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Abstract

This paper is devoted to establishing sharp bounds for deviation probabilities of

partial sums Σn

i=1
f(Xi), where X = (Xn)n✷◆ is a positive recurrent Markov chain and

f is a real valued function defined on its state space. Combining the regenerative

method to the Esscher transformation, these estimates are shown in particular to gen-

eralize probability inequalities proved in the i.i.d. case to the Markovian setting for

(not necessarily uniformly) geometrically ergodic chains.
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1 Introduction

Consider a positive recurrent Markov chain X = (Xn)n✷◆ with transition probability Π,

state space E with countably generated σ-field ❊ and stationary distribution µ. It is well

known that we may then restrict ourselves to the case when the chain X is regenerative,

namely when there exists a measurable set A such that µ(A) > 0 and Π(x, .) = Π(y, .) for

all (x, y) ✷ A2, even if it entails considering a Nummelin extension of the initial chain (see

[17]). By virtue of the strong Markov property, the sequence (τA(n))n✷◆ of successive

passage times to the regeneration set A forms a (possibly delayed) renewal process in this
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case and the segments (X1+τA(j), . . . , XτA(j+1)), j ✕ 1, obtained by dividing the sample

path of the chain according to the regeneration times, are i.i.d. r.v.’s, valued in the torus

❚ = ❬n✕1En. Furthermore, the return time to the atom A has finite expectation and the

stationary distribution may be viewed as a Pitman occupation measure:

✽B ✷ ❊ , µ(B) =
1

❊A[τA]
❊A[

τA∑

i=1

■{Xi✷B}],

where τA = inf{n ✕ 1, Xn ✷ A}, ❊A[.] denotes the expectation conditioned on X0 ✷ A and

■{❆} the indicator function of any event ❆. One may refer to [18] for an account on renewal

theory applied to Markov chain analysis. Let f : (E, ❊) → ❘ be a measurable function.

Asymptotic expansions for the tail probabilities of the partial sums n−1/2
∑n
i=1 f(Xi) have

been obtained via the regenerative method (see [23]), which technique consists roughly

speaking in applying appropriate results for i.i.d. r.v.’s to the partial sums over regen-

eration cycles
∑τA(j+1)

i=1+τA(j) f(Xi), j ✕ 1. Refer in particular to [4], [13] and [3] for such

refinements of the CLT theorem. This paper aims at establishing, with the same means,

non asymptotic bounds for the probability that the sum
∑n
i=1 f(Xi) exceeds a prescribed

number x, holding for all x and n, similar to tail bounds proved in the independent frame-

work such as those obtained by W. Hoeffding, G. Bennett or S.V. Nagaev for instance.

We point out that the regenerative method is by no means the sole technique for obtain-

ing probability inequalities in the markovian setting. Such non asymptotic results may

be established by martingale arguments (see [10]), coupling techniques based on decay

rate assumptions for mixing coefficients (see [6] or [21] for instance), from results of the

quasi-compact operator theory when the spectral gap property is assumed to hold for the

transition kernel (see [12] and [11]) or by methods based on information inequalities as

in [14] (see also [22]). However, the regenerative method imposes much less restrictions

on the ergodicity properties of the chain than most alternative techniques. In particular

it may be used without stipulating Doeblin’s condition (i.e. uniform ergodicity) to be

fulfilled.

The paper is organized as follows. Section 2 first gives an insight into how the regener-

ative approach may apply for deriving tail bounds in the positive recurrent case, appealing

additionally to an exponential change of probability measure as in [24] and then states

the main results of the paper. Technical proofs are postponed to section 3.

2 Probability Inequalities for Regenerative Markov Chains

We first introduce further notation. Let ν be some probability distribution on (E, ❊).

Here and throughout, we denote by Pν (respectively, PA) the probability measure on the

underlying space such that X0 ∼ ν (resp., conditioned on X0 ✷ A) and by ❊ν[.] (resp.,

by ❊A[.]) the Pν-expectation (resp., the PA-expectation). Furthermore, it is assumed
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throughout the paper that ❊A[τ2A] < ∞ or equivalently that ❊µ[τA] < ∞, since by a

standard result in renewal theory Pµ(τA = k) = µ(A)PA(τA ✕ k) for all k ✕ 1.
In the case when Y1, ..., Yn are i.i.d. random variables such that E[Y1] = 0, ❊[Y21] = σ2

and |Y1| ✻M for some constant M, the following tail estimate has been obtained in [1]

P(

n∑

i=1

Yi ✕ x) ✔ exp

{

−
nσ2

M2
H(
Mx

nσ2
)

}

, (1)

with H(x) = (1+ x) log(1+ x) − x.

