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Abst rac t
A generalized linear dynamic model or singular model, for which the

standard state space representation and the Kalman filtering cannot be
applied, is used to develop a new algorithm to solve the linear dynamic
material balance problem. This algorithm is based on the method developed
in the steady state case and leads to a recursive scheme, which is very
useful in real time processing. It reduces the computational problem such
as singularities and round-off errors that may occur in complex systems.
Convergence conditions are given and verified for the dynamic material
balance case.

1. Introduction
Data reconciliation is of fundamental importance in plant operation due

to inaccuracies and uncertainties in the measurements. Most previous
works have been limited to the steady state systems described by linear and
bilinear constraints, involving unknown parameters, as can be seen from
the survey papers [Hlavacek (1977), Mah (1981), Tamhane and Mah (1985)
and Mah (1987)]. However in many practical situations the process
conditions are continuously undergoing changes and steady state is never
truly reached.

A quasisteady-state system described by an algebraic model, a
measurement equation, and a transition equation defined by a random walk
process, was treated by Stanley and Mah (1977). It was shown that
estimation in this case can be an application of the discrete Kalman filter.
Darouach et al. (1988 a) have proposed a new algorithm based on Kalman
filter and sequential processing developed by additional constraints.

Data reconciliation for linear dynamic systems was treated by Gertler and
Almasy (1973). They showed that the dynamic material balance model can
be represented by continuous state space equations or after discretization
by a sampled input-output representation. For this representation, Gertler
(1979) showed that solving this problem in an optimal way is too
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complicated to allow a general closed-form solution and a suboptimal
approach was presented. Narasimhan and Mah (1988) have extended the
formulation of the hypothesis of the GLR (Generalized Likelihood Ratio)
method proposed by Willsky and Jones (1974) to gross error identification
in closed-loop dynamic processes described by a stochastic linear discrete
model. Almasy (1989 a, b) presented the dynamic balance equations in
state space models form in which the environmental effects (EE) are
described by a random walk process. The data reconciliation in this case is
reduced to a discrete Kalman filter as in the quasi-steady state problem.

The purpose of this paper is to present a new on line estimation
algorithm for systems described by dynamic material balance equations.
The model considered is linear and deterministic with all variables
measured (inputs, outputs and states). This model can be written in discrete
difference equations form E Xk+1 = B Xk , where Xk  is the vector formed by
all the unknown variables at time instant k. These equations, containing
more variables than constraints, cannot be written in a standard state
equation form. This model is called singular or generalized dynamic model
[Dai (1989)] because the matrix E is singular and therefore the standard
Kalman filter cannot be applied to estimate Xk . Generally this type of model
is used to represent dynamical systems described by a set of differential-
algebraic equations. An application can be for processes, composed by a
fast subsystem such as exchangers and a slow subsystem such as heater, the
first one has fast dynamics which can be neglected in comparison with the
dynamics of the second. Differential-algebraic equations are suitable for
these processes. A recursive optimal solution in weighted least squares
sense is proposed to estimate vector Xk . The convergence conditions are
given and verified for the dynamic linear balance equations.

2. Problem statement
We consider a linear time-invariant system described by a process

network formed by n nodes and v streams. The material balance equations
can be written in the following discrete form

W* i+1 =W* i + M Q*i+1 ( 1 )

where Q*i+1 is the true vector of the flows of dimension v at time instant
(i+1) and W*i  is the true vector of the volumes of dimension n at time
instant i. M is the nxv incidence matrix of full row rank. The element mij  of
M denotes the topology of nodes and streams with mi j  = 1 if stream j is an
input to node i, and mij  = -1 if stream j is an output from node i.
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For simplicity sake, we will assume that the balance equations contain
only measured variables. The measurements are given by

Qi = Q*i + vi ( 2 )
a n d

W i = W*i + wi ( 3 )

where vi  is a vx1 vector of normally distributed random measurement noise
with zero mean and known covariance matrix VQ  > 0, and wi  is an nx1
vector of normally distributed random measurement noise with zero mean
and known covariance matrix VW > 0.

