for the schemes pAx (t), pBx (t) and pCx (t) for any t > 0. We
can thus compose them and from Proposition 1.12 and Theorem 1.17, we get the following
result.

Proposition 4.1. The scheme 1
2
(pB(t/2) ◦ pA(t) ◦ pC(t) ◦ pBx (t/2) + 1

2
(pB(t/2) ◦ pC(t) ◦

pA(t) ◦ pBx (t/2) is a potential second-order scheme for the operator defined in (29) on D.

Let us add that we can prove using Remark 1.14 that this scheme has uniformly bounded
moments. Therefore, it just lacks controls like (6) to get from Theorem 1.9 a second-order
scheme. Since (6) holds for CIR and Vasicek processes, we may hope that it holds also for
more general affine processes, but we do not tackle this technical point in this paper.

function Affine (x1, . . . , xd):

x← exp(−K̃t/2)x
if (B = 1) { for i = 1 to d′, CIR_O2(xi) // or CIR_O3 with parameters (Ai, Kii,

√
γii)

for i = d′ + 1 to d, xi ← xi + Ait+
√

γi0 +
∑d′

j=1 γijxj
√
tNi}

else { for i = d′ + 1 to d, xi ← xi + Ait+
√

γi0 +
∑d′

j=1 γijxj
√
tNi

for i = 1 to d′, CIR_O2(xi) } // or CIR_O3 with parameters (Ai, Kii,
√
γii)

x← exp(−K̃t/2)x

Table 3: Algorithm for affine diffusions of Proposition 4.1, where B is a Bernoulli r.v. with
parameter 1/2 and (Ni, d

′ + 1 ≤ i ≤ d) are independent standard Gaussian variables.

4.2 An efficient scheme for the Heston model

In this part, we are going to use the ideas developed in the Section 1 to the Heston
model [13]. This approach has already been used by Ninomiya and Victoir [17], but the
difference here is that we have at our disposal a second-order scheme for the CIR, without
restriction on its parameters. Thus, we will use a different splitting of the Heston SDE
that allows to use directly our CIR discretization. Before going into the details, let us
mention that the Heston model (considered with a log-transformation of the stock price)
belongs to the Affine Term Structure Models. We could therefore easily get a scheme from
the general one given in Proposition 4.1 for affine diffusions. Due to the importance of the
Heston model in finance, we prefer however to give directly the scheme that we consider
in that case.
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Let W and Z be two independent Brownian motions. We would like to discretize the
following SDE:



















X1
t = X1

0 +
∫ t

0
(a− kX1

s )ds+ σ
∫ t

0

√

X1
sdWs

X2
t =

∫ t

0
X1
s ds

X3
t = X3

0 +
∫ t

0
rX3

sds+
∫ t

0

√

X1
sX

3
s (ρdWs +

√

1− ρ2dZs)

X4
t =

∫ t

0
X3
s ds

(30)

with X1
0 ≥ 0, X3

0 > 0, r ∈ R, ρ ∈ [−1, 1] and (a, k, σ) ∈ R
∗
+ × R × R

∗
+. The processes

X1 and X3 are respectively the volatility process and the stock process, and X2 and X4

their respective integrals. From a financial point of view, it is common to assume moreover
r > 0, k > 0 and ρ ≤ 0, but these assumptions are not required for what follows.

First, we have to say that there is no hope that the theory developed in Section 1 works
for the Heston model. Indeed, all that theory is thought to work when the discretization
scheme has uniformly bounded moments. Since the discretization scheme is supposed to
stick rather closely to the SDE, this roughly amounts to assume that the SDE has uniformly
bounded moments, which holds when the drift b(x) and the volatility function σ(x) have
a sublinear growth. In the Heston model the diffusion coefficient σ(x) has not a sublinear
growth, and it is proved indeed that the moments explode in a finite time (see Andersen
and Piterbarg [3] for details). Therefore, the framework developed in this paper is not well
suited to get a rigorous estimate of the weak error within the Heston model. However,
it is not meaningless to apply the results stated in the Section 1 to the Heston model.
The recursive construction of second-order scheme is a way to cancel many biased terms of
order 1, and improve really the convergence as it will be observed in the simulation part.