When the Yi’s are not bounded anymore, this inequality may be extended using trun-

cation arguments, as in [9] (see also [16]) at the price of an additional term related to the

tail behavior of the Yi’s on the right-hand side of (1). For arbitrary positive constants x

and M, we have the inequality

P(

n∑

i=1

Yi ✕ x) ✔ exp

{
x

M
− (
x− nmM

M
+
nσ2M
M2

) log(1+
xM

nσ2M
)

}

+ nP(Y > M)

✔ exp

{

−
nσ2M
M2

H(
Mx

nσ2M
)

}

+ nP(Y > M), (2)

with mM = ❊[Y1■{|Y1 |✔M}] and σ2M = ❊[Y21■{|Y1 |✔M}].

This paper is devoted to establishing analogous inequalities under the assumption that

Yi = f(Xi), 1 ✔ i ✔ n, where f : (E, ❊) → ❘ is a µ-integrable function. Without loss of

generality, we assume that µ(f) = ❊µ[f(X1)] = 0 throughout the article.

2.1 The regenerative approach

Let ln =
∑n
i=1 ■{Xi ✷ A} be the number of renewals (i.e. visits to the regeneration set A)

up to time n. We denote by α = ❊A(τA) the mean inter-renewal time. For j ✕ 1, define

Sj(f) =
∑τA(j+1)

i=1+τA(j) f(Xi) and sj = τA(j+1)−τA(j). Notice that these are two sequences of

i.i.d. random variables with common variance σ2f and σ21 respectively, which are assumed

to be finite throughout the article. The regenerative method is based on the preliminary

observation that the sum
∑
i✔n f(Xi) may be decomposed as follows on the event {ln ✕ 2}:

n∑

i=1

f(Xi) = SA(f) +

ln−1∑

j=1

Sj(f) + S
(n)
n (f), (3)

where SA(f) =
∑τA

i=1 f(Xi) and S
(n)
n (f) =

∑n
i=1+τA(ln) f(Xi) with the usual convention re-

garding empty summation. It is noteworthy that the summands in (3) are generally not
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independent for fixed n (observe that, when f ✑ 1 for instance, they sum up to n). Hence,

when applied for establishing tail bounds, the regenerative method comprises three main

steps. The first one consists in partitioning the underlying space Ω according all possible

fashions for the chain to regenerate up to time n, so that the summands in (3) be mutually

independent on each subset of the partition. The matter is next to establish a tail bound

on each of these subsets by relying on the resulting independence structure. And the

desired tail estimate is finally computed by summing all the bounds previously obtained

in a way that the sum obtained may be identified.

Now that an insight into the principle of the method has been given, in the next

subsection we turn to developing the argument for proving tail inequalities in a rigorous

fashion. Observe first that for all strictly positive real numbers p1, p2 and p3 such that

1/p1+ 1/p2+ 1/p3 = 1, we have for all x > 0 the immediate bound

Pν(

n∑

i=1

f(Xi) ✕ x) ✔ Pν(

n∑

i=1

f(Xi) ✕ x, ln ✔ 1) + Pν(SA(f) ✕ x/p1)

+ Pν(

ln−1∑

j=1

Sj(f) ✕ x/p2) + Pν(S
(n)
n (f) ✕ x/p3), (4)

with the convention that
∑ln−1
j=1 Sj(f) = 0 when ln ✔ 1. Whereas bounds for the first two

terms on the right hand side of (4), as well as for the last one, may be easily derived from

assumptions on the tails of τA and SA(f) under Pν and PA, special attention must be

paid to the tail of
∑ln−1
j=1 Sj(f). Beyond the dependence structure among the summands

emphasized above, it is noteworthy that the Sj(f)’s are generally unbounded (even though

one assumes f to be bounded).