Equation (1) can be written

- E X* i+1 + B X* i = 0 ( 4 )

where X*i  =  


 
W* i

Q* i
 , E = ( )I | -M  and B = ( )I | 0 . Also equations (2)-(3)

become
Zi = X* i + εi ( 5 )

where Zi  =  


 
Wi

Qi
 and ε i  =  


 
w i

v i
 with ε i  is a (n+v)x 1 vector of normally

distributed random measurement noise with zero mean and known
covariance matrix

V =  


 
VW 0

0 VQ
( 6 )

Our aim is to estimate Xi  based on the measurement equation (5) and the
model (4).

3. Derivation of the estimation algorithm
Here we consider the problem of estimating the vector Xi  at time instants

i = 1, 2, ..., k+1. From (4) and (5) we can collect the (k+1) measurements
and the k constraints as follows

Z = X* + ε (7 -1 )
Φk X* = 0 (7 -2 )

where Z = (Zi), X* = (X* i), ε  = (ε i) for i = 1 to k+1 and

Φk = 

 



 



B -E 0 . . . 0 0
0 B -E . . . 0 0
. . . . . . . .

0 . . . . 0 B-E

 = 

 



 



ϕ
1

ϕ
2
.

ϕ
k
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Now with these notations, dynamic data reconciliation problem can be
formulated as in the steady state case, that is, the minimization of

J = 
1
2 (X̂ - Z)T V-1 (X̂ - Z) (8 -1 )

subject to the constraint

Φk X̂ = 0 (8 -2 )

The solution of this problem is given by

X̂ = P Z ( 9 )
where P is the projection matrix

P = I - V Φ
T
k (Φk V Φ

T
k)-1 Φ k ( 1 0 )

From equations (9)-(10) we can see that the computational volume
increases with the number of observations, this leads to several numerical
problems such as round-off errors and singularities. To avoid these, a
recursive solution based on the sequential method developed for the steady
state case [Darouach et al. (1988 b)] can be proposed. Matrix Φ k  is

partitioned as follows

Φk =  


 
Φk-1

ϕ
k

( 1 1 )

where the nx((k+1)(v+n)) matrix ϕ
k  is the kth block of n rows of matrix Φ k

given by
ϕ

k = ( )0 | 0 . . 0 | B |-E ( 1 2 )

Matrix Φ k  is a full row rank matrix if matrix pencil (sE - B), where s is a

complex variable, is of full row rank [Gantmacher (1959)]. We can apply
the result of appendix A to obtain the following algorithm.

The estimates X^
j / k + 1  of the vector Xj  at time instant j based on the

knowledge of measurements up to time k+1 (j < k+1) is given by

X̂j/k+1 = X̂j/k + ∑
k
jkBTΩk(EZk+1 - BX̂k / k ) (13-a )

X̂k+1/k+1 = VETΩkBX̂k/k + (I - VETΩkE)Zk+1 (13 -b )

and its covariance matrices are

∑
k+1
j(k+1) = ∑

k
jk  BT Ωk E V        for j < k+1 (14-a )
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∑
k+1
(k+1)(k+1) = V - V ET Ωk E V (14-b )

where

Ωk = (B ∑
k
kk BT + E V ET)-1 (14-c )

with the initial conditions X^
1/1 = Z1 and ∑

1
11 = V > 0.

The recursive expressions of equations (13) and (14) constitute a
generalized algorithm of the Kalman filter in absence of process noise, and
represent a systematic approach to real time linear filtering (13-b) and
smoothing (13-a) with a well-established optimality criterion. Standard
Kalman filter can be obtained from (13)-(14) with E = I.

Equations (13) and (14) are obtained only under the assumption that
matrix pencil (sE - B) is of full row rank. The model (4) is general since E
may be singular, it can include algebraic equations.

Before turning to the application of the above algorithm to the initial
problem described by (1)-(3), we can analyze its asymptotic properties and
give sufficient conditions for its convergence.

