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Effective multiplicity one onGL,, and narrow
zero-free regions for Rankin-Selbekgfunctions

FARRELL BRUMLEY

Abstract

We establish zero-free regions tapering as an inverse pofitke analytic conductor
for Rankin-Selberd.-functions onGL,, x GL,,. Such zero-free regions are equivalent
to commensurate lower bounds on the edge of the criticgd, stnd in the case of
L(s,m x 7), on the residue at = 1. As an application we show that a cuspidal
automorphic representation @, is determined by a finite number of its Dirichlet
series coefficients, and that this number grows at most pahjally in the analytic
conductor.

Let A be the ring of adeles over a number fidldand letr and =’ be two cuspidal
representations dfL, (A) with restricted tensor product decompositions- ®,m, and
' = ®,m, over all places of . The strong multiplicity one theorem asserts that,it~
7, for all but finitely many places, thent = 7’. This was proven by Piatetski-Shapiro
[PS] using the uniqueness of the Kirillov model and then lmgdat and Shalika [J-S] using
Rankin-Selberg_.-functions. Much more can be said however about the extewhioh
agreement of local factors on a suitable subset of the pril@esmines global equality. For
instance, Moreno has shown [Mo1] that for some finiter, ') the condition thatry ~ m,
for spherical non-archimedearwith absolute normNy < Y (7, ') is sufficient to imply
7 = «'. From the analytic perspective, the crucial issue are theszaf Rankin-Selberg
L-functions: under GRH for both (s, 7 x 7') andL(s, = x 7), if the analytic conductors
of 7 andr’ are less than), thenY (r, ') = O(log® Q) (see, for example, [G-H]).

One wants to give an upper bound Biir, 7’) which grows moderately iy without
assuming a Riemann Hypothesis. In certain settings, tihi®ealone through non-analytic
means. As an example, Murty [Mu] used the Riemann-Roch émean the modular curve
Xo(N) to show that whemr andn’ correspond to holomorphic modular forms of levél
and even weight, thenY (7, ') = O(kN loglog N). For the case of Maass forms on the
upper half plane, Huntley [H] used the method of Rayleightigunds to show that (7, ')
grows at most linearly in the eigenvalue. More recently, 8abhakraborty, and Petridis
[B-C-P] proved a linear bound in the level and weight of hotwphic Hilbert modular
forms, again using Rayleigh quotients.



This paper is concerned with, among other things, the détetron of cusp forms
on GL,, by their first few local components when measured with resjodooth the archi-
medean and non-archimedean parameters. This case hasdated eélsewhere by Moreno
[Mo2], who derived a polynomial bound faf (7, 7’) whenn = 2 but could do no better
thanY (z, ') = O(e?1°’ Q) for some constant > 0 whenn > 3. Moreno’s idea was to
demonstrate a region of non-vanishing fas, 7 x 7’) within the critical strip and apply
this to an explicit formula relating sums over zeros to sunes @rimes. For this strategy
to work, quite a wide zero-free region is needed, one whidage logarithmically in all
paramenters (with the possible exception of one real zddwable to obtain this for
greater than 2, Moreno used the phenomenon of zero reputsiexiract his exponential
bound. In this paper, we obtain a modest zero-free regio.ferr x =) for all n > 2,
decayingpolynomiallyin all parameters, and deduce from this, through an elementa
method which, by contrast with Moreno’s, uses sums ovelgar rather than primes,
thatY (7, ') = O(Q*) for some constant > 0.

Throughout this paper and=’ will denote (unitary) cuspidal automorphic representa-
tions of GL,,(A) (n > 1). We will make the implicit assumption that the central ctaers
of m and#’ are trivial on the product of positive redls™ when embedded diagonally into
the (archimedean places of) the ideles. Under this noratadiz the Rankin-Selberg prod-
uctL(s,m x 7’) has a pole at = 1 ifand only if ' = 7.

The starting point of our inquiry is our Theorem 3 where weegiviower bound on
the polar part ofL(s, IT x II) for IT an isobaric representation 6fL;(A). Theorem 3 is
proven through an approximation of the polar part by a smaeg¢hnage of the coefficients of
L(s,II x IT). That these coefficients are non-negative, and that cestaiem are bounded
away from zero (our Proposition 1), ensures that their @eannot be too small. The
error in the approximation is controlled through Mellin@mgion by the functional equation
of L(s,II x II) and is negligable as soon as the length of the sum is a largegkrpower
of Q.

We then proceed to derive a first consequence of Theorem 8ingran inverse
polynomial lower bound on the edge of the critical strip farRin-Selbergl-functions
L(s,m x «'). To simplify the statement, we writdut, (< @) for the set of all cuspidal
automorphic representationof GL,,(A) with analytic conducto€ () less than).