2.2 Main result

Although the technique we present here for establishing bounds for the tail behavior of
∑ln−1
j=1 Sj(f) is very general, we focus on a simple result for the sake of clarity. Precisely,

we derive an inequality extending (2), whose right hand side consists of two components:

the first one being of the form of an exponential bound involving truncated moments of

the (Sj(f), sj)’s, while the second one is related to their tail behavior. Other probability

bounds can be deduced by a slight adaption of the argument described below. And

extensions of moment inequalities of Rosenthal type for
∑
i✔n f(Xi) may be established

with the same method. We also emphasize that, although the present study is confined to

the markovian setting, the method applies in the same way to any (eventually continuous

time and not necessarily markovian) stochastic process with a regenerative extension (see

[25]).
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Theorem 1 Consider a regenerative positive recurrent Markov chain X = (Xn)n✷◆
with initial and stationary probability distributions ν and µ. Let A be an accessible

atom for X and f : (E, ❊) → ❘ some µ-integrable function. Assume further that

• (i) α = ❊A[τA] < ∞ and 0 < σ2A = ❊A[τ2A] < ∞,

• (ii) ❊A[SA(f)] = 0 and 0 < σ2f = ❊A[SA(f)2] < ∞.

Then, for any vector M = (M1,M2) ✷ ❘
✄2
+ of euclidian norm ❦M❦ = (M2

1+M
2
2)
1/2,

there exists a constant CM depending on σ2A and σ2f such that , for any n ✕ α,

Pν(

ln−1∑

j=1

Sj(f) ✕ x) ✔ CMexp

{

−
n(1+ |ρ̃|)σ̃2

2 ❦M❦2 H(
❦M❦♣2

(1+ |ρ̃|)σ̃σ̃f
x)

}

+ (n− 1)PA(|SA(f)| ✕M1) + (n− 1)PA(τA ✕M2), (5)

with

σ̃2f = VarA(SA(f)■{|SA(f)|✔M1}), σ̃
2
A = VarA(τA■{τA✔M2}),

ρ̃ = (σ̃fσ̃A)−1CovA(SA(f)■{|SA(f)|✔M1}, τA■{τA✔M2}),

σ̃ =

q
σ̃2fσ̃

2
A/(σ̃

2
f + σ̃2A),

VarA and CovA denoting respectively variance and covariance under PA and the

constant CM, depending on α, σ̃2f and σ̃2 only, being of order O(❦M❦2) as ❦M❦ → ∞.

Furthermore, we have, for any n ✕ α,

Pν(

ln−1∑

j=1

Sj(f) ✕ x) ✔ CMexp

{

−
x2σ̃/σ̃f

2(n(1+ |ρ̃|)σ̃σ̃f+ xM
♣
2

3
)

}

+ (n− 1)PA(|SA(f)| ✕M1) + (n− 1)PA(τA ✕M2). (6)

Before developping the argument based on the regenerative method, a few remarks are

in order at this point.

Remark 1 (On block-moment conditions) Notice that conditions (i) and (ii) do not

depend on the atom A chosen. Besides, when dealing with the nonregenerative case,

these conditions have to be satisfied by a Nummelin (regenerative) extension of the chain

X constructed from a small set S, namely an accessible set to which X returns in a given

number of steps with probability uniformly bounded by below (see [18] for an account

on the Nummelin splitting technique). A sufficient condition for the latter to hold is

classically that both supx✷S❊x[τ2S] and supx✷S❊x[(
∑τS

i=1 f(Xi))
2] are finite. Recall also

that these ’block’ conditions may be replaced by Foster-Lyapunov drift conditions that

generally appear as more tractable in practice (refer for instance to Chapter 11 in [15] for

further details).
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Remark 2 (On constants involved in the exponential term) It is noteworthy

that, although the asymptotic distribution of n−1/2
∑ln−1
j=1 Sj(f) as n → ∞ does not de-

pend on the atom A chosen, its distribution for fixed n does (when f ✑ 1 for instance,
∑ln−1
j=1 Sj(f) = τA(ln) − τA is the time between the first and last visits to the set A before

time n). Hence, the constants involved in bound (5) depend on the choice of the atom

and ideally the latter should be picked so as to minimize the bound on the right hand

side of (5).

