
HAL Id: hal-00141576
https://hal.science/hal-00141576

Submitted on 20 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel computing for electromagnetic field computation
Christian Vollaire, Laurent Nicolas, Alain Nicolas

To cite this version:
Christian Vollaire, Laurent Nicolas, Alain Nicolas. Parallel computing for electromagnetic field com-
putation. IEEE Transactions on Magnetics, 1998, 34 (5 Part 1), pp.3419-3422. �hal-00141576�

https://hal.science/hal-00141576
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON MAGNETICS, VOL. 34, NO. 5, SEPTEMBEK 1998 3419

Parallel Computing for Electromagnetic Field Computation

C. Vollaire, L. Nicolas, A. Nicolas
CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon

BP1 63 - 69 1 3 1 Ecully cedex - France

Abstract-This paper deals with parallel computation in
electrical engineering. Shared memory and distributed memory
architectures are presented, with their implication in the
development of parallel numerical algorithms. The necessity of
optimizing the parallel performances is highlighted. Both Cray
C98 and Cray T3E are finally compared.

Index terms-Finite element methods, parallel algorithms,
shared memory systems, distributed memory systems,
electromagnetic scattering.

question is: how easily can they be ported onto different
parallel architectures?

The object of this paper is to show the interest of the
parallel computing for electrical engineering. Shared and
distributed memory parallel computers are first presented.
The implications of the parallel architecture on the algorithms
is then highlighted. A comparison between the Cray C98 and
the Cray T3E is finally presented as example.

11. SHARED AND DISTRIBUTED MEMORY PARALLEL COMPUTERS

I. INTRODUCTION

Numerical computation is more and more used in
engineering sciences to develop new devices or to optimize
operating apparatus. Many of the numerical modeling
packages make use of the Finite Element (F.E.) method.
Unfortunately, this method requires the 3D mesh of the
whole studied domain. This is especially expensive for open
boundary problems. Furthermore, the size of the 3D mesh
makes the modeling of large, coupled or complex problems
difficult or even impossible to perform.

Only parallel computers provide the increase in computing
performance required to solve such types of problems today.
Two reasons may be highlighted: when large memory is
needed because of a large amount of data, or when speed is
needed to obtain the solution [l]. In recent years, several
papers in parallel computational electromagnetics were
published [2-61, especially since new distributed memory
architectures appeared. Several parallelizations of existing
codes were also reported [7] . However, electrical engineering
seems to be behind other domains in parallel computation.
For example, 3D optimization using genetic algorithms for
Navier-Stokes computations is today currently performed in
fluid dynamics [8].

The cost related to the parallel computation is an important
point to emphasize. This cost has to be estimated in terms of
computational developments -how much have numerical
algorithms to be modified in order to take advantage of
parallel computation?- and in, terms of use of parallel
computers. A good match between the algorithms and the
architecture of the computer has to be found to obtain the
optimum performances. This is especially true for new
developed codes. For existing industrial codes, the crucial

Manuscript received November 3, 1997.
C. Vollaire, vollair@trotek.ec-lyon.fr, L. Nicolas, laurent@trotek.ec-

This work was supported in part by the Institut du Developpement et des
. lyon.fr, A. Nicolas, nicolas@trotek.ec-lyon.fr, http://cegely.ec-lyon.fr/ .

Ressources en Informatique Scientifique (CNRS).

We are concerned only by Multiple Instruction Multiple
Data (MIMD) parallel computers: they are multi-purpose and
the most adapted to the type of problems that we want to
solve, These computers may be classified under two
categories, depending on the type of access to the memory
they provide: shared memory and distributed memory.

A. Shared Memory Parallel Architectures

They are composed of multiple processors, the memory is
shared by all the processors, and the communication is
performed via a high speed interconnection network. These
computers may also have vector capabilities, such as the Cray
YMP or the Cray C98.

The exchange of data is performed by accessing the same
memory address. Semaphores are used to prevent the
problem of simultaneous access to the same data by various
processors. The programming environment is generally well
developed on such computers. Automatic vectorization and
parallelization tools are available. Many profiling tools also
give information about the performances of the codes
(parallelism ratio, parallelkequential portion of the code,
average vector length, ...).

It seems however that this type of technology has reached
a ceiling: it becomes difficult to increase the number of
interconnected processors and the size of the memory.
Obviously, computers like Cray C94/C98 will be replaced
before the end of the century. Furthermore, this type of
computer is expensive, requiring small companies to share
their costs and thus their use.