THEOREM 5. Letw € Aut, (< Q) andn’ € Aut,(< @) and assume that # 7.
Lett € R. There existsl = A(n,n’) > 0 such that

[L(1+it, 7 x ') > (Q(1+[¢]))

n,n

To prove Theorem 5, we apply Theorem 3 to the isobaric Bum 7 ® | det [*/? B
7' ® | det |2 on GLy, Whered = n + n'. With this choice oflI, we force the polar part of
L(s,IT x II) to containL(1 + it,m x «') as a factor. The convexity principle can be used



to bound the factors that remain from above by a poweofSinceC(II x II) is itself
bounded by a power @, we can then make the passage from the lower bound furnished
by Theorem 3 to that fof.(1 + it, 7 x 7’) as stated in Theorem 5.

Theorem 5 has already found applications elsewhere in theture. For instance,
Lapid [L] has recently shown that a lower bound bl + it, 7 x 7’) that decays at most
polynomially inQ(1 + |¢|) is a central issue in the convergence of Jacquet’s relatwe t
formula.

From Theorem 5 it is a short hop to obtain narrow zero-fregoresy It is known
(see, for instance, [S]) that when bathand =’ are self-dual, the method of de la Vallee
Poussin can be carried out successfully to give a (wide)-frtesoregion forL(s, 7 x )
of logarithmic type when the imaginary parametef 0. When exactly one is self-dual,
a standard zero-free region can be derived fot.aMaking the most of recent progress
in functoriality, Ramakrishnan and Wang [R-W] have elimiethany assumption of self-
duality in certain low rank cases. More precisely, they shiwat for and=’ on GL, over
Q, the L-functionsL(s, 7 x ©') and L(s, sym?r x sym?r), as long as they are not divisible
by L-functions of quadratic characters, admit no real excegtiaeros. For the cases that
remain, we derive as a simple consequence of Theorem 5 dreercegion forL(s, 7 x ')
for arbitraryr and~’, the width of which tapers polynomially in all parametensd avhich
remains valid even far = 0. This is recorded in Corollary 6.

The methods contained in Sections 2 and 3, which combinev&Tdieorem 5, can be
thought of as an effectuation of Landau’s lemma. By conti@atnak outlines a technique
in [S] to show effective non-vanishing dif-functions through poles of Eisenstein series,
and this too has now been carried out successfully by Gelbapid, and Sarnak [G-L-
S]. These latter authors use the Langlands-Shahidi methpbve an inverse polynomial
lower bound of certair.-functions alongRe(s) = 1, but in thet-aspect only (and away
from the real line). Relative to the setting of our Theoremh&ir result applies to a (at
present) much larger class éffunctions. Namely, to any.-function or product off-
functions obtained as the residue of an Eisenstein sergssdive a lower bound along
Re(s) = 1; without full functoriality, it cannot be said that each ookthese is thel-
function of an automorphic form o&L,. One striking application given by the authors
of [G-L-S]is to L(s, w, sym?), the symmetric-ninth powek-function of a cusp formr on
GL,: they prove a lower bound fdi(s, 7, sym?) alongRe(s) = 1 despite the fact that it is
not yet known whethek (s, ,sym?) is zero-free to the right of.

The final section in this paper is devoted to deriving theoteihg effective multiplic-
ity one statement. In the proof, we exploit the fact thathwite aforementioned normal-
ization on the central charactdr(s, 7 x 7’) has a pole at = 1 if and only if T = 7’. The
idea is that Theorem 3 quantifies this property by providingvweer bound on the residue
of L(s,m X 7).

THEOREM 7. Letn > 1. Letr = ®,7, andn’ = ®,7, be in Aut, (< Q). Denote by



S the set of all finite places df at which eitherr or ' is ramified. There exist constants
¢ =c(n) > 0andB = B(n) > 0 such that ifry, ~ m, for all prime idealsp ¢ .5 with
absolute norm\p < cQ?, thenr = 7.

The proof of Theorem 7 allows for a weakening of the hypothetethe extent that
one may suppose a mere approximate equivalence betweeirittddd coefficients of the
two forms and still retain the conclusion. In this way we aoéedao deduce in Corollary 9
that the setdut,, (< @) is finite.

AcknowledgementS:his paper came about through the suggestion of my thesis adv
sor, Peter Sarnak, and | would like to thank him now for histicwal encouragement in
this project. | am also happy to acknowledge Erez Lapid fokingeimportant suggestions
to correct the exposition and for explaining his own relateuk. Lastly, | am indebted to
Akshay Venkatesh for pointing out an improvement to an eaviersion of Lemma 1.

1 Preliminaries on.-functions

In this section we give basic notation and definitions of déad and Rankin-Selberb-
functions, including their fundamental analytic propestand functional equations.

StandardL-function. Let = be a cusp form onizL,, over a number field”. To every
prime idealp at which, is unramified there is an associated set.afon-zero complex
Satake parametefsy,.(p, i)} out of which one may define locélfunctions

L(s,m) = [[(1 = ax(p,i)Np~*) ", (1)
i=1
At p wherem, is ramified the local.-function is defined in terms of the Langlands param-
eters ofmy. Itis of the formL(s, my) = By(Np~*)~! whereP,(x) is a polynomial of degree
at mostn and P,(0) = 1. It is possible to write the local factors at ramified primeshe
form of (1) with the convention that some of the(p, i)’s may be zero. The, satisfy the
bound

|ax(p, )] < Np!/2-(m*+1)~! o

by the work of Luo-Rudnick-Sarnak [L-R-S].
At each archimedean plaeea set ofn complex Langlands parametefg, (v, )},
is associated t@,. The local factor at is defined to be

L(S, 7TU) = H FFU(S + ,uﬂ(vv Z))?