We also point out that in the case where the Xi’s are i.i.d. and f is bounded, by taking

A = ❳ (so that τA ✑ 1), M1 > supx✷E |f(x)| and M2 > 1, the term on the right hand

side of (5) (respectively, of (6)) boils down to a Bennett’s type bound (respectively, to a

Bernstein’s type bound).

Proof : Treading in the steps of [3] (see also [4] and [13]), the proof is made in

four stages as announced in §2.1: 1. truncating the r.v.’s as in [9], 2. partitioning the

probability space according to all fashions for X to regenerate up to time n, 3. establishing

an accurate exponential bound for sums of bounded i.i.d. 1-lattice random vectors and 4.

summing the bounds previously obtained over all subsets of the partition.

Step 1: truncation. By the same kind of truncation trick as in [9], we shall show

that the tail of
∑ln−1
j=1 Sj(f) may be bounded by an exponentially decreasing term plus a

term related to the tail behavior of the (Sj(f), sj)’s. Let M1, M2 be positive thresholds

and consider the truncated r.v.’s,

S̃j(f) = Sj(f)■{|Sj(f)|✔M1} and s̃j = sj■{|sj |✔M2}, for j ✕ 1.

The S̃j(f)’s (respectively, the s̃j’s) are i.i.d bounded random variables. As ln ✔ n Pν a.s.,

it follows from the union bound that for all positive x

Pν(

ln−1∑

j=1

Sj(f) ✕ x) ✔ Pν({

ln−1∑

j=1

S̃j(f) ✕ x} ❭ {sj = s̃j, 1 ✔ j ✔ ln− 1})

+ (n− 1)PA({|SA(f)| > M1} ❬ {τA > M2}). (7)

Again the last term on the right hand side of (7) may be bounded from assumptions on

the speed of return time to A and on the tail of SA(f) under PA. We shall now deal with

the first term which we denote by Pν,n(x).

Step 2: partitioning. In order to be brought to the independent framework, we par-

tition the event {ln ✕ 2} according to all possible values for the first and last regeneration

times, as well as for the total number of regeneration times up to time n. In this respect,

consider the collection of events

Ur,l,m = {τA = r,

m∑

j=1

sj = n− r− l, sm+1 > l},
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for 1 ✔ r, l ✔ n and 2 ✔ m ✔ n. Combining the formula of total probability to the strong

Markov property, we get

Pν,n(x) =

n∑

m=2

n∑

r=1

n∑

l=1

Pν(τA = r)✂ pr,l,m(x)✂ PA(τA > l), (8)

where pr,l,m(x) = P(
∑
1✔j✔m S̃j(f) ✕ x,

∑
1✔j✔m{s̃j−❊[s̃j]} = n−r−l−mα̃) and α̃ = ❊[s̃j].

Since ❊[S̃j(f)] ✔ 0, we have pr,l,m(x) ✔ p̃r,l,m(x) for all r, l and m, where

p̃r,l,m(x) = P(
1

σ̃f
♣
m

m∑

j=1

{S̃j(f) − ❊[S̃j(f)]} ✕ x

σ̃f
♣
m
,

1

σ̃A
♣
m

m∑

j=1

{s̃j− ❊[s̃j]} = λr,l,m), (9)

with λr,l,m = (n − r − l − ❡αm)/(σ̃A
♣
m). Hence all boils down to get an accurate

bound for pr,l,m(x) using the fact that (S̃j(f), s̃j)j✕1 is a sequence of bounded i.i.d. bi-

variate 1-lattice random vectors. With the notations previously set out, notice that

ρ̃ = (σ̃f σ̃A)−1Cov(S̃j(f), s̃j) for j ✕ 1.
Step 3: exponential bound for 1-lattice random vectors. It is easy to get a

crude exponential estimate for (9) by the standard Chernoff method (for instance see [20]

and inequality (22) in §4.1). However such an estimate would not be precise enough to

get a summable bound in m for (8) (preventing thus from reproducing the argument in

[13] or [3] for instance). Indeed, under adequate assumptions, from limit theorems for

k-lattice random vectors with minimum span h (see [7], [8] or Lemma 6.4 in [3]), p̃r,l,m(x)

may be shown as asymptotically equivalent to m−1/2h
∫∞

t=x
φΣ(t/

♣
m,λr,l,m)dt, denoting

by φΣ the density of the bivariate gaussian distribution with mean zero and variance-

covariance matrix Σ = Var((σ̃−1
f S̃j(f), σ̃

−1
A s̃j)). As pointed out in §6.2.2 of [3], the factor

m−1/2 appearing in the latter quantity is of prime importance for obtaining bounds that

are summable in m. In order to prove the exponential inequality required, we use the

method proposed in [24] for improving exponential bounds in the independent setting,

which is based on a refined use of the classical argument of the Bahadur-Rao Theorem.

