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Parameter Estimation of Pharmacokinetics Models in the presence of
Timing Noise

Thierry Bastogne, Sophie Mézières-Wantz, Nacim Ramdani, Pierre Vallois and Muriel Barberi-Heyob

Abstract— The problem addressed in this paper deals with
the parameter estimation of in vitro uptake kinetics of drugs
into living cells in presence of timing noise. Effects of the
timing noise on the bias and variance of the output error are
explicitly determined. A bounded-error parameter estimation
approach is proposed as a suited solution to handle this
problem. Application results are presented and emphasize its
effectiveness in such an experimental framework.

Keywords: parameter estimation, pharmacokinetics
models, timing errors, bounded errors, biological systems.

I. I NTRODUCTION

Pharmacokinetics is the study of the bodily absorption,
distribution, metabolism and excretion of drugs by bod-
ies. In chemical kinetics, reactions are generally described
by differential equations which link the reaction rate with
concentrations or pressures of reactants. In molecular cell
biology, because of the complexity of systems, the nature of
some reactions is still unclear. This paper is focused on the
intracellular uptake kinetics of a photosensitizing drug (PS),
i.e. the rate of photosensitizing molecules incorporated and
accumulated by living cancer cells according to incubation
terms [1]. The delivery control of the photosensitizing agent
into the cancer cells is one the major factor on the therapeutic
efficiency of the photodynamic therapy (PDT) [2]. Most of
the PS uptake kinetics models are non-parametric, the tempo-
ral evolution of the PS intracellular concentration is described
by step responses. The purpose of this study is the estimation
of kinetics model parameters from data collected duringin
vitro kinetics experiments. These parameters are crucial in-
formation to both improve the modalities of the drug delivery
process in photodynamic therapy and discriminate the uptake
characteristics of different photosensitizers. Few papers have
been reported for the application of system identification
techniques to pharmacokinetics modeling problems [3]–[5].
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Unfortunately, these approaches cannot be applied to the
PS uptake kinetics. The intracellular PS concentration ([Pi])
is measured by a spectrofluorimeter but the latter induces a
photobleaching process of the PS. The term photobleaching
refers to the process by which the chromophoric structure of
the PS is degraded by absorbed light energy [6]. As PS can
be photobleached after light exposure, repeated experimen-
tations for the same biological sample are not conceivable.
In other terms, one biological sample with PS cannot be
used for consecutive measurements of[Pi]. Collecting Nt

data points of the kinetics then requires to repeatNt times
the same experiment (Nt biological samples) with identical
initial conditions. To avoid the time consuming and the too
high cost of such an experiment set up,Nt is generally kept
small,i.e.Nt ≤ 10. This limitation onNt is the first problem
to overcome for estimating kinetics parameters. The second
difficulty is the low signal-to-noise ratio. The latter is due to a
great measurement variability when working on living cells
which are very sensitive to external disturbances. Thirdly,
the choice of the stimulus signal is restricted to step signals
which correspond to the amount of PS injected into the
culture medium wells at timet = 0. A last issue is a timing
offset error in the measurement samples. This timing error
is bounded and can reach until±15mn for a measurement
time sequence{tj} = {1, 2, 4, 6, 8, 14, 18, 24h}. This error
is not negligible and has rarely been taken into account
in parameter estimation problems [7], particularly in this
restricted experimental framework.

The problem addressed in this paper deals with the pa-
rameter estimation of pharmacokinetic models in presence
of timing errors. Parameter estimation algorithms in system
identification methods are often based on the minimization
of a quadratic function of the output error,i.e. the difference
between the system and the model outputs. The sensitivity of
the output error to timing noise comparatively to input and
output noise is unknown. The contributions of this paper are
twofold:

• the stochastic effects of the timing noise on the output
error are explicitly determined. They are compared with
the ones of input and output noise. These results are
obtained by assuming that there is no modeling error
between the model and the biological system;

• a solution suited to this system identification problem
is proposed and applied toin vitro data sets in a second
part of this paper in order to assess its effectiveness
in practice. The identification problem is addressed in
thebounded-errorcontext and is solved with a set pro-
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Fig. 1. in vitro experimental set up

jection algorithm based on interval analysis introduced
in [8].