B. Distributed Memory Parallel Architectures

They are composed of independent subsystems. Each
processor has its own memory, and the communication is
achieved using message passing. An additional cost due to

0018-9464/98$10,00 0 1998 IEEE

mailto:vollair@trotek.ec-lyon.fr
http://lyon.fr
mailto:nicolas@trotek.ec-lyon.fr
http://cegely.ec-lyon.fr

3420

the communications is then unavoidable and the
interconnection network is crucial for the parallel
performances. Furthermore, the question of synchronization
between the processors arises. At present, no tool seems
really efficient to automatically parallelize codes on such
architectures.

Cray T3E or Intel Paragon are examples of distributed
memory parallel computers. Access to such a computer may
be cheaper than the access to a shared memory one. For
example, it is possible to obtain good computation
performances by using a cluster of workstations or a cluster
of personal computers.

C. Present Trend

Distributed memory parallel computers then become
unavoidable. Presently, they are the only known way
allowing the efficient use of a large number of processors
together with a large physical memory. New hybrid parallel
architectures are arising: they combine shared and distributed
memory and they are equipped with powerful vector
processors, such as the FUJITSU VPP300. This allows a
better quality price-performance ratio and the operating costs
are reduced.

111. PARALLEL ALGORITHMS

Some important points have to be taken into account. First,
software tools provided with the computer, for the analysis of
the parallel performance or for the automatic
parallelizatiodvectorization, have a great impact on the way
that parallelism is realized. Secondly, numerical algorithms
have to be lightly or deeply modified in order to take
advantage of parallel processing. Thirdly, the presence or the
lack of portability is a choice to make: it seems clear that, the
more a code is optimized for a given computer, the more it
will be non-portable on other machines.

Parallel algorithms have to be adapted to suit the
architecture of the computer in order to obtain the best
parallel performance. Whatever the type of architecture, a
good load balancing and a minimization of the overhead
introduced by the parallelism are required.

A. Shared Memory Parallel Computers

On shared meinory computers, parallelism IS introduced by
splitting the loops. The main work to parallelize the code
concerns the study of the scope of the variables and the tiling
[9]. This can be performed automatically or manually.

As example, automatic vectorization and parallelization
tools are available on the Cray C98. This is called
autotasking. But it is necessary to add compiler directives
manually and to find the scope of each variable to increase
parallel performance to an acceptable level (Fig. 1). This
technique is called microtasking. Vector performances have

35
g 4

3
2

-'I
1 2 3 4 5 6 7 8

number of processors

Fig. 1. Cray C98-speedups before and after manual optimization

also to be taken into account. The main problem on such
architectures consists in finding a good compromise between
vectorization and parallelization.

B. Distributed Memory Parallel Computer

On distributed memory computers, several programming
models are possible (SPMD, MPMD, MS), depending on the
nature of the application [lo]. The main points to respect are
partitioning the data and the computations, and minimizing
the communications. The domain decomposition may be a
natural way to achieve parallelism [2, 7, 111. But it requires
an additional expensive preprocessing step to slice the mesh.
Moreover it is not adapted to massively parallel computers,
because the number of partitions possibly generated is often
limited.

The main optimization on such architectures consists in
minimizing the overhead due to the communications. An
example is in the use of the message passing library. By
switching from PVM to SHMEM', speedups have been
deeply increased on a Cray T3E (Fig. 2). On the other hand,
this optimization has been made to the detriment of

6

4 4
3
$ 2

0

-43- PVM

-@- SHMEM

0 8 16 24 32

number of processors

Fig. 2 Cray T3E-speedups with PVM or with SHMEM for message passing

' SHMEM IS a library developed by Cray The memory space IS

physically dlstnbuted but virtually shared The date have then to be allocated
at the same address in the memory on every processor

342 1

portability. Note that the PVM performances seem to drop as TABLE I
COMPARISON BETWEEN ALGORITHMS ON C98 AND T3E the number of processors increases from 16 to 32. This is due

to the overhead introduced by the parallelism: the number of
degrees of freedom of the test problem used for these
computations is not large enough to obtain good assembling per element per degree of freedom
performances on a high number of processors. preconditioning incomplete Cholesky block incomplete Cholesky

Cra C98 Cray T3E
sparse regular matrix representation sp:se redundant

solving conjugate gradient conjugate gradient

On the Cray C98 [13], a redundant sparse row-wise
representation is used to store the matrix. The access to the

Iv EXAMPLE COMPARISON BETWEEN THE C98 AND THE CRAY T3E.

