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Parameter Estimation of Pharmacokinetics Models in the preence of
Timing Noise

Thierry Bastogne, Sophie Méziéres-Wantz, Nacim RamdRieirre Vallois and Muriel Barberi-Heyob

Abstract— The problem addressed in this paper deals with
the parameter estimation ofiin vitro uptake kinetics of drugs

into living cells in presence of timing noise. Effects of the s measyred by a spectrofluorimeter but the latter induces a
timing noise on the bias and variance of the output error are

explicitly determined. A bounded-error parameter estimaion photobleaching process of .the PS. The term p.hOtObleaCh'ng
approach is proposed as a suited solution to handle this refers to the process by which the chromophoric structure of
problem. Application results are presented and emphasizets the PS is degraded by absorbed light energy [6]. As PS can
effectiveness in such an experimental framework. be photobleached after light exposure, repeated experimen
Keywords: parameter estimation, pharmacokineticsations for the same biological sample are not conceivable.
models, timing errors, bounded errors, biological systems In other terms, one biological sample with PS cannot be
used for consecutive measurements[Bf|. Collecting NV;
data points of the kinetics then requires to rep¥attimes
the same experimenf\; biological samples) with identical
Pharmacokinetics is the study of the bodily absorptionpitial conditions. To avoid the time consuming and the too
distribution, metabolism and excretion of drugS by bodh|gh cost of such an experiment set lM! is genera”y kept
ies. In chemical kinetics, reactions are generally deedrib small,i.e. N; < 10. This limitation onN; is the first problem
by differential equations which link the reaction rate withtg oyercome for estimating kinetics parameters. The second
concentrations or pressures of reactants. In molecular cglfficulty is the low signal-to-noise ratio. The latter isaito a
biology, because of the complexity of systems, the nature gfeat measurement variability when working on living cells
some reactions is still unclear. This paper is focused on thgnich are very sensitive to external disturbances. Thirdly
intracellular uptake kinetics of a photosensitizing dr@$), the choice of the stimulus signal is restricted to step s&gna
i.e. the rate of photosensitizing molecules incorporated anghich correspond to the amount of PS injected into the
accumulated by living cancer cells according to incubatiopyjtyre medium wells at time = 0. A last issue is a timing
terms [1]. The delivery control of the photosensitizing @ige offset error in the measurement samples. This timing error
into the cancer cells is one the major factor on the therépeuis pounded and can reach untill5mn for a measurement
efficiency of the photodynamic therapy (PDT) [2]. Most ofiime sequencdt,} = {1,2,4,6,8,14,18,24h}. This error
the PS uptake kinetics models are non-parametric, the tempg not negligible and has rarely been taken into account
ral evolution of the PS intracellular concentration is didmd parameter estimation problems [7], particularly in this
by step responses. The purpose of this study is the estimatigstricted experimental framework.
of kinetics model parameters from data collected during . . .
) T . .= . The problem addressed in this paper deals with the pa-
vitro kinetics experiments. These parameters are crucial N eter estimation of pharmacokinetic models in presence
formation to both improve the modalities of the drug deljwver

) : . Ef timing errors. Parameter estimation algorithms in gyste
process in photodynamic therapy and discriminate the epta e S L ST
characteristics of different photosensitizers. Few papewe Identification methods are often based on the minimization

of a quadratic function of the output err@e. the difference

been _reported for the apphqa‘uon of §ystem identificatio etween the system and the model outputs. The sensitivity of
techniques to pharmacokinetics modeling problems [3]-[5 L . . .
he output error to timing noise comparatively to input and

output noise is unknown. The contributions of this paper are
twofold:

Unfortunately, these approaches cannot be applied to the
PS uptake kinetics. The intracellular PS concentratjétl X
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« the stochastic effects of the timing noise on the output
error are explicitly determined. They are compared with
the ones of input and output noise. These results are
obtained by assuming that there is no modeling error
between the model and the biological system;

« a solution suited to this system identification problem
is proposed and applied to vitro data sets in a second
part of this paper in order to assess its effectiveness
in practice. The identification problem is addressed in
the bounded-errorcontext and is solved with a set pro-
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a spectrofluorimeter at time§;} with j € {1,---, N;}.
However, the spectrofluorimeter affects the biologicatistd

the photosensitizing drug through a photobleaching psces
Each culture well then becomes unusable after measurement.
Consequently, to measure the intracellular PS conceortrati

at N, different time instants, it is necessary to repeat the
same experiment inV, different culture wells. Moreover,

N, identical wells are handled by the experimenter at each

jection algorithm based on interval analysis introducetime instant; to a posterioriestimate the repeatability of the

in [8].