An exponential bound for sums of i.i.d. 1-lattice bounded random vectors is stated in the

following lemma, of which proof is given in §3.1.

Lemma 2 (Exponential inequalities for 1-lattice bounded random vectors)

Let (S✄j , L
✄
j)1✔j✔m be i.i.d. centered and square integrable bivariate r.v.’s with covari-

ance matrix Σ = (
1 ρ
ρ 1). Assume further that the L✄j ’s are lattice r.v.’s with minimal

span h > 0 and that there exists finite constants B1 and B2 such that |S✄j | ✔ B1 and

|L✄j | ✔ B2 for j = 1, ...,m. Set B2 = B21+ B22, then there exists a universal constant c

such that for all m ✕ 1 and y ✕ 0,

P(m−1
2

m∑

j=1

S✄j ✕ y, m−1
2

m∑

j=1

L✄j = λ) ✔ e 3
2 (

h

2π
♣
m

+ 4c
B

m
) exp

{

−
y2+ λ2

4B2

}

. (10)
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Furthermore, we also have the following Bennett/Bernstein type inequalities,

P(m−1
2

m∑

j=1

S✄j ✕ y, m−1
2

m∑

j=1

L✄j = λ) ✔ e
3
2 (

h

2π
♣
m

+
4cB

m
)e

−
m(1+|ρ|)

B2 H(
B||(y,λ)||

(1+|ρ|)
♣

m
)

✔ e
3
2 (

h

2π
♣
m

+
4cB

m
) exp





−

||(y, λ)||2

2(1+ |ρ| +
B||(y,λ)||

3
♣
m

)





.

Remark 3 An overestimated value of the constant c may be deduced by a careful exam-

ination of the proof of limit theorems stated in [7] and [8] (see §3.1 further). However we

do not know at present what the best value for the constant c might be.

Going back to our problem, notice first that, as the L✄j ’s are lattice with minimal span

h = σ̃−1
A , lemma 2 applies to the sequence {(S̃j(f) − ❊[S̃j(f)])/σ̃f, (s̃j− ❊[s̃j])/σ̃A}j✕1 with

ρ = ρ̃, B1 = 2M1/σ̃f and B2 = 2M2/σ̃A. Observing that B = (B21 + B22)
1/2 ✔ 2||M||/σ̃,

this yields

p̃r,l,m(x) ✔ e 3
2 (

1

2πσ̃A
♣
m

+8c
||M||

σ̃m
) exp

{

−
m(1+ |ρ̃|)σ̃2

||M||2
H

✥
||M|| ✁ ||(x/(σ̃f

♣
m), λr,l,m)||

(1+ |ρ̃|)σ̃
♣
m

✦}

.

(11)

Recall that, for any a > 0, the function x ✼→ H(a
♣
x) is concave on ❘+. Writing

||(x/(σ̃f
♣
m), λr,l,m)|| =

✥
1

2
(
x
♣
2

σ̃f
♣
m

)2+
1

2
(λr,l,m

♣
2)2

✦1/2
,

by concavity arguments we get that

p̃r,l,m(x) ✔ e 3
2

✒
1

2πσ̃A
♣
m

+ 8c
||M||

σ̃m

✓
e

−
m(1+|ρ̃|)σ̃2

2||M||2

{

H

✏
||M||x

♣
2

(1+|ρ̃|)σ̃f σ̃m

✑
+H

✏
||M|||λr,l,m |

♣
2

(1+|ρ̃|)σ̃
♣

m

✑}

.