4. Convergence analysis of the algorithm
In this section, we look at stability properties of the filter given by

equations (13)-(14). One consideration of both practical and theoretical
interests is the stability of the filter. Stability refers to the behaviour of
estimates given by equations (13).

From equation (13-b) we can see that the state transition matrix of the
filter is Ψk = VETΩkB which is a function of sequence Ωk.

From equation (13-a), the new estimate X^
j / k + 1  is given by the prior

estimate X̂j/k  plus an appropriately weighted measurement residual (E Zk+1 -

B X̂k/k). If sequence ∑
k
jk  converges to zero when k increases, then there is

no significant change in the new estimate. This implies that the filter
memory is limited, and the estimate can be calculated only on the fixed
number of measurements.

It is easy to see that expression (14-a) can be rewritten as a system of
(n+v)x(n+v) matrix difference equation

Yk+1 = Ψk Yk ( 1 5 )

where Y
T
k = ∑

k
jk and Ψk = V ET Ωk B.

This shows that the stability of the filter (13-b) implies the convergence

of sequence ∑
k
jk  to zero when k increases. This stability is given by the

following theorem [Willems (1970)].
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Theorem 1
If the matrix Ψ k  is bounded, then the null solution of (15) is uniformly

asymptotically stable if and only if there exists a non-stationary decreasing
positive definite Lyapunov function whose difference along the solution of
(15) is given decreasing, negative definite, non-stationary quadratic form.❑

To study this stability, we must first study the asymptotic properties of

sequences Ω k or ∑
k
kk .

From (14-b) and (14-c) we have the following recursive equation

∑
k+1
(k+1)(k+1) = V - V ET (B ∑

k
kk BT + E V ET)-1 E V ( 1 6 )

To simplify we adopt the following notation

∑
k
kk = Vk ( 1 7 )

Then equation (16) can be written

Vk+1 = V - V ET (B Vk BT + E V ET)-1 E V ( 1 8 )

If matrices E and B are of full row rank [Zasadzinski (1990)], by using the
inversion lemma, we obtain

Vk+1 = D + FVkFT - FVkBT (BVkBT + R)-1 BVkFT ( 1 9 )

with F = VET (EVET)-1 B, R = EVET and D = V - VET (EVET)-1 EV, and where R is a
positive definite matrix and D is a semi-positive definite matrix.

Equation (19) is the standard form of the Riccati equation [Caines

(1988)]. The study of the asymptotic properties of sequences ∑
k
kk or Ω k  is

reduced to the study of the convergence of the Riccati equation (19). We
can give the following theorem [Caines (1988)].

Theorem 2
Let (B,F) be detectable and let (F,S) be stabilizable, where S is any square

root matrix of D, then given any symmetric positive condition V0 > 0, the
sequence of solutions {Vk , k is the positive integer} generated by (19)

converges to the unique symmetric semi-positive solution Y to the algebraic
Riccati equation

Y = D + FYFT - FYBT (BYBT + R)-1 BYFT ( 2 0 )
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In the case where (F,S) is controllable, Y is strictly positive. ❑

The proof of this theorem is given in Caines (1988). The conditions for
detectability and stabilizability are summarized in appendix B.

If the conditions of convergence of (19) are verified, the sequence Ω k
generated by (14-c) converges to the unique solution Ω given by

Ω = (B Y BT + E V ET)-1 ( 2 1 )

where Y is the solution of the equation (20). The convergence of sequence
Ω k , given by using theorem 2, guarantees that the state transition matrix of

state space equation (13-b) is bounded.

5. Application to data reconciliation
We now turn to the data reconciliation problem described by equations

(1), (2) and (3), which corresponds to matrices E = ( )I | -M  and B = ( )I | 0 .