II. EXPERIMENTAL SET UP

TABLE I

MAIN NOTATIONS

Symb. Description
t time variable
tj theoretical time instant

associated with thejth measurement sample
t̂j real time instant

associated with thejth measurement sample
u(t) noise-free input signal

(stipulated by the experimenter)
û(t) real input signal
y(t) system output variable

(unknown by the experimenter)
ŷ(t) measured output variable
yM(t) model output variable
nu input noise
ny output noise
nt timing noise
ey(t) output error variable
S biological system
M(p) parametric model
p vector of parameters
Nt = card({tj}) number of data points
Nr number of repeated experiments

at each time instant
x′ transposition ofx
N (µ, σ) gaussian distribution with meanµ and

standard deviationσ
U(a, b) uniform distribution

on the interval[a; b]
E{·} mathematical expectation operator

Fig.1 depicts the basic material used inin vitro experi-
ments for studying the uptake kinetics of a photosensitizing
drug into living cells. Cells are seeded in250µl culture wells
and are exposed at timet0 = 0 to a photosensitizing drugD.
Let us consider the uptake phenomenon as a dynamic system.
Its input variableu(t) is a step signal which corresponds to
the amount of drug injected into the well at timet = 0.
Its output variabley(t) is the amount of drug absorbed
by the cells. ŷ(t) is the measurement ofy(t) given by

x(t) y(t)

kr

ku

u(t)

Fig. 2. in vitro compartmental model

a spectrofluorimeter at times{tj} with j ∈ {1, · · · , Nt}.
However, the spectrofluorimeter affects the biological state of
the photosensitizing drug through a photobleaching process.
Each culture well then becomes unusable after measurement.
Consequently, to measure the intracellular PS concentration
at Nt different time instants, it is necessary to repeat the
same experiment inNt different culture wells. Moreover,
Nr identical wells are handled by the experimenter at each
time instanttj to a posterioriestimate the repeatability of the
measurements. Globally,Nr × Nt wells are handled during
the whole experiment. In practice, such an experiment is also
repeated for other PS and different concentrations of protein
in the medium. Consequently, the total number of wells to
handle can be much larger thanNr × Nt. All the wells are
prepared in the same initial conditions.

III. in vitro PSUPTAKE MODELING

The in vitro uptake of the PS agent into cancer cells
can be described by a compartmental modeling approach.
In this paper, a linear two compartments model presented
in Fig.2, is used. The two compartments are associated with
the extracellular and intracellular volumes respectively. x(t)
denotes the amount of extracellular PS. Parametersku and
kr are the uptake and release rates respectively. Differential
equations of this compartmental model are defined as follows

dx

dt
= kry(t) − kux(t) +

du

dt
(1)

dy

dt
= kux(t) − kry(t), (2)

with x(0) = y(0) = 0. After substitution ofx(t) from (1)
in (2), it comes that

1

ku + kr

dy

dt
+ y(t) =

ku

ku + kr
u(t), or (3)

T
dy

dt
+ y(t) = ku(t), (4)

whereT = 1/(ku + kr) andk = ku/(ku + kr) are the time
constant and the static gain of the PS uptake model described
by a linear first-order differential equation. In [9], it is shown
that a first-order transfer function is indeed a parsimonious
model structure for describing the uptake kinetics of the
chlorin e6 photosensitizing drug into HT29-A4 cancer cells
(human colon cancer cell line).