We will then apply the results of Section 1 in a non rigorous manner. To do so, we
split the operator of the SDE (30) L = LW +LZ , where the two operators LW and LZ are
associated to the following respective SDEs:


















dX1
t = (a− kX1

t )dt+ σ
√

X1
t dWt

dX2
t = X1

t dt

dX3
t = (r − 1

2
(1− ρ2)X1

t )X
3
t dt+ ρ

√

X1
tX

3
t dWt

dX4
t = X3

t dt

and



















dX1
t = 0

dX2
t = 0

dX3
t =

√

(1− ρ2)X1
tX

3
t ⋆ dZt

dX4
t = 0.

Here, ⋆ denotes the Stratonovitch integral. The second SDE is easy to integrate exactly.
Concerning the first SDE, we use the second or the third order scheme described in this
paper for the CIR. To discretize X2

t , we then use the construction (7) of Theorem 1.17 with
the exact scheme for x2∂1, which amounts to use the trapezoidal rule. Then, we observe
that X3 can be integrated exactly in function of the increments of X1 and X2:

X3
t = X3

0 exp

[

(r − ρ

σ
a)t+ [

ρ

σ
k − 1

2
](X2

t −X2
0 ) +

ρ

σ
(X1

t −X1
0 )

]

,

and we use this formula with the increments of the discretization. Last, we discretize X4

like X2 using the trapezoidal scheme. Instead of writing the cumbersome formula of our
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scheme, we prefer to write here directly the algorithm that computes the discretization at
the next time-step (see Table 4). The function HW (resp. HZ) calculates the discretization
of the SDE associated to LW (resp. LZ).

function HW (x1, x2, x3, x4):
∆x1 ← −x1, CIR_O2 (x1), ∆x1 ← ∆x1 + x1 // CIR_O3 can be used instead of CIR_O2
x2 ← x2 + (x1 + 0.5∆x1)t
x4 ← x4 + 0.5x3t
x3 ← x3 exp [(r − ρa/σ)t+ ρ∆x1/σ + (ρk/σ − 0.5)(x1 + 0.5∆x1)t]
x4 ← x4 + 0.5x3t
x1 ← x1 + ∆x1

function HZ (x1, x2, x3, x4): x3 ← x3 exp(
√

(1− ρ2)x1tN)
function Heston (x1, x2, x3, x4):
if (B = 1) HZ(x1, x2, x3, x4) HW(x1, x2, x3, x4) else HW(x1, x2, x3, x4) HZ(x1, x2, x3, x4)

Table 4: Algorithm for the Heston model, B being a Bernoulli sample or parameter 1/2
and N an independent standard Gaussian variable.

5 Simulation results

5.1 Simulations for the CIR process

In this section, we want to illustrate the convergence of our second and third order schemes
for the CIR presented in Sections 2 and 3. In particular, we will consider an example with
parameters such that σ2 ≫ 4a, for which few existing discretization schemes are accurate as
it has been mentioned in the introduction. We will consider different schemes. Schemes 1
and 2 are respectively the second and the third order schemes that we recommend. Their
simulations are plotted in solid line in Figure 1. We consider also three distortions of the
second-order scheme that illustrate the importance of the choice of K2(t), the threshold
around which we switch between the schemes given by Propositions 2.4 and 2.7. First, a
look at the proof of Theorem 2.8 shows that any other threshold K̃(t) greater than K2(t)
s.t. K̃(t) =

t→0
O(t) would have lead to another second-order scheme. Instead, if one takes a

threshold smaller than K2(t) forcing nonnegativity by taking positive parts, it is not clear
mathematically that we get a second order scheme. We can however wonder if this is just
a mathematical restriction or if it leads indeed to a worse scheme. We thus consider the
following schemes:

3. second order scheme of Theorem 2.8, with switching threshold 3K2(t)/2,

4. second order scheme of Theorem 2.8, with switching threshold K2(t)/2, forcing no-
negativity with positive parts.

Last, the way to obtain K2(t) is closely linked with the support of Y , the moment-matching
random variable that we have chosen for N . Taking a bounded random variable was
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Figure 1: E(exp(−X̂n
tnn

)) in function of 1/n with x0 = 3/2, k = 1/2, a = 1/2 and σ = 0.8 (left)

and x0 = 0.3, k = 0.1, a = 0.04 and σ = 2 (right). The width of each point gives the precision

up to two standard deviations.

important to prove the convergence of our scheme, but once again, we can wonder if it is
of numerical importance and we consider the following scheme:

5. second order scheme of Theorem 2.8, with N ∼ N (0, 1) instead of Y , forcing nonneg-
ativity with positive parts.