Il. EXPERIMENTAL SET UP

TABLE |
MAIN NOTATIONS

Description

p
Nt = card({t;})

T

Z,l

N (p, )
U(a,b)

e{}

time variable

theoretical time instant

associated with thg*” measurement sample
real time instant

associated with thgt” measurement sample
noise-free input signal

(stipulated by the experimenter)
real input signal

system output variable

(unknown by the experimenter)
measured output variable

model output variable

input noise

output noise

timing noise

output error variable

biological system

parametric model

vector of parameters

number of data points

number of repeated experiments

at each time instant

transposition ofr

gaussian distribution with megm and
standard deviatiomrr

uniform distribution

on the intervala; b]

mathematical expectation operator

Fig.1 depicts the basic material usedimvitro experi-

measurements. Globallyy, x N; wells are handled during
the whole experiment. In practice, such an experiment & als
repeated for other PS and different concentrations of prote
in the medium. Consequently, the total number of wells to
handle can be much larger thay. x N;. All the wells are
prepared in the same initial conditions.

1. in vitro PSUPTAKE MODELING

The in vitro uptake of the PS agent into cancer cells
can be described by a compartmental modeling approach.
In this paper, a linear two compartments model presented
in Fig.2, is used. The two compartments are associated with
the extracellular and intracellular volumes respectively)
denotes the amount of extracellular PS. Paraméigrand
k. are the uptake and release rates respectively. Diffefentia
equations of this compartmental model are defined as follows

= he(0) — kult) + @
dy B

with 2(0) = y(0) = 0. After substitution ofz(t) from (1)
in (2), it comes that

1 dy kuy
tc t) = t 3
e (O e mIGICINC)
d
T2+ y(t) = ku(o), @)

whereT = 1/(k, + k) andk = k,/(k, + k) are the time
constant and the static gain of the PS uptake model described
by a linear first-order differential equation. In [9], it iB@vn

ments for studying the uptake kinetics of a photosensiizinthat a first-order transfer function is indeed a parsimosiou
drug into living cells. Cells are seeded3n0./ culture wells  model structure for describing the uptake kinetics of the

and are exposed at tintg = 0 to a photosensitizing druf.

chlorin e6 photosensitizing drug into HT29-A4 cancer cells

Let us consider the uptake phenomenon as a dynamic systgiuman colon cancer cell line).
Its input variableu(t) is a step signal which corresponds to

the amount of drug injected into the well at timie= 0.

IV. M ODEL AND ERRORS DESCRIPTIONS

Its output variabley(t) is the amount of drug absorbed The determination of a parametric model describing the

by the cells.g(t) is the measurement of(¢t) given by

uptake kinetics of a photosensitizing drug into living sell



. ) C. Input noise
uo /L Gio y(t)/Ly(t) . . .
I ® S(p) (H— < 9(E) u is a step signal defined by
: . y
Kinetics Experiment + ult) = { 0 i i 8 ©)
= O eult) w2
t; ) The step magnitudeuf) represents the amount of the
> injected drug. The duration of injection is not significant
M(p) ymlts) compared to the duration of the experiment. The drug admin-
Parametric Model 7] istration is usually carried out by multichannel microgtps.
Fig. 3. Description of uncertainties For technical reasons, the real filling levels of drug in the

cones are not identical and do not match with the dose
stipulated by the experimenter. This error is represented b
an input noisen,, added tou such that

0 t<0
ﬁ():uO—i-Tlu tzO

by extracting information from observations af and y

is a system identification problem [10]. At this point and at)
thereatfter, it is assumed that the system and the model are

identical M(p) = S(p). However, as depicted in Fig. 3, three\, here ,; and 4, denote the prescribed dose and the effec-
kinds of uncertainties are examined and are represented th)’er administrated dose respectively.