IV. M ODEL AND ERRORS DESCRIPTIONS

The determination of a parametric model describing the
uptake kinetics of a photosensitizing drug into living cells
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by extracting information from observations ofu and y
is a system identification problem [10]. At this point and
thereafter, it is assumed that the system and the model are
identicalM(p) ≡ S(p). However, as depicted in Fig. 3, three
kinds of uncertainties are examined and are represented by
output, input and timing noise (errors). Output and intput
noise (ny and nu) are described by stationary stochastic
processes added to the output and input signals. The timing
noise (nt) is a sequence of random variables added to the
timing sequence{tj} controlling the sampling process of the
output signal.̂tj is the real time instant at which the output
variable y is measured whiletj represents the theoretical
measurement time instant noted by the experimenter.ey(tj)
denotes the output error between the system and the model
outputs (̂y(t̂j) andyM(tj) respectively). Table I sums up the
main notations used in the sequel.

A. Model structure

For the sake of simplicity, it is assumed in the sequel that
M(p) andS(p) both rely on a first-order transfer function,
inspired from (4),

S(p) : T ·
dy

dt
+ y(t) = k · û(t) (5)

M(p) : T ·
dyM
dt

+ yM(t) = k · u(t), (6)

with y(0) = yM(0) = 0. p = (T , k) is the parameter vector
whereT andk denote the time constant and the static gain
respectively. From a biological point of view,T andk inform
the biologist about the uptake rate and yield respectvely.u(t)
is a step signal of magnitudeu0 defined in (10). As a result,
the intracellular concentration of the photosensitizing drug y
follows a mono-exponential kinetics defined by

y(t) = k · û0 · (1 − e−t/T ). (7)

B. Output noise

Conjugated effects of measurement noise and disturbances
are usually described by a stochastic variableny added toy
such that

ŷ(tj) = y(tj) + ny(tj), (8)

wherey and ŷ denote the real biological response and its
measurement respectively.

C. Input noise

u is a step signal defined by

u(t) =

{
0 t < 0
u0 t ≥ 0

(9)

The step magnitude (u0) represents the amount of the
injected drug. The duration of injection is not significant
compared to the duration of the experiment. The drug admin-
istration is usually carried out by multichannel micropipettes.
For technical reasons, the real filling levels of drug in the
cones are not identical and do not match with the dose
stipulated by the experimenter. This error is represented by
an input noisenu added tou such that

û(t) =

{
0 t < 0
û0 = u0 + nu t ≥ 0

(10)

whereu0 and û0 denote the prescribed dose and the effec-
tively administrated dose respectively.

D. Timing noise

Each experimentation is carried out in a sterile framework
in which each well is carefully handled by the experimenter.
For each time instanttj of the experimental set up, the
living cells have to be washed, removed, lysed and diluted
in ethanol by the experimenter. Such operations can take
about10mn during which each well, among theNr ones,
is individually handled. But the longest stage is the first
one, i.e. the stage where the PS is administrated into all the
wells; such an operation can take20mn. In practice, only the
time instantst−j andt+j corresponding to the beginning and
the end of the experiment are noted by the experimenter.
The nominal measurement time instanttj noted by the
experimenter in his table is an average time instant defined
by tj = (t+j + t−j )/2. The real time instant̂tj at which the
uptake kinetics is stopped and measured, is unknown. This
lack of precision in the timing of experiments is described
by a timing noisent.

V. STOCHASTIC MODELING

In this section it is assumed that{ny(tj)} is an inde-
pendent and identically distributed sequence of Gaussian
variables

ny(tj) = σy · Gj
y, (11)

whereσy denotes the standard deviation ofny and Gj
y ≈

N (0, 1). nu is supposed to be a Gaussian variable defined
by

nu = σu · Gu, (12)

whereσu denotes the standard deviation ofnu and Gu ≈
N (0, 1). The timing noise sequence{ntj} is supposed to be
independent and identically distributed sequence of uniform
variables such that

ntj ≈ U(t−j , t+j ) (13)

≈ −
τj

2
+ τj · U

j
t , (14)



with τj = t+j − t−j andU j
t ≈ U(0, 1). τj denotes the width

of the timing uncertainty interval for the time instanttj .
{ny(tj)}, nu and {ntj} are supposed to be independent.
Given the previous assumptions about the input, output and
timing noise, the expression ofey(tj) becomes

ey(tj) = ŷ(t̂j) − yM(tj) (15)

= k · (u0 + σuGu) · (1 − e−
1

T
(tj−

τj

2
+τjUj

t )) + σyGj
y

− k · u0 · (1 − e−
tj

T ), (16)

wherek, T are given.
The mathematical expectation ofey(tj) is defined in

Proposition 5.1, its demonstration is developed in ap-
pendix II.