In Figure 1, we have set T = 1 and plotted the values of E(exp(−X̂n
tnn

)) in function of
the time step 1/n for two choices of parameters: σ2 < 4a (left) and σ2 ≫ 4a (right). The
first set of parameters is such that σ2 < 4a, and the schemes are most of the time largely
above the switching threshold, which explain that we observe no differences between the
schemes 1, 3 and 4. For the same reason, the scheme 5 has also a qualitatively quadratic
convergence and is even slightly better than scheme 1. Last, the third order scheme 2
converges here much better than the other schemes, giving in that case a five digit precision
from n = 5.

The second set of parameters such that σ2 ≫ 4a is more interesting to discuss the choice
of the threshold, because the schemes are often around its value. First, we observe that the
convergence of the schemes 1 and 2 is compatible with the theoretical results, and the third
order scheme 2 converges more quickly to the right value than the second order scheme 1.
Then, the scheme 3 converges as expected with a quadratic speed. Nonetheless with
respect to scheme 1, the convergence has been slightly downgraded with the increasing of
the threshold. Thus, even if theoretically any switching threshold K̃(t) greater than K2(t)
s.t. K̃(t) =

t→0
O(t) gives a second order scheme, it seems better to take the smaller one

possible as in scheme 1. The erratic behaviour of scheme 4 is sufficient to convince that
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our choice of K2(t) is not just a convenient choice for the proofs, but has a real impact on
the convergence. Last, the convergence of scheme 5 is also worse when the time-step gets
smaller than the scheme 1 and 3 for the following reason. The threshold K2(t) has been
calculated for a random variable Y that takes value in [−

√
3,
√

3], which is of course not
satisfied by a standard Gaussian variable.

To illustrate that most of the usual schemes are not accurate for large values of σ, we
have also calculated the same expectations with the Full Truncation scheme proposed by
Lord and al. [16]. This scheme is defined by X̂x

t = x + (a − kx+)t + σ
√
x+Wt. We give

the values obtained apart in the following table, because they are outside the Figure 1. It

x0 = 3/2, k = 1/2, a = 1/2 and σ = 0.8:
n 1 2 3 4 5 7 10

E(exp(−X̂n
tnn

)) 0.3864 0.36836 0.35924 0.35442 0.35151 0.34822 0.3458
x0 = 0.3, k = 0.1, a = 0.04, and σ = 2:
n 5 7 10 14 20 30 50

E(exp(−X̂n
tnn

)) 0.80636 0.82799 0.84635 0.85974 0.8704 0.87883 0.88522

is important to notice here that for the second set of parameters, the number of samples
for the Monte-Carlo method to get a precision up to four digits is about 108. Therefore,
when σ2 ≫ 4a, the choice of the scheme is really crucial to make calculations within limited
time or computational means. Of course, this holds also for the Heston model.

5.2 Simulations for the Heston model

In this section, we want to test the scheme described in Table 4 to price claims under the
Heston model. More precisely, we will denote scheme 1 (resp. 2) the scheme that uses
the second (resp. third) order scheme for the nested CIR. As explained in Section 4.2, we
may hope at the best that these both schemes have a second order of convergence since
they are constructed from the result of Theorem 1.17. Nonetheless, we would like to see
numerically if there is some interest to use the third-order scheme for the CIR instead
of the second-order one. Last, for comparison, we introduce the following scheme which
coincides for the first and the third coordinates to the one suggested by Lord and al. [16]:

X̂x
t =











x1 + (a− kx+
1 )t+ σ

√

x+
1 Wt

x2 + x1t

x3 exp
(

(r − x+
1 /2)t+

√

x+
1 (ρWt +

√

1− ρ2Zt)
)

x4 + x3t











.