=1



wherel'g(s) = 77%/?T'(s/2) andI'c(s) = 2(27)~*I'(s). Thep, satisfy

Re ix(v,9)| < 1/2 = (n* + 1) 3)

again by [L-R-S].

We denote byt the contragredient representationzof It is an irreducible cuspidal
representation oL, (A). For any place of F, 7, is equivalent to the complex conjugate
7, [G-K], and hence

{az(p, i)} ={ax(p,))}  and  {pz(v, i)} = {p(v,9)}
By the bounds in (2), the produﬂp<c>o L(s,m) converges absolutely dRe(s) >

3/2 — (n* 4+ 1)~ (in fact onRe(s) > 1, by Rankin-Selberg theory). We write this product
as a Dirichlet series over the integral ideals of the ringhedgersOy of F:

=[] L(s,m) =D An(n)Nn~
p<oco n
Let S,, denote the set of the infinite places. The completkinction, defined to be
A(s,m) = L(s, ) [ [,eq.. L(s,m,), is an entire function (except wheris the trivial repre-
sentation orGL, so thatL(s, 7) is the zeta function)A(s, 7) has order 1 and is bounded
in vertical strips. It satisfies a functional equatitts, 7) = W (r)q(m)/>*A(1 — s, 7)
whereq(r) is thearithmetic conductoandV (), a complex number of modulus 1, is the
root number We define

H TT @+ lit + pa (v, i)

=1 vE€Sso

and callC(r;t) = q(7)A(m;t) theanalytic conductoof 7 (along the lines = 1 + it).
This definition was originally given in [I-S]. We denaér; 0) by C(r).

Rankin-Selberg.-functions. Let 7 = ®,7, and7’ = ®,7, be cuspidal representa-
tions of GL,,(A) andGL,(A). For prime idealg at which neitherr, nor m, is ramified
let {a.(p, )}, and{a.(p,7)}", be the respective Satake parameters ahdz’. The
Rankin-Selberd.-function at such a is defined to be

n n'

L(S, Ty X 77{)) = H H(]- - aﬂXﬂ’(pa iaj)Np_S)_l'

i=1 j=1
These parameters satisfy

o) < 1= (0 )7 = 4 1) @



At primes at which eithefr, or 7, is unramified we have

{anW’ (pu i7 .])} = {aﬂ(p7 i)aﬂl (p7 .]>}
At each infinite place there exists a set ofn’ parameters i« (v,4,j) | 1 < i <
n,1 < 7 <n’} such that the local factor atis

LST{'UXTF HH Fvs+/~’L7T><7T(U7Z7]))

At any placev we have

{Mﬂxn’(vaivj)} = {,ufrxfr’(vaivj)} (5)
and

IRe plrxw(v,i, )] <1 — >+ 1) = (2 + 1)L, (6)
When the infinite place is unramified for bothr and=’ we have

{MWXW’<U7i7j>} = {MW(U7i> +M7T’<U7j)}' (7)
By the bounds (4), the produgf,_ . L(s,m x my) converges absolutely iRe(s) >

2 — (n?+ 1)~ — (n” + 1)~1. We write this product as a Dirichlet series over all intégra
ideals of the ring of integer®r of F"

(s,mx 1) H L(s,my x 7Tp Z)\Mﬂ/(n)Nn_
p<oo n

It can be shown through Rankin-Selberg integrals [J-P3$w&]the Euler produdt(s, 7 x
7') actually converges ifRe(s) > 1. With S, as usual representing the set of infinite
places, the complete-functionA(s, 7 x ') = L(s, 7 X ') [ [cs.. L(s, ™, x ;) extends
to a meromorphic function o@, is bounded (away from its poles) in vertical strips, and is
of order 1. Under our normalization on the central charactefs, 7 x ') is entire if and
only if 7 # «'. The poles of\(s, 7 x 7) are simple and are locatedsat= 1 ands = 0.

The functional equation (s, 7 x 7') = W(n x ©')q(m x 7)1/?=*A(1 — 5,7 x )
is valid for all s, whereg(m x 7') is thearithmetic conductoandW (7 x 7’), a complex
number of modulus 1, is th®ot number Let

A 7T><7T t :HH H 1+|Zt+ﬂ7r><7r’(vvlaj)|)

i=1 j=1 v€S

As in [I-S] we defineC(m x 7';t) = q(m x ')A (7 x 7';t) to be theanalytic conductor
of the L-function L(s, m x «'). We writeC(m x «’) := C(7 x 7';0).