Both computers are up-to-date. The Cray C98 is a parallel
shared memory computer with vector processors while the
Cray T3E is a massively parallel distributed memory
computer with scalar processors. For the same application of
electromagnetic scattering, algorithms, performances and
CPU times are strongly dependent on the architecture. They
are compared in the next sections.

A. The Electromagnetic Scattering Code

The wave3d program is used to model unbounded
frequency domain problems such as microwave or
electromagnetic scattering [121. The Finite Element
formulation is directly written in terms of the vector field.
Because nodal-based finite elements are used, a penalty term
is added to the formulation in order to avoid spurious
reflections. The open boundary is modeled using a 3D second
order vector Engquist-Majda absorbing boundary condition
(A.B.C.). The Galerkin form of the global formulation for
scattering problems is the following:

non-zero terms of a column are adjacent in memory, allowing
good vector performances. On the other hand, this type of
storage requires twice as much memory space as a regular
sparse storage [9]. The assembling of the FE matrix is
performed by elementary contributions. For large problems,
the incomplete Cholesky preconditioning method is more
efficient, due to the reduction of the number of iterations.

On the other hand, the assembling is performed by degree
of freedom on the Cray T3E [14]. It allows an optimal
speedup for this step to be obtained because no message
passing is required between the processors. A block
incomplete Cholesky preconditioning together with the
conjugate gradient is used to solve the matrix system [15,
161. Compared to a diagonal preconditioning, this method
reduces the number of iterations by generating a good
preconditioning. Compared to the usual incomplete Cholesky
preconditioning, no message passing is required and the
overhead introduced by the parallelism is negligible when the
number of degrees of freedom is large. The speed up is then
considerably better that the optimal linear gain [151.

-Iv [i (VN x V x H) + k&N H dv + (VN)(V . H)dv + C. Comparison Between Parallel Pe@ormances

(l) Parallel performances are first analyzed on a 60000
S degrees of freedom matrix (Fig. 3). This is the largest

1 Jv

jsN T(H)ds-JNnV.Hds=

with the A.B.C.: T(H) = jkHt+-Vt2Ht, j
2k

and H i : incident field

problem which can be solved on- only one processor of-the
Cray T3E. This is essential to obtain the actual speedup. On
the other hand, this size of problem is insufficiently large to
obtain good performances on a large number of processors,
because of the cost due to the overhead during the conjugate
gradient iterations. This explains the breakpoint in the
speedup at the 4 processor level (Fig. 4). The breakpoint is of
course strongly dependent on the size of the problem size.
Note that the parallel performances on the Cray T3E are

This formulation leads to 3 complex unknowns per node.
A good accuracy in the results is obtained with 10 nodes per
wavelength and a distance between the device and the outer
boundary equal to 1 wavelength. This high number of
degrees of freedom justifies the use of parallel computers.

Boundary conditions on conductors and on -symmetry
planes are introduced by globally modifying the FE matrix.
This one is approximately symmetrized by addition with its
transposed. Because it is sparse, the matrix system is solved
using the conjugate gradient algorithm.

B. Comparison Between Parallel Algorithm

Table I summarizes the algorithms used on both
computers. These algorithms have been shown to give the
best performances on each computer.

Fig. 3. 60000 degrees of freedom problem - scattering by a perfect electnc
conducting cylinder.

3422

15

13

11

9 9
8
2 7

TJ

5

3

1
1 2 3 4 5 6 7 8

number of processors

Fig 4 Speedups for a 60000 degrees of freedom problem

expressed in terms of superlinear speedup: the speedup is
greater than the number of processors used. Indeed the block
incomplete Cholesky preconditioning leads to a weakening of
the convergence rate. But the number of preconditioning
operations decreases when the number of processors
increases, allowing better performances.

The difference between the CPU times on both C98 and
T3E (Table 11) is due to the different monoprocessor
performances (average performances: 50 Mflops for the T3E
and 375 Mflops for the C98). On the other hand the CPU
time used on the C98 increases more slowly than on the T3E
when the number of degrees of freedom increases. First, is in
the increasing of the vector performances on the C98.
Second, the overhead becomes more penalizing on the T3E
because the size and the number of messages increase.