This is the scheme 3.
In all the simulations, we have fixed T = 1. To test the schemes, we have calculated

European put prices for different strikes with rather high values of σ in Figure 2 and
Figure 3. It is hard to say qualitatively from the curves that the convergence is indeed
quadratic for the schemes 1 and 2. Nonetheless in the European put case we can compare
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Figure 2: E[e−r(S − (X̂n
tnn

)3)
+] in function of 1/n with X1

0 = 0.04, k = 0.5, a = 0.02,
σ = 0.4, r = 0.02, X3

0 = 100 and ρ = −0.5. Point width gives 95% confidence interval.
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Figure 3: E[e−r(S− (X̂n
tnn

)3)
+] in function of 1/n with X1

0 = 0.04, k = 0.5, a = 0.02, σ = 1,
r = 0.02, X3

0 = 100 and ρ = −0.8. Point width gives 95% confidence interval.

the value obtained with the exact value. For example in Figure 2, for a time step 1/50 and
for each strike, the exact value is in the two standard deviations window of which width
is between 0.5× 10−3 and 1.5× 10−3 according to the strike value. Therefore, the bias is
not much big as (1/50)2 = 0.4 × 10−3 and the convergence quality is not far from being
the one of a true second-order scheme. In comparison, the scheme 3 has in that case a
rather linear convergence and is still far from the exact value for n = 50. Last, we observe
that schemes 1 and 2 give similar convergence orders. In Figure 2 where σ is not that big,
the difference between the schemes is not really significant. Instead, in Figure 3, when the
volatility of the volatility is really high (σ2 ≫ 4a), the use of the third-order scheme for
the CIR in scheme 2 allows to reduce the bias with respect to the scheme 1.

We have also plotted in Figure 4 the prices of an Asian put and of an exotic option
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Figure 4: For the scheme 1: E[e−r(100 − (X̂n
tnn

)4)
+] (left) and E[e−r1(X̂n

tnn
)2>a/k

((X̂n
tnn

)4 −
(X̂n

tnn
)3)

+] (right) in function of 1/n with X1
0 = 0.04, k = 0.5, a = 0.02, σ = 0.2, r = 0.02,

X3
0 = 100 and ρ = −0.3. Point width gives the two standard deviation precision.

that gives the right to earn the difference between the average stock and the stock when
the realized variance is above a certain level. We have chosen here a rather low value of σ
(σ2 < 4a). Thus, the CIR process X1 does not spend much time near 0 and the convergence
observed for the schemes 1 and 2 is qualitatively parabolic in function of the time-step.
For the exotic option considered here, we also notice that the scheme 2 gives minor bias
than scheme 1 for large time-steps. In comparison and to underline the importance of the
method chosen, we have put in Table 5 the values obtained with the scheme 3 for the Asian
option, because they could not have been plotted on the same scale. For that scheme, the
convergence is in that case quasi-linear.

n 5 7 10 14 20 30 50

E[e−r(100 − (X̂n
tnn

)4)
+] 4.6189 4.4427 4.3108 4.2235 4.1570 4.1062 4.0646

Table 5: Results for the scheme 3. Parameters as in Figure 4. Precision up to two standard
deviations: 5× 10−4.

Conclusion and prospects

To sum up, the contribution of this paper is twofold. On the one hand, we have proposed
second and third order schemes for the CIR process that work without any restriction on
the parameters chosen. On the other hand, we have presented the scheme composition
technique in a framework that encompasses affine diffusions. Hence, we have been able to
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propose a second order scheme for these processes. We have also illustrated on examples
the accuracy and the good convergence of these schemes.

Let us now hint at some possible continuations of this work. First, as it has been
mentioned, the framework that we have presented here is well suited when the discretization
has uniformly bounded moments, which is roughly the case when the diffusion itself has
bounded moments. This holds for ATSM. Instead, we no longer have this property in
the Heston model and a rigorous analysis of the weak error in that case seems to be
a challenging topic. Second, the weak error has been studied in this paper for smooth
functions f . It would be interesting to get the convergence for a wider set of test functions,
like in the work of Bally and Talay [4] for the Euler scheme. Last, we have been able
here to construct a third-order scheme for the CIR using scheme compositions. To the
best of our knowledge, there is no simple recursive construction of ν-th order scheme like
Theorem 1.17 for ν > 2. However, we can wonder if in the special case of affine diffusions,
it is possible to construct automatically schemes of order greater than 2.

A Proofs of Sections 1 and 3.