Separation of Componentéle have),, (1 x 7';t) < Aoo(m; 0)" Ao (7'; £)™. For unram-
ified places this is easy to see by (7). For the ramified infpidees, see the calculations in
[R-S, Appendix]. The arithmetic conductgfr x 7’) separates according to the following
result of Bushnell-Henniart [B-Hlj(7 x 7') < ¢(7)" q(x')"/(q(x), ¢(x")). These together
produce

C(m x m't) < C(m)"C(x'st)" < C(m)™ O ()" (1 + [t])™' 172, ®)

Preconvex bound.et ;. € C be such thaRey > —1 + 6 for somef > 0. By Stirling’s
asymptotic formula for the Gamma function, foe o + it whereo < 6,

(1 —s+m/2)
I((s 4+ 1)/2)
Letd = (n*+ 1)~' and®’ = (n"* + 1)~'. When combined with the duplication formula
Ic(s) = I'r(s)T'r(s + 1) and displays (5) and (6), this gives the following estimatetee
quotient foro < 0 + ¢':

< (14 it + p))?e.

L(1— 5,7, x #)
) v v >\oo l,t 1/2—0' 9
L(s,m, x 7)) S (mx s ¢) ©

From the bounds (4) we deduégs, ™ x ') = O(1) onRe(s) > oy for anyog >
2 — 6 — ¢'. By the functional equation and the above estimate {9y, + it, 7 x 7’) =
OC(r x 7;t)Y/2=7) ono < o for anyoy < —1 + 6 + ¢'. Using the Phragmén-Lindelof
principle and the nice analytic propertiesidfs, 7 x 7’) the following preconvex bound in
the interval-1 +0 + 60 <o <2 -0 — ¢ is obtained:

(0 — 1) 7L(o +it,m x ©') < C(m x 7’5 1) Fe, (10)
wherel(o) is the linear function satisfying—1+6+6¢') = 3/2—60—6" andi(2—6—6") = 0.
Note that the slope df¢) is —1/2, regardless of, §'.

Isobaric representationgAn isobaric representatidi on GL, can be written

H=m ®|det|"B---Bnr,®|det]|™,

wherer; is a cusp form oizL,,; with 3 . n; = d, andt; € R. The L-function L(s, IT) de-
composes as a produbts, IT) = [[; L(s +t;, 7;), and its analytic conductor &11; ) =
Hj C(?Tj; t+ tj) Let

' =7, @|det|"" B---Br) @ |det |



be another isobaric representation®@h,, with 7; on GLn ,>_;m; = d’,andt’; € R. Then

the Rankin-Selberg product i§(s, IT x IT') = H w L(s + t; + t, m; x m,) with analytic
conductor

C(IT x IT'; ¢ HHC X Tt At 4 T). (11)

j=1k=1
As usual we sef (1T x IT') = C(IT x IT'; 0).

2 Alower bound on the polar part di(s, IT x II)

The goal of this section is to establish Theorem 3 whereim@idoound is given on
the polar part of_(s, IT x II) for IT an isobaric representation GfL.;(A). We preface the
proof by two lemmas. Lemma 1 shows that certain of the coeffisifound in the Dirichlet
series ofL(s, II x II) are bounded away from zero. In Lemma 2, this fact combinds wit
the positivity of each one of the coefficients to bound theairtipl sum from below by a
positive power of the length. Theorem 3 will then be shownditofv from these two
lemmas through Mellin inversion.

LEMMA 1. Letd > 1. For non-zero complex numbeifs, . . . oy define the coefficients

Z b X" = H H — a5 X) . 12)

k>0 i=1 j=1

If the o satisfy| [\, os| = 1, thenby > 1.

Proof: A partition A = ()\;) is a sequence of nonincreasing non-negative integers
A1 > Ag > ... with only finitely many non-zero entries. For a partitiandenote by’(\)
the number of non-zerd;, and set\| = >, A;. For A such that(\) < d, lets,(«) be the
Schur polynomial associated Ao that is,

sx(@) = det(a;” " 7);; / det(a ™),
By the orthogonality of the Schur polynomials (see, foramnste, [Ma]),

d d
HH 1 —a;o5X Z |sx(a)2X .

i=1 j=1

ForA = (A,...,Ag,0,...), S€tA = (A\; — Mgy ..., Aae1 — Aa,0,...). Thensy(a) =
a}?---a)?ss(a), and since [], a;| = 1, this gives|sy(a)[?> = |s;(a)[?. Furthermore,



for any pair(\, k), where) is a partition satisfying(\) < d — 1 andk > 0 is an integer

there exists a unique partitiod®) with £(A®) < d and|]A®)| = |A|+kd such that®) = \.
This implies

Yo Isa@PxM =1 -X) Y fsa(@)PXP.