Proposition 5.1:

E{ey(tj)} = k · u0 · e
−tj

T

(
1 − sinhc(

τj

2T
)
)

, (17)

with sinhc(x) = sinh(x)/x denotes the hyperbolic sinus
cardinal function ofx.

Sincex → sinhc(x) is increasing onR+, equation (17)
shows thatE{ey(tj)} < 0. This systematic bias is only due
to the timing noise. The absolute value of the mean output
error increases with respect toτ and is null only forτ = 0.

The variance ofey(tj) is given in Proposition 5.2, its
demonstration is developed in appendix III.

Proposition 5.2:

V ar{ey(tj)} = σ2
y + k2σ2

u + k2e
−tj

T · sinhc(
τj

2T
)(A + B),

(18)

with: A = e
−tj

T

(
cosh(

τj

2T ) − sinhc( τj

2T )
)
u2

0 and B =(
e

−tj

T cosh(
τj

2T ) − 2
)

σ2
u.

To take into account both the bias and the variance
of ey(tj), its mean square error defined byε(tj) =
E2{ey(tj)} + V ar{ey(tj)} is examined thereafter. Three
specific values ofε(tj), notedεny(tj), εnu(tj) andεnt(tj),
are determined to emphasize the contribution of each kind
of noise.

• σu = 0, τj = 0:

εny(tj) = σ2
y , (19)

• σy = 0, τj = 0:

εnu(tj) = k2σ2
u

(
e

−tj

T − 1
)2

, (20)

• σy = 0, σu = 0:

εnt(tj) = k2u2
0e

−2tj

T

(
1 − 2sinhc(

τj

2T
) (21)

+sinhc(
τj

2T
) cosh(

τj

2T
)
)

. (22)

The effect of the timing noise on the output error is
estimated as significant if there exists a time instanttj such
that εnt(tj) > (εnu(tj)+ εny(tj))/10. For instance, ifu0 =
1, k = 0.3, T = 5, tj = 1, τj = 0.5, σy = 0.01, σu = 0.11

1These values have been chosen from empirical knowledge of biologists
and experimental results reported in [11].

then εnt(tj) ≈ 5 · 10−5, εnu(tj) ≈ 3 · 10−5 and εny(tj) ≈
1 · 10−4. Consequently, the effect of the timing noise on
the output error cannot be neglected for the time instant
tj = 1 (h). The impact ofnt decreases astj and becomes
negligible from tj & 3 (h). This example emphasizes that
nt could significantly influence the estimation of the time
constant which mainly depends on the first measurement
samples. Since the consequences ofnt cannot be reasonably
ignored, usual parameter estimation methods (those assuming
only the presence of output noise) and error-in-variables ap-
proaches are not appropriate to solve this estimation problem.
In the next section, a bounded-error parameter estimation
approach is proposed as a suited solution to handle timing
errors.

VI. B OUNDED-ERROR ESTIMATION WITH in vitro DATA

Bounded-error or set-membership approaches allow to
estimate parameters and their uncertainty in inverse problem
contexts in which all uncertain quantities are assumed as
unknown but bounded with known bounds. No further hy-
pothesis about probability distributions is stated. Several al-
gorithms have been developped to solve estimation problems
stated in the bounded-error context. When models are non
linear, most approaches use interval analysis and constraint
propagation techniques. Allied with global algorithms and
a reliable numerical implementation, they derive guaranteed
computations, i.e. they provide a numerical proof of property
or non-property. They are rather mature techniques and
have already been successfully applied for solvling problems
in biology, chemical or thermal engineering, economics,
computer vision or robotics, when guaranteed computations
were essential [8], [12].