CONCLUSION

We have presented in this paper our experience in parallel
computational electromagnetics. The implementation of a
code on a Cray C98 is easy and the algorithms do not need to
be rewritten. However, a thought intervention of the
programmer is necessary to add manually compiler
directives. Vector performances have also to be watched: a
good compromise between vectorization and parallelization
has to be found. On the other hand, the implementation on a
Cray T3E is more difficult. Domain decomposition
techniques may be used for existing codes, keeping the
overall modifications made to the codes to a minimum But

TABLE I1
COMPARISON OFTHE TOTAL SOLVING TIMES ON C98 AND T3E COMPUTAnONS ARE

PERFORMED ON 8 PROCEsSORS WITH ALGORITHMS PRESENTED IN TABLE I

Cray C98 Cray T3E
degrees of freedom CPU hme iterations CPU time iterations

6) (S)
45000 476 415 4643 426
120000 6650 10701 327531 13439
210000 15101 16586 751237 21829

this strategy is not really adapted to massively parallel
computation. Better performances may be obtained by
rewriting completely the code.

Like in many other disciplines, computational
electromagnetics requires a computing power considerably
higher than that offered by today's conventional
supercomputers. Massively parallel computing is destined to
play a great role in the next scientific developments. The use
of such computers requires deep modifications of the
sequential algorithms, so future developments will have to
take this fact into account.

REFERENCES

R.K. Agarwal, "Parallel computers and large problems in industry,"
Computational Methods in Applied Sciences, Elsevier Science Pub., pp.

K. Iwano, V. Cingoski, K. Keneda, H. Yamashita, "A parallel
processing method in FE analysis using domain division," IEEE Trans.
on Mag., vol. 30, no. 5 , pp. 3598-3601, September 1994.
Y.S. Choi-Grogan, K. Eswar, P. Sadayappan, R. Lee, " Sequential and
parallel of the partitioning finite element method," IEEE Trans. on Ant.
andprop., vol. 44, no. 12, pp. 1609-1616, December 1996.
T. Horie, H. Kuramae, T. Niyo, " Parallel electromagnetic-mechanical
coupled analysis using combined domain decomposition method,"
IEEE Trans. on Mag., vol. 33, no. 2, pp. 1792-1795, March 1997.
G. Mader, F.H. Uhlmann, " A parallel implementation of a 3D-BEM-
algorithm using distributed memory algorithms," IEEE Trans. on Mag.,
vol. 33, no. 2, pp. 1796-1799, March 1997.
S.R.H. Hoole, K. Agarwal, " Optimization algorithms for magnetics
and their parallelizability," IEEE Trans. on Mag., vol. 33, no. 2, pp.
1966-1969, March 1997.
M. Dracopoulos, K. Parrot, G. Molinari, M. Nervi, J. Simkin, " Results
of parallelisation of existing electromagnetic finite element codes on
some different parallel architectures," Applied Computational
Electromagnetics Society Journal, vol. 12, no. 2, pp. 107-1 12, 1997.
S. Obayashi, A. Oyama, "Three-Dimensional Aerodynamic
Optimization with Genetic Algorithm," Computational Fluid Dynamics
'96, John Wiley & Sons Ltd., pp. 420-424, 1996.
H. Magnin, J.L. Coulomb, R. Penin-Bit, " Parallel and vectorial solving
of finite element problems on a shared-memory multiprocessor," IEEE
Trans. onMan., vol. 28, no. 2, pp. 1712.1715, March 1992.

1-11, 1992.

[lo] K.M Decker, R M RehmGn, Programming Environments for
Massively Parallel Distributed Systems, Birkhauser Verlag Basel, 1994

[11] D. Zoist, "Parallel processing techniques for F E Analysis Sstiffnesses,
loads and stresses evaluation," Computers & Structures, vol 28, no 2,

L Nicolas, K A Connor, S J Salon, B G Ruth, and L F Libelo,
"Three dimensional FE analysis of high power microwave devices,"
IEEETranr M a g , no 2, pp 1642-1645, March 1993
C Vollaire, L Nicolas, "Implementation of a finite element and
absorbing boundary condihons package on a parallel shared memory
computer," Dig of COMPUMAG 97, 1997
c vouaire, L Nicolas, A NiCOlPS, Finite element and aworbing
boundary conditions for scattenng problems on a parallel distnbuted
memory computer," IEEE Trans on M a g , vol 33, no 2, pp 1448-
1451, March 1997
C Vollaire, L Nicolas, "Parallel iterative solvers for large sparse
system of equations on a distnbuted memory computer," DLg of
COMPUMAG 97, 1997
M L Barton, "Three-dimensional magnetic field computation on a
distnbuted memory parallel processor," IEEE Trans on M a g , vol 26,
no 2, pp 834-836, March 1990

pp 247-260, 1988