output, input and timing noise (errors). Output and intput

noise (, andn,) are described by stationary stochastid. Timing noise

processes added to the output and input signals. The timinggach experimentation is carried out in a sterile framework
noise () is a sequence of random variables added to thg which each well is carefully handled by the experimenter.
timing sequencgt; } controlling the sampling process of the For each time instant; of the experimental set up, the
output signalz; is the real time instant at which the outputjiying cells have to be washed, removed, lysed and diluted
variabley is measured while; represents the theoreticaljn ethanol by the experimenter. Such operations can take
measurement time instant noted by the experimenf€t;)  apout 10mn during which each well, among thd,. ones,
denotes the output error between the system and the mogielingdividually handled. But the longest stage is the first
outputs §(¢;) andy(t;) respectively). Table | sums up the one, j.e. the stage where the PS is administrated into all the
main notations used in the sequel. wells; such an operation can tak@mn. In practice, only the
time instantst andt;r corresponding to the beginning and
the end of the experiment are noted by the experimenter.
For the sake of simplicity, it is assumed in the sequel thathe nominal measurement time instant noted by the
M(p) andS(p) both rely on a first-order transfer function, experimenter in his table is an average time instant defined

(10)

A. Model structure

inspired from (4), by t; = (t7 +1t;)/2. The real time instant; at which the
dy uptake kinetics is stopped and measured, is unknown. This
Skp): T- pn +y(t) =k-a(t) (5) lack of precision in the timing of experiments is described
dy by a timing noisen,.
M(p): T-—=+ym(t) =k u(t), (6)
dt V. STOCHASTIC MODELING

with y(0) = ym(0) = 0. p = (T', k) is the parameter vector  In this section it is assumed thdt,(t;)} is an inde-
whereT' andk denote the time constant and the static gaipendent and identically distributed sequence of Gaussian
respectively. From a biological point of vie,andk inform  variables

the biologist about the uptake rate and yield respectugty.

is a step signal of magnitudeg defined in (10). As a result, ny(t;) = oy - GZ’ (11)

the intracellular concentration of the photosensitizinggdy  \yhere o, denotes the standard deviation of and G7 ~

follows a mono-exponential kinetics defined by N(0,1). n, is supposed to be a Gaussian variable defined
y(t) = kg - (1= /7). @

B. Output noise Ny, = 0y Gu, (12)
Conjugated effects of measurement noise and disturband¥geré o._denotes the standard deviation:of and G, ~

are usually described by a stochastic variabjeadded toy N(0,1). The timing noise sequende.; } is supposed to be
such that ‘ independent and identically distributed sequence of umifo

variables such that

y(t:) = y(t;) + ny(t;), 8 _
y( .7) y( .7) ’U( J) ( ) ntj ~ u(tj 7t}_) (13)
wherey andg denote the real biological response and its ~ 7j T Uj (14)
~ T T j M t7

measurement respectively.



with 7; = t7 —¢; andUj ~ U(0,1). ; denotes the width
of the timing uncertainty interval for the time instatt.

thene,(t;) ~ 51075, epy(t;) & 31075 anden,(t;) ~
1-10~%. Consequently, the effect of the timing noise on

{ny(t;)}, n, and {n;;} are supposed to be independentthe output error cannot be neglected for the time instant
Given the previous assumptions about the input, output arig = 1 (k). The impact ofn; decreases ag and becomes

timing noise, the expression ef,(¢;) becomes

ey(t;) = §(E;) — ym(t;) (15)
=k- (U() + UuGu) . (1 - 67%(tj7%+TjUt])) + O'szJ
—k-uo-(l—e_%j), (16)

wherek, T are given.
The mathematical expectation @f,(¢;) is defined in

negligible from¢; > 3 (h). This example emphasizes that
n; could significantly influence the estimation of the time
constant which mainly depends on the first measurement
samples. Since the consequences ofannot be reasonably
ignored, usual parameter estimation methods (those asgumi
only the presence of output noise) and error-in-variabpes a
proaches are not appropriate to solve this estimation gnobl

In the next section, a bounded-error parameter estimation

Proposition 5.1, its demonstration is developed in apapproach is proposed as a suited solution to handle timing

pendix II.
Proposition 5.1:

Eley(t)y =k ug-e ™ (1- sinhq%)) ,

with sinhqz)
cardinal function ofz.
Sincex — sinhdz) is increasing onR™, equation (17)

(17)

shows that{e,(¢;)} < 0. This systematic bias is only due
to the timing noise. The absolute value of the mean outplg

error increases with respect toand is null only forr = 0.
The variance ofe,(t;) is given in Proposition 5.2, its
demonstration is developed in appendix Ill.
Proposition 5.2:
Var{e,(t;)} = 02 + k%02 + k2e 1" - sinhd ) (4 + B),
(18)

2
Up

with: A = e 1" (cosh() — sinhq )

(e% cosh (k) — 2) o2

and B

sinh(z)/2 denotes the hyperbolic sinus

errors.