In this case, the rank condition, rank((sE - A)) = n, is always verified. The
algorithm (13)-(14), with E and B replaced by their values, becomes

X̂j/k+1 = 
 



 

Ŵj / k+1

Q̂j / k+1
 = 

 



 

Ŵj / k

Q̂j / k
 + ∑

k
jk  

 



 

Ω kW k+1 - Ω kM Q k+1 - Ω kŴ k / k

0
(22-a )

X̂k+1/k+1=
 



 

Ŵk+1/k+1

Q̂k+1/k+1
=

 



 

(I-V WΩk)Wk+1+VWΩkMQk+1+VWΩkŴk / k

(I-VQMTΩkM)Qk+1+VQMTΩkWk+1-VQMTΩkŴk / k

(22 -b )

∑
k+1
j(k+1) = ∑

k
jk  

 



 

ΩkVW -ΩkMVQ

0 0
(23-a )

∑
k+1
(k+1)(k+1) = 

 



 

VW - VWΩkVW VWΩkMVQ

VQMTΩkVW VQ - VQMTΩkMVQ
(23 -b )

Ωk = (∑
k
W + VW + MVQMT)-1 (23-c )

with

∑
k
kk = 

 



 

∑

k
W ∑

k
QW

∑
k
WQ ∑

k
Q

where ∑
k
Q is the variance matrix of the estimate Q̂ k / k , ∑

k
W  is the variance

matrix of Ŵk/k  and ∑
k
Q W is the cross-covariance matrix of Q^

k/k and Ŵk / k .

According to the convergence conditions given by theorem 2, first we
must calculate matrices F and D given by

F = VET (EVET)-1 B ( 2 4 )
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a n d
D = V - VET (EVET)-1 EV ( 2 5 )

Using (1) and (4) in (24) and (25) gives

F = 
 



 

F1 0

F2 0

where F1 = VW(VW+MV QMT)-1 and F2 = -VQMT(VW+MV QMT)-1 and

D = 
 



 

D1 D2

D
T
2 D3

where
D1 = VW - VW(VW + MVQMT)-1VW

D2 = VW(VW + MVQMT)-1MV Q

D3 = VQ-VQMT(VW + MVQMT)-1MVQ

The pair (B,F) is given by

(B,F) = 
 



 



( )I | 0 ,  
 



 

F1 0

F2 0

and we have

(FT,BT) = 
 



 



 



 

F

T
1 F

T
2

0 0
,  

 



 

I

0
( 2 6 )

In appendix C, we prove that (F,S) is stabilizable and (B,F) detectable,
with S being any square root matrix of D. Consequently, the convergence of

sequence ∑
k
kk  is proved for the system described by equations (1), (2) and

( 3 ) .
From equations (13-b) and (15), theorem 1 reduces the stability of the

filter and the convergence of sequence ∑
k
jk  to the following conditions

1- Ψ k  must be bounded,

2- there exists a Lyapunov function.

These conditions are always verified, see appendix D.

6. Numerical example
As an application example of the algorithm, let us consider the system

represented by the process network of figure 1. This system is formed by 8
streams and 4 nodes. Its incidence matrix is given by
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M = 

 



 



1 - 1 0 0 0 1 0 0
0 1 - 1 0 0 0 1 - 1
0 0 1 - 1 0 - 1 0 0
0 0 0 1 - 1 0 - 1 0

The measurement data were generated from the true values that obey the
balance relations with an addition of normally distributed random noises,
with variances VW and V Q of measurement errors on W and Q respectively

VW = 

 



 



2 2 5 0 0 0
0 1 4 4 0 0
0 0 3 2 4 0
0 0 0 4 8 4

VQ = 

 






 




1

0
0
0
0
0
0
0

0
1 .96
0
0
0
0
0
0

0
0
1 .21
0
0
0
0
0

0
0
0 .49
0
0
0
0

0
0
0
0
0 .36
0
0
0

0
0
0
0
0
0 .16
0
0

0
0
0
0
0
0
0 .09
0

0
0
0
0
0
0
0
0 .25

The true, measured and estimated values of volumes W1, W2, W3 and W4

of nodes 1, 2, 3 and 4 are shown in figures 2, 3, 4 and 5 respectively.
In order to show the convergence of the algorithm, the evolution of the

norm ||∑
k
k k || (the largest singular value) is plotted in figure 6. This norm

converges to a constant value 29.09. Convergence conditions of theorem 2
are verified since pair (F,S) is stabilizable and controllable and pair (B,F) is
detectable. Indeed, if we take matrix K13 in equation (C-4) as

K13 = 

 






 




1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

spectral radius of matrix (F - SK) is less than one (C-3).