(N<d N)<d—1

If |A\] = 0thens,(«a) = 1. Thed-th coefficient in (12) is therefore

ba=1+ Y |sx(a).

|Al=d
N)<d—1

From this we gleaih; > 1, as desired. O

Let S be a finite set of prime ideals for the integer ri6g- of the number fieldr'.
Write S = [], 4. Letd > 1. For each prime ¢ S, let there be associatetnon-zero
complex numberg(p, 1),...,a(p,d). Letb(n) be a sequence of non-negative real numbers
indexed by the integral ideals 6f. Assume thab(l) = 1 and that forp ¢ S

d d
S0 =TT TT0 - a6 30%) 13)

k>0

Let o(x) € C(0,00) be a non-negative function such thatx) > 1 on[1,2] and
¥(0) = 0. Let

Zb Y(Nn/Y),

the sum being oveall integral idealsi. Since the coefficients(n) and itself are non-
negative, it follows that < F(Y'). Had we chosen a smoothing function supported in an
interval around 0, the identity(1) = 1 would further imply that < #'(Y"). The following
lemma enables us to to takg0) = 0, while still improving uponl <« F(Y') to show
actual growth in the paramet&ras soon a3 is large enough.

LEMMA 2. With the notation as above, there exists a cons@nrt C(d) > 0 such
that F(Y) > YV4(log V)~ forall Y >, (log NS)°.

Proof: As the coefficient$(n) and> are non-negative, the sum(Y") can be trun-
cated to give

FY)> > bmupMNn/Y)> Y b= > o).

Y <Nn<2y Y <NN<2y Y <Npd<2y



By (13), the inequalityy(»?) > 1 of Lemma 1 may be applied to eaght S. Thus

F(Y)>#{p : YY" <Np < (2Y)"% p ¢ S}
>#p : Y <Np < (2V)V) —#{p:pe S}:=A-B

As long asA > 2B we haveF (Y) > 1 A. SinceB < log NS and by the Prime Number
TheoremA ~; Y'/4/log Y (the implied constant depending also on the number figld
the lemma immediately follows. O

Let ¢ be a positive integer ang;, for 1 < i < /¢, be cuspidal automorphic repre-
sentations of5L,,(A), n, > 1. For real numbers,, ..., ¢, such that; = ¢; if 7, = =,
let

M=m ®|det|""B-- B @ |det |

be an isobaric representation Gii.;, whered = n; + - - - + n,. The Rankin-Selberg-
function (s, I x IT) has a pole of order at mo&tats = 1 and, under our normalization on
the central characters and the assumption on the twyjsssholomorphic elsewhere along
Re(s) = 1. Write the Laurent series expansionldgfs, [T x II) ats = 1 as

o0

L(s, T x ) = Y r(s — 1"

k=—102

The following theorem gives a lower bound on the polar patt @f IT x II) of poly-
nomial decay in all parameters. A result of this type was firsived by Carletti, Monte
Bragadin and Perelli ((C-MB-P], Theorem 5), under the agstion thatZ(s, IT x II) is
holomorphic ats = 0. This property is verified if and only i € {ir,«z,(v,4,7)} for
all constituentsr; of IT and the latter follows from the Ramanujan-Petersson ctamjec
Repr(v,7) = 0. Without this assumption, the approach in [C-MB-P], whicesi only the
positivity of the coefficient$(n) and the identityy(1) = 1, is unable to buy a polynomial
dependence on the conductor. By incorporating the extaanmdtion on the coefficients
b(n) contained in Lemma 1, we give an unconditional proof of a lol@und on the polar
part of L(s, II x II) that decays polynomially i6i(IT x II).

What is more, if we admit the hypothesis tha(s, IT x II) is holomorphic ats = 0,
we will improve the power of the conductor given in [C-MB-Rjdeed without Lemma 1
the lower bound in Theorem 3 would B¢IT x I1)~z*<. It should be noted that Theorem
3 in fact interpolates the bound'/>~< <, L(1, x) for real primitive Dirichlet characters,
making it a close approximation to Dirichlet's bound. Weadatliss this in more detail in
Example 4 following the proof.

THEOREM 3. With the notation as above,

10



62

Dl > CIx )01/,

k=1 ‘
wherel(0) is the (pre-)convexity bound &fs, IT x IT) at s = 0. If additionally L(s, IT x II)
is holomorphic ats = 0, then for every > 0

52
S Iroal 3 C(1L x Ty B0
k=1 ‘
The implied constants depend @and/.

Proof: Let(x) be a smooth compactly supported non-negative function®pak-
itive reals withy)(z) > 1 on[1, 2] andy(0) = 0. The Mellin transform of,

i) = [ v e

is an entire function with rapid decay in vertical strips. &Birichlet seried.(s, IT x ﬁ)
can be writtenL(s,II x II) = Y b(n)Nn—*. Let F(Y) = >, b(n)1)(Nn/Y’). From the
Mellin inversion formula it follows that

FY) =3 b (217” / z;(sw/Nn)sds) .

The absolute convergence bfs, IT x ﬁ) beyonds = 1 allows us to switch the order of
the sum and integral to obtain

1 ~ .

F(Y)= 2—2,/L(3,H x I)ip(s)Y* ds. (14)
s
o=2

The integrand in (14) is bounded in vertical strips. The @ple of Phragmén-Lindelof
thus allows the contour of integration to be shifted to thg ighile picking up the residue
of the integrand at = 1.