VI. BOUNDED-ERROR ESTIMATION WITHIN Vitro DATA

Bounded-error or set-membership approaches allow to
estimate parameters and their uncertainty in inverse gnobl
contexts in which all uncertain quantities are assumed as
unknown but bounded with known bounds. No further hy-
pothesis about probability distributions is stated. Saval-
orithms have been developped to solve estimation problems
tated in the bounded-error context. When models are non
linear, most approaches use interval analysis and constrai
propagation techniques. Allied with global algorithms and
a reliable numerical implementation, they derive guaredite
computations, i.e. they provide a numerical proof of proper
or non-property. They are rather mature techniques and
have already been successfully applied for solvling proisle
in biology, chemical or thermal engineering, economics,
computer vision or robaotics, when guaranteed computations
were essential [8], [12].

In this part, we assume that all the uncertain quantities

To take into account both the bias and the variancgyisfy thisbounded-errorproperty and bounded-error esti-

of ey(t;), its mean square error defined ky(t;)

mation techniques are applied to experimental data celfect

Eey(t;)} + Var{ey(t;)} is examined thereafter. Three guring in vitro uptake kinetics experiments of a PS into

specific values of(t;), notede,,, (¢;), enwu(t;) anden(t;),

human malignant glioma cells. The experimental protocol

are determined to emphasize the contribution of each kind yefined byN; = 5, N, = 6 andug = 25mol.

of noise.

e« 0y, =0,7;,=0:

Eny(t;) = 02, (19)
o 0y = 0, Tj = 0:
—t; 2
enalty) = K202 (e = 1), (20)
e« 0y=0,0,=0:
2,2 ey T
ent(t;) = KPule™T (1 —2sinhd 5)  (21)
inha( L) cosh( 2L
+sinhd ) cosh( 2T)) . (22)

The effect of the timing noise on the output error i

estimated as significant if there exists a time instarguch
thate,.(t;) > (enu(t;) + eny(t;))/10. For instance, ifug =
1L,k =03,T = 5,t; = 1,7, = 0.5,0, = 0.01,5, = 0.1

1These values have been chosen from empirical knowledgeotifdists
and experimental results reported in [11].

TABLE Il
PRIOR FEASIBLE INTERVALS FOR THE DATA

J_ti(h [t5] [5(t5)]

T 1 [0.67:1.33] [0:0.607]

2 2 [1.67:2.33]  [0.238:0.861]
3 8 [7.67;8.33]  [0.681;1.396]
4 18  [17.67;18.33] [0.661;1.447]
5 24  [23.67,24.33] [1.376:2.459]

Fig. 4 presents the experimental data of six PS uptake ki-
netics carried out in the same experimental framework. Each
cross corresponds to one measurement. The output variable
measured by the spectrofluorimeter is given in arbitrary. uni

SPrior intervals[g(¢;)] and [t;] on the output measurements
and the time instants are given in table Il. Bound§gfhave
been measured during the kinetics experiméitt;)] has
been determined from the minimum and maximum values
of measurements. The uncertainty associated with each pair
of output and time data is materialized by a box. Thelset
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Fig. 4. Experimental data, intervals and boxes

to be characterized consists of all the valuepot (k,T)’
such that the graph of the function 15

9(p.t) = kg~ (1—e/7) @) T %/f
goes through all five boxes of Fig. B.is defined as :;i ! L J
P={p e R*?|3t e R™®, (¢9(p,t),p,t) € X}  (24) 74
with ° L
gp.t) = (9(p,t1) -+ g(p,tn,)), (25)
and V v K 5 10 {(h) 15 20 %
X=1[g(t1)] x -+ x [§(ts)] x [k] x [T] X [t1] x -+ X [ts], Fig. 6. a posterioriestimate of the output séf
(26)

and the prior box for the parameters given by of the initial slope is mainly due to the height of the boxes

P = [k] x [T] = [1,4] x [1,40]. (27) rather than their width. In other terms, in this applicatitire
uncertainty on the time-constant estimate is mainly caused