Once sequence ∑
k
k k  has converged, the estimation algorithm is then

reduced to equations (22) and (23-a).
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Figure 7 shows the evolution of the norm ||∑
k
jk || (the largest singular

value) for j = 1, 10, 20, 30 and 40. We can see the parallel evolution of

norms ||∑
k
jk | |.

In addition, in order to update the past estimates at time instant j in
presence of measurements at time instant k (k > j), we can use a moving
window for the equation (22-a).

C o n c l u s i o n s
We have shown that the dynamic material balance equation (1) can be

represented by a generalized dynamic model (4). This formulation is used
to develop a new method for solving the data reconciliation problem. The
obtained recursive estimates include the filtering (13-b), (14-b) and the
smoothing (13-a), (14-a) and represent a systematic approach to real time
processing. Only deterministic systems with uncertain measurements have
been considered. The convergence of this method has been proved in the
dynamic data reconciliation case.

Differential-algebraic equations are usually met in chemical processes
and constitute a class of singular systems. For these systems the algorithm
presented may be applied.

N o t a t i o n
B, E = constraint matrices in the generalized dynamic system, Eq (4)
C, C1 = matrices in appendix D, Eq (D-7)

D = matrix, Eq (19)
D1, D2, D3 = submatrices of D

F = matrix, Eq (19)
F1, F2 = submatrices of F

I = identity matrix
J = quadratic criterion
K, K1, K2, K11, K12, K13, K14 = matrices in appendix C

M = incidence matrix
m ij  = element (i,j) of incidence matrix M

n = number of constraints or number of nodes
P, Pk = projection matrices
Q i  = vector of flow measurements at time instant i
Q* i  = vector of true values of flows at time instant i

Q̂j /k  = vector of flow estimates at time instant j given the measurements up

to time instant k
R = matrix, Eq (19)
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S = square root of matrix D
S1, S2, S3 = submatrices of S in appendix C

V = covariance matrix of measurement errors

V k = ∑
k
k k

V Q = covariance matrix of measurement errors on flows Q
V W  = covariance matrix of measurement errors on volumes W

v = number of flows
v i  = vector of measurement errors on Qi
W i  = vector of volume measurements at time instant i
W * i  = vector of true values of volumes at time instant i

Ŵj /k  = vector of volume estimates at time instant j given the measurements

up to time instant k
w i  = vector of measurement errors on Wi

X* = vector of true values of unknown variables from time instant 1 to time
instant (k+1), Eq (7)

X̂ = vector of unknown variable estimates from time instant 1 to time
instant (k+1), Eq (9)
X* i  = vector of true values of unknown variables at time instant i

X̂j / k  = vector of unknown variable estimates at time instant j given the

measurements up to time instant k
Y = matrix Vk when sequence (20) has converged

Y k = (∑
k
jk )T

Z = vector of measurements from time instant 1 to time instant (k+1), Eq
( 7 )
Z i  = vector of measurements at time instant i

Greek letters
ε  = vector of measurement errors from time instant 1 to time instant (k+1),

Eq (7)
ϑ (.) = Lyapunov function in appendix D
ε i  = vector of measurement errors at time instant i
∑k = covariance matrix in appendix A, Eq (A-5)

∑
k
ij  = block (i,j) of ∑ k

∑
k
Q = covariance matrix of Qk

∑
k
W  = covariance matrix of Wk

∑
k
WQ, ∑

k
Q W = cross-covariance matrices between Qk and Wk

Φ k = constraint matrix, Eq (7)
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ϕ
k = kth block of n rows of Φ k

Ψ k = transition matrix, Eq (15)
Ω  = matrix Ω k at the convergence
Ω k = matrix, Eq (14)

Other symbols
ρ (.) = spectral radius of matrix

Det(.) = determinant of matrix
||.|| = norm of matrix (largest singular value)
(.,.) = pair of matrices
rank(.) = rank of matrix

Appendix A
We consider the problem (8) with definitions (11) and (12), and we call

X̂k  the estimate and ∑ k  its variance in presence of the constraint Φ k X̂k  = 0.