Proof of Theorem 1.9. Following Talay and Tubaro [20], we write the weak error E[f(X̂n
tnn

)]−
E[f(Xx

T )] as E[f(X̂n
tnn

)] − E[f(Xx
T )] = E[u(T, X̂n

tnn
) − u(0, X̂n

t0
)] =

∑n−1
i=0 E[u(tni+1, X̂

n
tni+1

) −
u(ti, X̂

n
tni

)]. From the Taylor expansion of u at the point (tni+1, X̂
n
tni

) and ∂tu = −Lu (as-

sumption 2), we obtain

∣

∣

∣
u(tni , X̂

n
tni

)−[u(tni+1, X̂
n
tni

)+

ν
∑

k=1

1

k!

(

T

n

)k

Lku(tni+1, X̂
n
tni

)]
∣

∣

∣
≤ (T/n)ν+1

(ν + 1)!
Cν+1,0(1+‖X̂n

tni
‖eν+1,0).

On the other hand, we deduce from (6) and assumption 1 that there are positive constants
C, E, n0 that depend on ν and (C0,α, e0,α)α such that for n ≥ n0,

u(tni+1, X̂
n
tni+1

) = u(tni+1, X̂
n
tni

) +

ν
∑

k=1

1

k!

(

T

n

)k

Lku(tni+1, X̂
n
tni

) +R
p̂(T/n)
ν+1 u(tni+1, .)(X̂

n
tni

)

with
|Rp̂(T/n)

ν+1 u(tni+1, .)(x)| ≤ C(T/n)ν+1(1 + ‖x‖E).

Since the scheme has uniformly bounded moments, there is n0 s.t. for any q > 0, κ(q) =
sup

n≥n0,0≤i≤n
E[‖X̂n

tni
‖q] <∞. Gathering the both previous expansions, we get |E[u(ti+1, X̂

n
tni+1

)−

u(tni , X̂
n
tni

)]| ≤ K
nν+1 for n ≥ n0, with K = T ν+1

(

Cν+1,0

(ν+1)!
(1 + κ(eν+1,0)) + C(1 + κ(E))

)

.

Thus, we deduce |E(f(Xx
T ))− E(f(X̂n

tnn
))| ≤ K/nν .

Proof of Proposition 1.10. Let f ∈ C∞pol(D×R+). Then, there is a family (Cα, eα)α∈Nd such
that

∀x ∈ D, ∀t ∈ [0, 1), |∂αf(x, t)| ≤ Cα(1 + ‖x‖eα),
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and therefore there are constants C, E, η > 0, depending on (Cα, eα)α∈Nd such that

∀t ∈ (0, η),

∣

∣

∣

∣

∣

E[f(X̂x
t , t)]−

ν
∑

k=0

1

k!
tkLkf(x, t)

∣

∣

∣

∣

∣

≤ Ctν+1(1 + ‖x‖E).

The quantity E[f(X̂x
t , t)] −

∑ν
k=0

1
k!
tkLkf(x, t) is thus a remainder of order ν + 1. The

Taylor’s formula applied to Lkf(x, t) up to order ν − k + 1 gives:

Lkf(x, t) = Lkf(x, 0) + · · ·+ tν−k

(ν − k)!∂
ν−k
t Lkf(x, 0) +

∫ t

0

(t− s)ν−k
(ν − k)! ∂

ν−k+1
t Lkf(x, s)ds.

It is easy then to check that the integral is a remainder of order ν − k + 1, and therefore
E[f(X̂x

t , t)]−
∑ν

k=0

∑ν−k
l=0

1
k!l!
tk+lLk∂ltf(x, 0) = E[f(X̂x

t , t)]−
∑ν

k=0
1
k!
tk(L+ ∂t)

kf(x, 0) is a
remainder of order ν + 1.

Proof of Proposition 1.11. Let f ∈ C∞pol(D × R). Then f̃(x) ∈ C∞pol(D), and therefore we
get

∀t ∈ (0, η),

∣

∣

∣

∣

∣

E[f̃(X̂x
t )]−

[

f̃(x) +

ν
∑

k=1

1

k!
tkLkf̃(x)

]∣

∣

∣

∣

∣

≤ Ctν+1(1 + ‖x‖E),

for constants C, E, η that only depend on a good sequence of f̃ . The function h ∈ C∞pol(D)
being fixed, these constants only depend also on a good sequence of f .