If L(s,IIxII)is holomorphic at = 0, then we shift the contour to the life(s) = o
for o < 0. If we do not allow this supposition, we keep the contour fromssing the point
s = 0. We instead shiftte- = (1/d) — § for somel /(d+ 1) < § < 1/d. In either case this
gives

F(Y) = P@E(S)L(s,n x INY* + % / L(s, T x I (s)Y* ds.
Re(s)=c

11



To estimate the integral, we use (10), (11) and (8), notieg#pid decay in vertical strips
of the integrand, to obtain

F(Y) = Res O(s)L(s, T x T)Y*® + O, (C(IT x T)!)+ey ), (15)

WhenS is the set of primes at whicH is ramified, the sun#'(Y") satisifies the conditions
of Lemma 2, so that fo¥” >, (log C(IT x II))“

YVe(log V)t <4 F(Y). (16)

)
If we takeY = ¢ C(II x H)<1jd>fv *< for a large enough constant> 0 and for anye > 0
then (16) is valid and the lower bound @(Y") in (16) dominates the error term in (15).
With this value ofY” we obtain

Y/ (log )™ <4 Res U(s)L(s, 1T x TT)Y™. (17)

SinceY® =Y 3. (logY)’(s — 1)/ /!, the right hand side above is

<<Y > Irkl(log V) /! < Y (log Y)* Z|7’ K.
jt+k=-1

Putting these last two estimates together gives

yi- 1/d V)2 < ZV K- (18)
If we have setr = (1/d) — ¢ for 1/(d + 1) < § < 1/d, then substituting

Y = CC(H X H)l(1/2—6)6—1+e < C(H % H)l(o)(d+1)+e

into (18) gives the first statement of the theorem.

If on the other hand we have letbe negative, then given army> 0 we may take-o
large enough with respect th ¢, and the constant term ifv) = —(1/2)0 +1(0) to ensure
that

aHxHWw < C(TI x )1/,
Part two of the theorem then follows upon substitufing= C(IT x I1)!/>* into (18). O

EXAMPLE 4. Letw; = yx, a primitive real Dirichlet character of modulys and
my = 1, the trivial character. Then fdt = = Hm, = y H 1, we have

L(s, T IT) = [¢(s) L(s, X)),

12



C(II x II) = ¢*> andd = 2. The functionL(s,II x II) has a double pole at = 1 and
nowhere else, and if we denote hy= (’(1) Euler’'s constant, then

r_o=L(1,x)* and r_, =2L(1,x)L(1, x) + 2vL(1, x)*.
Applying Theorem 3 gives

e < L0 (B0 29) + 221,01 ).

SinceL ™ (1, x) <. (log q)*, we conclude by this technique that

1
W < L(1,x),

which is only slightly worse than what Dirichlet deduced kg blass number formula,
namelyq—1/? < L(1, x).

3 Lower bounds for (1 + it, © x «')

We shall now use Theorem 3 to bound from below the value alk{g) = 1 of the
Rankin-Selberg.-function L(s, 7 x ©’). To do so at the point¢ = 1 + it, we construct
an auxillary Dirichlet serieg(s, II x II) whose polar part contains(1 + it, 7 x ') as a
factor. Roughly speaking, this coincidence is ensured as as the order of the pole at
s = 1 is equal to the power to which(s, 7 x «’) dividesL(s,II x II). This is precisely
the case in which one classically appeals to Landau’s lenenshdw mere non-vanishing
on the lineRe(s) = 1. The following theorem, Theorem 5, can therefore be inttgat as
an effectuation of Landau’s lemma.

Now that in Example 4 we have measured the quality of the exptogiven by Theo-
rem 3, we shall no longer give specific powers of the conduantour results. One reason
for doing so is that the statements that follow all employpheconvex bound (10) which
can be improved by progress toward the Ramanujan conje(gees{Molt]). Beyond that
subconvex bounds would improve the exponents even furitiere is therefore no com-
pelling reason to specify each exponent, and we greatly Iginthe exposition by not
doing so.

DEFINITION. For a real parametep > 2 we denote byAut, (< @) the set of all
cuspidal representationsof GL,,(A) with analytic conducto€ (r) less thar().

THEOREM 5. Letm € Aut, (< Q) andn’ € Aut, (< @), and assume’ # 7. Let
t € R. There exists\ = A(n,n’) > 0 such that

13



[L(1+it, 7 x ') > (Q(1+[t]))

Proof: Consider the unitary isobaric suih= 7 ®| det [*/?@ 7' ®| det |"*/2, defined
on GL, whered = n + n’. The Rankin-Selberg produéf s, IT x IT) can be written
L(s,m x 7)L(s, 7" x @) L(s +it,m x 7' )L(s — it, 7 x 7).
We apply Theorem 3 witd = n + n’ to get

r_1| + |r_a| > C(IT x )1 Od=1/d)=c (19)
By the factorization (11) and the separation of componen{8), the analytic conductor
C(II x IT) of L(s,II x II) is
C(m x m)C(x" x ©')C(m x 7';1)? < (1 4 [¢]) P FAQAn+n)

Thus the lower bound in (19) becomes

o]+ Jraf > (Q(L + [¢]) ™ (20)

for some explicitly giverd; = A;(n,n’) > 0.
Using L(s,m x 7/) = L(5,7 x 7') we computer_, = R_ R’ ||L(1 +it,7 x 7)|?
and

ro1 = (R Ry + RoR' )|L(1 +it, 7 x &)
+2R_ R Re(L'(1+it,m x ©)L(1 +it, 7 x 7).