From the steady state sequential method obtained by additional linear

constraints [Darouach et al. (1988 b)], we prove that the new estimate X^
k+1

and its variance ∑ k+1 can be established in term of the additional constraint

ϕ
k X̂k+1 = 0, and we obtain the following results

X̂k+1 = Pk+1 X̂k (A-1)
∑k+1 = Pk+1 ∑k (A-2)

with

Pk+1 = I - ∑k ϕ
T
k Ωk

 ϕ
k (A-3)

a n d

Ωk = (ϕk ∑k ϕ
T
k ) - 1 (A-4)

The covariance matrix ∑ k can be written

∑k = 

 



 

∑

k
11 . . ∑

k
1 k 0

. . . . . . . .

∑
k
k 1 . . ∑

k
k k 0

0 . . 0 V

(A-5)

where ∑
k
ij  is the element in the (i,j) block of dimension (n+v)x(n+v). After

some manipulations, using (12) and (A-1)-(A-5), one obtains

Ω
-1
k  = B ∑

k
kk BT + E V ET (A-6)
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a n d

Pk+1 = 

 






 




I 0 . 0 -∑

k
1kB

TΩkB ∑
k
1kB

TΩkE
. . . . . .

0 . 0 I -∑
k
(k-1)kBTΩkB ∑

k
(k-1)kB

TΩkE

0 . . 0 I-∑
k
kkBTΩkB ∑

k
kkΩkBTE

0 . . 0 VETΩkB I-VETΩkE

(A-7)

We can see that equation (A-7) only requires to know the kt h block
column of the matrix ∑ k . From (A-7), the (k+1)t h block column of
covariance matrix ∑k+1 is given by

 




 


∑

k+1
1(k+1)

:

∑
k+1
k(k+1)

∑
k+1
(k+1)(k+1)

 = 

 



 

∑

k
1kB

TΩkEV
:

∑
k
kkBTΩkEV

V-VETΩkEV

(A-8)

The estimate X^
k+1 is given in term of X^

k  by

X̂k+1 = 

 



 

X̂1 / k+1

:

X̂k / k + 1

X̂k+1/k+1

 = Pk+1 
 



 

X̂k

Zk+1
 = Pk+1 

 



 

X̂1 / k

:

X̂k / k
Zk+1

(A-9)

which can be written

 



 

X̂1 / k+1

:

X̂k / k + 1

X̂k+1/k+1

 = 

 




 


X̂1 / k  -  ∑

k
1kBTΩk(B X̂k /k  -  E  Zk + 1)

:

X̂k / k  -  ∑
k
kkBTΩk(B X̂k /k  -  E  Zk + 1)

Zk+1 + VETΩk(B X̂k /k  -  E  Zk + 1)

(A-10)

Appendix B
Detectability and stabilizability  [Mahmoud and Singh (1984)]
Let us consider the linear discrete-time system described by

xk+1 = A xk + B uk (B-1)
zk = C xk (B-2)
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Definition 1
Let A be a nxn matrix and B a nxm matrix. We say that (A,B) is said to be

stabilizable if there exists a mxn matrix K such as the eigenvalues of (A - BK)
lie within the unit circle. ❑

As for observability and controllability, there is a duality between
detectability and stabilizability.

We say that (C,A) is detectable if (AT,CT) is stabilizable.
Clearly, (A,B) controllable implies (A,B) stabilizable and (C,A) observable

implies (C,A) detectable.
We can also find the following definitions.