In this part, we assume that all the uncertain quantities
satisfy thisbounded-errorproperty and bounded-error esti-
mation techniques are applied to experimental data collected
during in vitro uptake kinetics experiments of a PS into
human malignant glioma cells. The experimental protocol
is defined byNt = 5, Nr = 6 andu0 = 25mol.

TABLE II

PRIOR FEASIBLE INTERVALS FOR THE DATA

j tj (h) [tj ] [ŷ(tj )]
1 1 [0.67;1.33] [0;0.607]
2 2 [1.67;2.33] [0.238;0.861]
3 8 [7.67;8.33] [0.681;1.396]
4 18 [17.67;18.33] [0.661;1.447]
5 24 [23.67;24.33] [1.376;2.459]

Fig. 4 presents the experimental data of six PS uptake ki-
netics carried out in the same experimental framework. Each
cross corresponds to one measurement. The output variable
measured by the spectrofluorimeter is given in arbitrary unit.
Prior intervals[ŷ(tj)] and [tj ] on the output measurements
and the time instants are given in table II. Bounds of[tj ] have
been measured during the kinetics experiment.[ŷ(tj)] has
been determined from the minimum and maximum values
of measurements. The uncertainty associated with each pair
of output and time data is materialized by a box. The setP̂
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to be characterized consists of all the values ofp = (k, T )′

such that the graph of the function

g(p, t) = k · u0 · (1 − e−t/T ) (23)

goes through all five boxes of Fig. 4.P̂ is defined as

P̂ = {p ∈ R
+2|∃t ∈ R

+5, (g(p, t),p, t) ∈ X} (24)

with

g(p, t) =
(
g(p, t1) · · · g(p, tNt

)
)
, (25)

and

X = [ŷ(t1)] × · · · × [ŷ(t5)] × [ǩ] × [Ť ] × [t1] × · · · × [t5],
(26)

and the prior box for the parameters given by

P̌ = [ǩ] × [Ť ] = [1, 4]× [1, 40]. (27)

P̂ can be estimated in a guaranteed way using a set inversion
algorithms based on parameter space partionning, interval
analysis and constraint propagation techniques (see [8] and
the references therein). Fig. 5 presents the estimate ofP̂ when
the partionning algorithm is set not to partition boxes with
a size smaller than0.01

In Fig. 5, the paving form associated witĥP is composed
of grey and black boxes. The grey boxes have been proved
to be included inP but no conclusion has been reached for
the black ones. The external envelope ofP̂ is defined by
k̂ ∈ [1.37; 3.49] andT̂ ∈ [1.7; 33]. This results shows that the
estimation uncertainty on the time-constant is larger thanthe
one on the static gain. Fig. 6 depicts thea posterioriestimate
of the output set̂Y, a set of time trajectories defined by

Ŷ =
{
(t, y) ∈ R

+ × R|y(t) = ku0(1 − e−t/T ),

with (k, T )T ∈ P̂

}
. (28)

This figure points out a wide variation of the initial slope of
the step response which explains the large uncertainty on the
time-constant estimate. In this study case, the wide variation

 0

 5

 10

 15

 20

 25

 30

 35

 1  1.5  2  2.5  3  3.5  4

T
(h

)

k

Fig. 5. a posteriori estimate of the parameter setbP

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25

t(h)

y M
(t

)

Fig. 6. a posteriori estimate of the output setbY

of the initial slope is mainly due to the height of the boxes
rather than their width. In other terms, in this application, the
uncertainty on the time-constant estimate is mainly caused
by the output noise rather than the timing noise.