]P) can be estimated in a guaranteed Way USIng a set |nVerS|@y\ the Output noise rather than the t|m|ng noise.
algorithms based on parameter space partionning, interval

analysis and constraint propagation techniques (see [8] an VIl. CONCLUSION
the references therein). Fig. 5 presents the estimdtendfen
the partionning algorithm is set not to partition boxes with This paper focuses on consequences of timing errors
a size smaller thaf.01 in collected data on the parameter estimation of kinetics
In Fig. 5, the paving form associated withis composed Models and more precisely their effects on the output error.
of grey and black boxes. The grey boxes have been provgae contribution of the t|m|ng noise on the Output error is
to be included inP but no conclusion has been reached foFompared with the ones induced by input and output noise
the black ones. The external envelopebfis defined by in terms of bias and variance. Mathematical expressions of
k € [1.37;3.49] andT" € [1.7;33]. This results shows that the the bias and variance of the output error with respect to the
estimation uncertainty on the time-constant is larger then Parameters of input, output and timing noises are estadslish
one on the static ga|n F|g 6 dep|cts mpostenonesumate It is shown that the influence of the t|m|ng noise on the Output

of the output sef, a set of time trajectories defined by ~ €rror can be significant, particularly for the first measuzam
time instants ; < 3 k). An application toin vitro data
Y = {(t,y) € RY x R|y(t) = kug(1 — e~"/7), is developed in the second part of this paper. It is shown
with (k, T)T € @} . (28) how the timing noise can be taken into account by bounded-
error estimation algorithms based on interval analysie Th
This figure points out a wide variation of the initial slope oftiming noise is described as a bounded error and no further
the step response which explains the large uncertaintyen thypothesis about probability distributions is stated. Tae

time-constant estimate. In this study case, the wide variat sults presented herein emphasize the effectiveness ofasuch



bounded-error estimation approach in such an experimenttlkcan be deduced from Lemma 1.1 that

framework.
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APPENDIX |
Lemma 1.1:
a(l—U)\ _ bmh(%) o a
E{eM27%)} = ——=2 =sinhc( = ), (29)
5 2

wherea is a non-null constant anfl’ is a random variable
distributed according to a uniform law da, 1].

APPENDIXII
PROOF OF THEPROPOSITIONS.1

Proof: Since G, and G, are centered and sindg’
andG,, are independent, then

Eley(t)} =k ug - (1 - E{emHb=F DY)

— kg (1= ) (30)
—k-oug-e? (1-efe 2010} (@)
zk-uo-ef%j (1 —E{e%(%f[}g)}). (32)

_4 . Tj
E{ey(tj)} =k -up-e” T (1 - smhc(ﬁ)) . (33)
[ |

APPENDIXIII
PROOF OF THEPROPOSITIONS.2
Proof: From (16),e,(¢;) is rewritten such that
ey(t;) = X1+ X2 —ym(ty), (34)
with

X1 = k- (ug + 0uGy) - (1 — e TH=F+mUD)  (35)
Xo = o—yG{u;. (36)

Since X; and X, are independent, it can be deduced that

Var(ey(t;)) = Var(X1) + Var(Xg) (37)
=Var(Xy) + ay. (38)
Let us compute the expectation &f;.
E{X1} = k-up- (1 - e%”g{e%%-ffb}) (39)
- 7
=k-ug- (1 —eT smhc(2T)) (40)

according to Lemma 1.1. The expectationof is given by

(X} = K E{(wo + 0, GE(XT) (D)
= K2(u? + 02)E{X2}, 42)
where
Xs=1—c 1 =+ UY) (43)
We have
E(X5}=1+ E{e*%“r%ﬂﬂf)} _9g{e-H-F Uy

287%5{6%(%7[@1)}
). (44)

:1+e Tg{eT %7Ut])}_
72‘7

=1+e Tsinhc(%) — 2T sznhc(2

We finally obtain
2t .
Var{X,} = k*(u? + o2) (1 + e_%sinhc(%)
—26_¥sinhc(l)) — k?ul (1 et sznhc( 7 ))2
2T 2T
2t

= k*(ud + 02) (1 + ef%sinhc(%) — 2 F smhc(

)

b

7o)

2T
_ 2ty
T (smhc )

— k?ul (1 — 2T smhc(
2t t5 Ts
—L . h _j
T sin c(T)
. Tj 2
(sznhc(—2T)) )
(45)

Equation (18) in proposition 5.2 is then a direct consegeaenc
of (38).

=k? (az + (ug + e

Q) £
2T

2

.
2 —Z .
—20,e” T sinhc( —uge