Definition 2
The system (B-1)-(B-2) is said to be stabilizable if all uncontrollable

modes have eigenvalues strictly inside the unit circle. ❑

Definition 3
The system (B-1)-(B-2) is said to be detectable if all unobservable modes

have eigenvalues strictly inside the unit circle. ❑

Now if the system (B-1)-(B-2) is transformed into the following form

Yk+1 = 
 



 

A1 A2

0 A4
 Yk + 

 



 

B1

0
 Uk (B-3)

we can state that the linear time-invariant system (B-1) is stabilizable if and
only if the pair (A1,B1) is completely reachable and all the eigenvalues of
the matrix A4 have moduli strictly less than one.

Appendix C
From appendix B, the detectability of (B,F) is given by the stabilizability of

(FT ,BT ) and can be reduced to the reachability of the pair (F
T
1,I), which can

be verified by

rank 


 
( )I | F

T
1 | F

2T
1 | . . .  = n (C-1)

Now let S be any square root matrix of D

S = 
 



 

S1 S2

S
T
2 S3

(C-2)
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The stabilizability of the pair (F,S) can be verified by the existence of the
matrix K such that the eigenvalues of (F - SK) lie within the unit circle.

Consider the matrix K = STK 1, then the matrix (F - SK) can be written

 F - SK = F - DK1 (C-3)

For

K1 = 
 



 

K 11  K1 2

   
K 13  K1 4

,

the matrix (F - DK1) is given by

F - DK1 = 

 



 

F1-D1K 11-D2K 13  0

   

F2-D
T
2K 11-D3K 13  0

(C-4)

for K12 = K14 = 0.
The eigenvalues of (F - DK1) are the solutions of the equation

Det(λΙ − (F-DK1)) = Det(λI)  Det(λI - (F1-D1K 11-D2K 13)) = 0 (C-5)

The matrix

D1 = VW - VW(VW + MVQMT)-1VW = VW(VW + MVQMT)-1(MV QMT)

is non-singular.

If we take K11 = - D
-1
1 D2K 13, the equation (C-5) becomes

Det(λI) Det(λI - F1) = 0 (C-6)

The stabilizability condition is reduced to spectral radius of F1 which

must be less than one. This condition can be written

ρ(F1) = ρ( )V W(VW + MVQM T)-1  < 1 (C-7)

which is verified [Horn and Johnson (1985) p 471], since

VW + MVQMT > VW (C-8)

Consequently, the convergence of the recurrence (23-b) is proved for the
system described by (1).

Appendix D
The state transition matrix Ψ k  can be written
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Ψk = V ET Ωk B = 
 



 

VWΩk 0

-VQMTΩk 0
(D-1)

Its spectral radius is given by the one of (VW Ω k). From (14-c) we have

VW Ωk = VW (∑
k
W + VW + MVQMT)-1 (D-2)

Since ∑
k
W  is a positive definite matrix we have

∑
k
W + VW + MVQMT > VW (D-3)

which yields to the condition ρ (Ω k V W ) < 1 as (C-7). Thus ρ (Ψ k) < 1 and Ψ k

is bounded.
Now to complete the proof of the stability, we consider the following

Lyapunov function

ϑ(xk) = x
T
k V -1 xk (D-4)

and we shall prove that (ϑ (xk+1) - ϑ (xk)) is negative. This difference is given

b y

ϑ (xk+1) - ϑ (xk) = x
T
k+1 V-1 xk+1 - x

T
k V -1 xk

= x
T
k  ( )Ψ

T
k  V -1  Ψ k  -  V - 1  xk = x

T
k C xk (D-5)

and we must prove that

C = Ψ
T
k V-1 Ψk - V-1 (D-6)

is a negative definite matrix. Substituting (D-1) into (D-6) we obtain

C = 
 



 

C1 0

0 -V
-1
Q

(D-7)

where

C1 = Ωk [VW + M VQ MT - Ω
-1
k  V

-1
W Ω

-1
k ]  Ωk (D-8)

From expression of Ω
- 1
k  (23-c), we have

Ω
-1
k  V

-1
W Ω

-1
k  = VW + M VQ MT + G (D-9)

where G is a symmetric positive definite matrix. Substituting (D-9) into (D-
8) gives C1 < 0 and matrix C is negative definite.
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figure 5 : true, measured and estimated values of W4
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