The inequalityRe(2123) < |2122| and the preconvex bounds

R, Ry<Q® — LW +it,mx 7)< (Q(1+[t])*,

for k = 0,1, and somedy, = Ay(n,n’) > 0, now give

P, ros < DL+ it x 7 (Q(L + [t])2.
When combined with (20) this implies the theorem, the poveendpA = A; + 34,. [
As was mentioned in the introduction, the method of de la@é&Roussin can be used
under certain cirmustances to derive zero-free regions ferr x 7’) of logarithmic type.

For instance, to eliminate the possibility of a real excaml zero forL(s, m x 7’), exactly
one ofr andn’ must be self-dual. In certain cases of low rank, Ramakristama Wang
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[R-W] have eliminated the hypothesis of self-duality. Tisyw that forr and=’ on GL,
over Q, the L-functions L(s, 7 x ©’) and L(s, sym?r x sym?r), as long as they are not
divisible by L-functions of quadratic characters, admit no real exceptiaeros. In all the
cases that remain, the following corollary to Theorem 5 les a healthy compromise.

COROLLARY 6. Letm € Aut,(< Q), Aut, (< @), andt € R. There exist constants
c=c(n,n')>0andA’ = A'(n,n') > 0 such thatL(o, 7 x 7’) has no real zeros in the
intervall — cQ 4 <o < 1.

Proof: Let  denote the first real zero df(s, 7 x 7’) to the left of1, wherel/2 <
o < 1. Then we have

1
L(l,mx 7)) = / L'(o,mx @) do=(1— )L (g, 7 x '),
B

for somes < oy < 1, by the mean value theorem. We apply the preconvex bound for
L'(s,m x «') on the critical liner = 1/2

L (o0, m x )| < |L'(1/2,m x 7')| < Q™

for someA; = Az(n,n’) > 0. We finally apply the lower bound fak(1, 7 x 7’) from
Theorem 5 to obtain the corollary, the power beitig= A + As. O

4 Effective multiplicity one
We note that by Theorem 3, whenc Aut,, (< @), we have
R:= Rf}ls L(s,m x ) > Q™2 (21)
for a constanB; = B;(n) > 0.

THEOREM 7. For a real parameterQ > 1 let 7,7’ be in Aut,(< Q) and S be
any finite set of finite places df satisfying|S| < log@. There exists a constait =
B(n,S) > 0 such that ifry ~ m, for all primes ideals) ¢ S with Np < QF, thenr = .

Proof: Fix as a test function any non-negativér) € C>°(0, 0c) with (1) = 1.
PutS = [],.sp and define

F(Y;7 x#) Z Arsci (M Y(Nn/Y).

The hypothesis on the local representatlons means thatafaeSparametergy, (p, i)}
and{a,(p,7)} agree (as sets) for all prime idealst S with absolute norms within the
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specified range. It follows that, .z (v*) = A« (»*) for all primes idealy ¢ S with
Np < QP and allk > 1. By multiplicativity on coprime ideals, one derives the diion
that \;«z(n) = Azxz (n) for all idealsNn < Q7 with (n,S) = 1 —that is

FYinx#)=FY;mx#) for Y <QP. (22)
This will henceforth be our assumption.
With S as in the statement of the theorem,Ig{(s, m x 7') = [ 4 L(s, mp X 7y) and
L3(s,m x @) = [1yeg L(s, m x 7p). Mellin inversion gives
1 .
FY;rx7a)=— /Ls(s,ﬂ' x ) (s)Y? ds.

271

o=2
Letd = 6(n) = (n?+ 1)1, the quantity appearing in the Luo-Rudnick-Sarnak bougjls (
We note that the local factdr(s, my x7y), and thus the produdt®(s, 7 x7'), is well-defined
and invertible onRe(s) > 1 — 20. SinceLg(s,m x @) = L(s,m x #)L%(s, ™ x 7&')7%,
the first factor extending meromorphically €@ we may move the contour to the line
Re(s) = 1 — 6, while picking up the residue of the integrandsat 1. This gives

1 .
F(Y;7mx7) =6, wYRL* (1,7 x7) " + 3t L(s,mx 7V L% (s, x 7) " 1b(s)Y* ds.
s
o=1-0
We bound the individual factors in the above integrand. Treeg@nvex bound on
L(s,m x ') atRe(s) = 1 —0is L(1 — 0 +it,7 x @) < (Q(1 + |¢|))?* for some
By = Bs(n,0) > 0. By (2) we have foRe(s) =1 — 6

[T 11— ax(eiam (e )p sl < L +p )" = 04(1).