VII. C ONCLUSION

This paper focuses on consequences of timing errors
in collected data on the parameter estimation of kinetics
models and more precisely their effects on the output error.
The contribution of the timing noise on the output error is
compared with the ones induced by input and output noise
in terms of bias and variance. Mathematical expressions of
the bias and variance of the output error with respect to the
parameters of input, output and timing noises are established.
It is shown that the influence of the timing noise on the output
error can be significant, particularly for the first measurement
time instants (tj . 3 h). An application to in vitro data
is developed in the second part of this paper. It is shown
how the timing noise can be taken into account by bounded-
error estimation algorithms based on interval analysis. The
timing noise is described as a bounded error and no further
hypothesis about probability distributions is stated. There-
sults presented herein emphasize the effectiveness of suchan



bounded-error estimation approach in such an experimental
framework.
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APPENDIX I

Lemma 1.1:

E{ea( 1

2
−U)} =

sinh(a
2 )

a
2

= sinhc
(a

2

)
, (29)

wherea is a non-null constant andU is a random variable
distributed according to a uniform law on[0, 1].

APPENDIX II
PROOF OF THEPROPOSITION5.1

Proof: Since Gu and Gj
y are centered and sinceU j

t

andGu are independent, then

E{ey(tj)} = k · u0 ·
(
1 − E{e−

1

T
(tj−

τj

2
+τjUj

t )}
)

− k · u0 ·
(
1 − e−

tj

T

)
(30)

= k · u0 · e
−

tj

T

(
1 − E{e−

1

T
(−

τj

2
+τjUj

t )}
)

(31)

= k · u0 · e
−

tj

T

(
1 − E{e

τj

T
( 1

2
−Uj

t )}
)

. (32)

It can be deduced from Lemma 1.1 that

E{ey(tj)} = k · u0 · e
−

tj

T

(
1 − sinhc(

τj

2T
)
)

. (33)

APPENDIX III
PROOF OF THEPROPOSITION5.2

Proof: From (16),ey(tj) is rewritten such that

ey(tj) = X1 + X2 − yM(tj), (34)

with

X1 = k · (u0 + σuGu) · (1 − e−
1

T
(tj−

τj

2
+τjUj

t )) (35)

X2 = σyGj
y . (36)

SinceX1 andX2 are independent, it can be deduced that

V ar(ey(tj)) = V ar(X1) + V ar(X2) (37)

= V ar(X1) + σ2
y. (38)

Let us compute the expectation ofX1.

E{X1} = k · u0 ·
(
1 − e

−tj

T E{e
τj

T
( 1

2
−Uj

t )}
)

(39)

= k · u0 ·
(
1 − e

−tj

T sinhc(
τj

2T
)
)

, (40)

according to Lemma 1.1. The expectation ofX2
1 is given by

E{X2
1} = k2E{(u0 + σuGu)2}E{X2

3} (41)

= k2(u2
0 + σ2

u)E{X2
3}, (42)

where

X3 = 1 − e−
1

T
(tj−

τj

2
+τjUj

t ). (43)

We have

E{X2
3} = 1 + E{e−

2

T
(tj−

τj

2
+τjUj

t )} − 2E{e−
1

T
(tj−

τj

2
+τjUj

t )}

= 1 + e−
2tj

T E{e
2τj

T
( 1

2
−Uj

t )} − 2e−
tj

T E{e
τj

T
( 1

2
−Uj

t )}

= 1 + e−
2tj

T sinhc(
τj

T
) − 2e−

tj

T sinhc(
τj

2T
). (44)

We finally obtain

V ar{X1} = k2(u2
0 + σ2

u)
(
1 + e−

2tj

T sinhc(
τj

T
)

−2e−
tj

T sinhc(
τj

2T
)
)
− k2u2

0

(
1 − e−

tj

T sinhc(
τj

2T
)
)2

= k2(u2
0 + σ2

u)
(
1 + e−

2tj

T sinhc(
τj

T
) − 2e−

tj

T sinhc(
τj

2T
)
)

− k2u2
0

(
1 − 2e−

tj

T sinhc(
τj

2T
) + e−

2tj

T

(
sinhc(

τj

2T
)
)2

)

= k2
(
σ2

u + (u2
0 + σ2

u)e−
2tj

T sinhc(
τj

T
)

−2σ2
ue−

tj

T sinhc(
τj

2T
) − u2

0e
−

2tj

T

(
sinhc(

τj

2T
)
)2

)
.

(45)

Equation (18) in proposition 5.2 is then a direct consequence
of (38).