Proof of Proposition 1.12. Let f ∈ C∞pol(D). Thanks to the sublinear growth condition, we
have bounds on the moments of Xx

t : ∀q ∈ N
∗, ∃Cq > 0, ∀t ∈ [0, 1],E[‖Xx

t ‖q] ≤ Cq(1 + xq).
Using iterations of Itô’s Formula, we get then easily for t ∈ [0, 1],

E[f(Xx
t )] =

ν
∑

k=0

tk

k!
Lkf(x) +

∫ t

0

(t− s)ν
ν!

E[Lν+1f(Xx
s )]ds.

Since f ∈ C∞pol(D) and L satisfies the required assumptions, there are constants C > 0 and
q ∈ N

∗ depending only on f such that |Lν+1f |(x) ≤ C(1 + ‖x‖q). Thus, we deduce that

|E[f(Xx
t )]−

∑ν
k=0

tk

k!
Lkf(x)| ≤ tν+1

(ν+1)!
C(1 + Cq(1 + ‖x‖q)).

Proof of Proposition 1.15. One has E[f(X̂2◦1,x
λ2t,λ1t

)|X̂1,x
λ1t

] = f(X̂1,x
λ1t

)+
∑ν

k=1
1
k!
λk2t

kLk2f(X̂1,x
λ1t

)+

R
p̂2(λ2t)
ν+1 f(X̂1,x

λ1t
) and then

E[f(X̂2◦1,x
λ2t,λ1t

)] =
∑

l1+l2≤ν

λl11 λ
l2
2

l1!l2!
tl1+l2Ll11 L

l2
2 f(x) +Rp̂2(λ2t)◦p̂1(λ1t)f(x)

where Rp̂2(λ2t)◦p̂1(λ1t)f(x) = E[R
p̂2(λ2t)
ν+1 f(X̂1,x

λ1t
)] +

∑ν
k=0

1
k!
λk2t

kR
p̂1(λ1t)
ν+1−kL

k
2f(x).

Since R
p̂1(λ1t)
ν+1−kL

k
2f(x) is a remainder of order ν + 1− k, it is easy to get that the sum is a

remainder of order ν+1 using Proposition 1.7. We have also t ∈ (0, η2), |Rp̂2(λ2t)
ν+1 f(X̂1,x

λ1t
)| ≤
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C2λ
ν+1
2 tν+1(1 + ‖X̂1,x

λ1t
‖E2) for some constants η2, C2 > 0 and E2 ∈ 2N that only depend on

a good sequence (Cα, eα) of f . Defining Φ(x) = 1 + xE2
1 + · · ·+ xE2

d , we have Φ ∈ C∞pol(D)

and |Rp̂2(λ2t)
ν+1 f(X̂1,x

λ1t
)| ≤ C ′

2λ
ν+1
2 tν+1Φ(X̂1,x

λ1t
) and therefore we get for ∀t ∈ (0, η2 ∧ ηΦ)

|E[R
p̂2(λ2t)
ν+1 f(X̂1,x

λ1t
)]| ≤ C ′

2λ
ν+1
2 tν+1

E[Φ(X̂1,x
λ1t

)]
Ineq. (5)

≤ C ′
2λ

ν+1
2 tν+1CΦ(1 + ‖x‖EΦ)

for some positive constants ηΦ, CΦ, EΦ that only depend on Φ. Since Φ just depends
on E2, these constants depend on a good sequence of f . Therefore, Rp̂2(λ2t)◦p̂1(λ1t)f(x) is a
remainder of order ν + 1.

Proof of Theorem 1.18. We just have to check that p̂0
x(t)(dz) and p̂kx(t)(dz) (k > 0) are

respectively potential νth-order schemes for V0 and 1
2
V 2
k on D. The result is then a straight-

forward consequence of Theorem 1.17.
Since there is a positive constant K such that ‖vk(x)‖ ≤ K(1+ ‖x‖) for k = 0, . . . , dW ,

the solutions to the ODEsXk(t, x) are well defined on R, and satisfy thanks to the Gronwall
lemma

∃c, c′ > 0, ∀t ∈ R, k = 0, . . . , dW , ‖Xk(t, x)‖ ≤ cec
′|t|(‖x‖+ 1).