1<4,5<n
Since|S| < log@, this gives|L%(s,m x #')|7' = O(1)"*l < QP for some constant
B; = Bs(n,0) > 0. By the rapid decay of(s) along vertical lines then
F(Y;7mx 7)) =0, wYRL? (1,7 x 7)7' + O(Y'70QB"5s), (23)

Let B > 0 be a constant such that (22) holds and supposenthat n’. We seek
a contradiction to the latter supposition. The key obs@wat that under both (22) and
7w # 7' the error term ofF'(Y; 7 x 7) in equation (23) must dominate the main term. In
this range, therefore,

Y? = O(R'L(1, 7 x 7)QP2+5s). (24)

SinceL(s,m x 7) has positive coefficients as a Dirichlet series to the rigtt,ove can
boundZ®(1, 7 x 7) by the preconvex bound at= 1 of the regularization of.(s, © x 7),
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sothatL®(1,m x ©) = O(QP*). By R~! < QP of display (21), equation (24) becomes
Y = O(QY'(Bi+B:4Bs+B41)) - To force a contradiction, we have only to taketo be
B>9_1(Bl+32+33+34). ]

REMARK 8. As we have seen, the condition of Theorem 7 that the firstdeal com-
ponents be isomorphic can be expressed instead as an paddte initial coefficients of
the Rankin-Selberg-series. In fact this latter condition can be relaxed to gor@amate
equivalence, in which the difference between the first feafftents is bounded below by
some expression in the conductor.

Having chosenr, n’ € Aut,(< @), let the setS consist of precisely those prime
ideals at which either or 7’ is ramified. ThenS| < log @ as required in the statement of
Theorem 7. Pub = Hpes p. We claim that ifr # 7’ then there exist numbers, C > 0
such that), (ng) — A\ (ng)| > Q¢ for some square-free ide@l), S) = 1 with Nny < Q5.
This relaxation is essential for comparing automorphiernf®mwhose coefficients are not
algebraic, as is believed to be the case for Maass wave forms.

By the previous arguments, since# 7/,

D rxa(n) = A (M) (Nn/Y) = YRLY (1,7 x 7) 7' + O(Y QP+ 75s),
(n,8)=1
Under Theorem 7 it” = QP for B large enough then it is the main term that dominates
the error term, giving

% Z Nexz(0) = Aoz (M[(Nn/Y) > RLY (1, x 71) 71 > QBB
(n,8)=1

There therefore exists an integral ideglelatively prime toS with Nn, < QF such that

| Arxz(n0) — Arxa ()| > Q~P1=P4 (the implied constant depending @. At the cost of
increasingBy, ..., By (and henceB as well), the ideah, can be taken to be square-free
(simply redo the proof of Theorem 7 using the square-freamifred L-function). Recall
that Ars(n) = A (n)Aw(n) on square-free unramified ideals By the bounds (2) with
0= (n*+1)"

[ Aexz(0) = Arxar ()] < Q(l/Q_G)BP\w(“o) — Axr(no)|
and the claim follows witlC' = B, + B, + (1/2 — 0)B.
COROLLARY 9. The setdut, (< Q) is finite.

Proof: PutS = {p : Np < @} and observe that the prime ideals at which any
7 € Aut,(< Q) is ramified are contained ifi. LetS = | | S; be a disjoint covering of by
subsetss; satisfyinnge s, Np < Q. Denote byAut, (S;) the set of all automorphic forms
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on GL,,/F unramified at finite places outside 6f. We haveAut, (< Q) C || Aut,(S;).
We shall show that each intersectidnt, (5;) N Aut, (< Q) is finite.

Let B > 0 be a constant (to be fixed later). Ft= Hpe s, - For eachi letZ; the set
of square-free ideal@, S;) = 1 with Nn < Q. For constants, ¢ > 0, consider the space
of sequences of complex numbers

Xi = Xife,©) = {(Aner, © [A)] < Nnl/2-0 710y

endowed with the natural topology and metric as a closedesad€ i, whereM; = |Z;|.
By the bounds (2), for any > 0 there exists a constant= c(e) > 0 such that the
set Aut,(S;) maps toX; via the Fourier coefficient map'C; : © — (A\;(n))yez,. Since
|S;| < log @@ we may takeB as in Theorem 7 to conclude that the restrictionf@¥; to
Aut,(S;) N Aut,(< Q) is injective. Moreover, the distance squared between anyrtw
7' € Aut,(S;) N Aut,, (< @Q), considered as points iN;, is

dist(m,7')? = |[FO(r) = FO(@)* = 3 [Aa(n) = Aw ()]

For andx’ distinct we thus have

dist(m, ™) > max [Ae(n) = A (n)] > Q~C (25)
€1;

by Remark 8. Hencélut, (S;) N Aut,(< Q) is discrete inX;. As X; is compact, the result
follows. L

REMARK 10. The bound onAut, (< Q)| given by the above corollary is probably
very poor, possibly exponential. A more sophisticated ysigalusing the trace formula
should however give a sharp polynomial bound in all pararsete
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