Now let us consider f ∈ C∞pol(D). SinceXk(t, x) solves the ODE dXk(t, x)/dt = vk(Xk(t, x)),
we get for l ∈ N:

f(Xk(t, x)) = f(x) + tVkf(x) + · · ·+ tl

l!
V l
kf(x) +

∫ t

0

(t− s)l
l!

V l+1
k f(Xk(s, x))ds. (31)

Now, let us consider the case k = 0 and take l = ν and t ∈ (0, 1). Since V0 satisfies the
required assumption on D, V ν+1

0 f(x) ∈ C∞pol(D) and there are positive constants C,E > 0

that depend on a good sequence of f such that ‖V ν+1
0 f(x)‖ ≤ C(1 + ‖x‖E). We can

bound |
∫ t

0
(t−s)ν

ν!
V ν+1

0 f(X0(s, x))ds| ≤ tν+1

ν!
C(1 + (cec

′

(‖x‖ + 1)E) ≤ C ′tν+1(1 + ‖x‖E) for
a constant C ′ > 0 that depends on a good sequence of f , and therefore p̂0

x(t)(dz) is a
potential νth-order scheme for V0.

We now consider k ∈ {1, . . . , dW} and take l = 2ν + 1 in (31). Since 1
2
V 2
k satisfies the

required assumption on D, V 2ν+2
k f(x) ∈ C∞pol(D) and there are positive constants C,E > 0

that depend on a good sequence of f such that ‖V 2ν+2
0 f(x)‖ ≤ C(1 + ‖x‖E). We get

from (31) (recall E[N2ν ] = (2ν)!
2νν!

):

E[f(Xk(
√
tN, x))] = f(x) +

t

2
V 2
k f(x) + · · ·+ tν

ν!
(
1

2
V 2
k )νf(x) (32)

+E

[

∫

√
tN

0

(
√
tN − s)2ν+1

(2ν + 1)!
V 2ν+2
k f(Xk(s, x))ds

]

.

We have |
∫

√
tN

0
(
√
tN−s)2ν+1

(2ν+1)!
V 2ν+2
k f(Xk(s, x))ds| ≤ tν+1

(2ν+1)!
|N |2ν+2C(1 + cec

′
√
t|N |(‖x‖ + 1)E)

and remark that for t ∈ (0, 1), E[|N |2ν+2C(1 + cec
′
√
t|N |(‖x‖ + 1)E)] ≤ C ′′(1 + ‖x‖E) for a

constant C ′′ that depends on f only through a good sequence. Therefore, p̂kx(t)(dz) is a
potential νth-order scheme for 1

2
V 2
k .
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Proof of Proposition 3.2. We just give the main arguments here. The functions X̃, XCIR

0

and XCIR

1 are nondecreasing w.r.t. t and x, and it is therefore necessary and sufficient
to check that these compositions are well-defined and non negative for the “worst case”:
y = −A and ε = −1. We remark also that X̃(−t, XCIR

0 (t, x)) = XCIR

0 (t, X̃(−t, x)) = x +
(

a− σ2

4
− σ√

2

√

∣

∣a− σ2

4

∣

∣

)

t and the term in bracket is positive when σ2 < 4
3
a and negative

when σ2 > 4
3
a and σ2 6= 4a. When σ2 < 4a, the condition x ≥ t σ√

2

√

a− σ2/4 ensures that

X̃(t, x) ≥ 0 and XCIR

0 (t, XCIR

1 (
√
ty, X̃(εt, x))) is then well defined. When 4a/3 < σ2 < 4a,

x ≥ t

(

√

σ2

4
− a+ σ√

2

√

a− σ2

4
+ σ

2
A

)2

guarantees that X̃(−t, XCIR

0 (t, XCIR

1 (−
√
tA, x))) ≥

0. When σ2 > 4a, X̃(−t, XCIR

1 (−
√
tA,XCIR

0 (t, x))) is well defined and nonnegative if

and only if x ≥ t





σ2

4
− a +

(

√

σ√
2

√

σ2

4
− a+ σ

2
A

)2


. This condition implies that x ≥

t

[

σ2

4
− a + σ√

2

√

σ2

4
− a
]

. Hence, XCIR

1 (−
√
tA,XCIR

0 (t, X̃(−t, x))) is well defined too.
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