(12)

As the function x ✼→ H(x)
x

is increasing on ❘+, we have for any m ✔ n

exp

{

−
m(1+ |ρ̃|)σ̃2

2||M||2
H

✥
||M||x

♣
2

(1+ |ρ̃|)σ̃fσ̃m

✦}

✔ exp

{

−
n(1+ |ρ̃|)σ̃2

2||M||2
H

✥
||M||x

♣
2

(1+ |ρ̃|)σ̃fσ̃n

✦}

✔ exp

{

−
x2σ̃/σ̃f

2(n(1+ |ρ̃|)σ̃σ̃f+
x||M||

♣
2

3
)

}

, (13)

the last bound following from the classical inequality H(x) ✕ x2

2(1+x/3)
, x ✕ 0.
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Step 4: control of the sum. Now combining the previous bound to (8) and (12),

we deduce that

Pn,ν(x) ✔ e3/2 exp

{

−
n(1+ |ρ̃|)σ̃2

2||M||2
H

✥
||M||x

♣
2

(1+ |ρ̃|)σ̃fσ̃n

✦}

Γn, (14)

where

Γn =

n∑

m=2

n∑

r=1

n∑

l=1

Pν (τA = r)PA (τA > l) (
c1♣
m

+
c2

m
)γr,l,m,

with c1 = (2πσ̃A)−1, c2 = 8c||M||/σ̃ and

γr,l,m = exp

{

−
m(1+ |ρ̃|)σ̃2

2||M||2
H

✥
||M|||λr,l,m|

♣
2

(1+ |ρ̃|)σ̃
♣
m

✦}

✔ exp





−

λ2r,l,m

2(1+ |ρ̃| +
|λr,l,m |||M||

♣
2

3σ̃
♣
m





. (15)

Recall that λr,l,m = (n− r− l− α̃m)/σ̃A
♣
m and consider the subdivision defined by the

points

an,m = (n− α̃m)/(σ̃A
♣
m), for 1 ✔ m ✔ n.

In order to bound this sum, we split the latter into two parts, according to whether r+ l

is less than σ̃A
♣
m or not. Since γr,l,m ✔ 1, by repeated use of Markov inequality, we get

n∑

m=2

n∑

r+l>σ̃A

♣
m

Pν(τA = r)PA(τA > l)(
c1♣
m

+
c2

m
)γr,l,m ✔

n∑

m=1

(
c1♣
m

+
c2

m
)

n∑

l✕σ̃A

♣
m

PA(τA > l)

✔ ❊A[τ2A]

σ̃2A

n∑

m=1

(
c1

m3/2
+
c2

m2
)

✔ ❊A[τ2A]

σ̃2A
(3c1+ c2

π2

6
). (16)

From the identity (a−b)2 ✕ a2/2−b2, it follows that λ2r,l,m ✕ a2n,m/2 −((r+l)/(σ̃A
♣
m))2

and, for r+ l ✔ σ̃A
♣
m,

λ2r,l,m ✕ (a2n,m/2− 1)+,

denoting by a+ the positive part of any real number a. The term on the right hand side

of (15) being decreasing in λr,l,m, we have

γr,l,m ✔ exp





−

(a2n,m/2− 1)+

2(1+ |ρ̃| +
(a2

n,m/2−1)
1/2
+ ||M||

♣
2

3σ̃
♣
m





. (17)
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Consider the set An = {m ✷ {2, . . . , n} : (a2n,m/2 − 1)
1/2
+ ||M||

♣
2/(3σ̃) ✔ m1/2(1 + |ρ̃|)} of

indexes m for which the ”Bernstein type” bound (17) describes a gaussian tail behavior

(the complement Acn corresponding to indexes m for which (17) provides a Poisson type

estimate). On the one hand, if m ✷ An

γr,l,m ✔ exp

{

−
a2n,m/2− 1

4(1+ |ρ̃|)

}

,

and on the other hand, if m ✷ Acn,

γr,l,m ✔ exp

{

−
3σ̃
♣
m(a2n,m/2− 1)

1/2
+

4||M||
♣
2

}

✔ exp

{

−
9σ̃2(1+ |ρ̃|)

8||M||2
m

}

.

It follows that

n∑

m=1

n∑

r+l✔σ̃A

♣
m

Pν(τA = r)PA(τA > l)(
c1♣
m

+
c2

m
)γr,l,m ✔ α(c1+ c2)(Un+ Vn),

where Un =
∑
m✷An

m−1/2γr,l,m and Vn =
∑
m✷Ac

n
m−1/2γr,l,m. As in step 4 of Theorem

5.1’s proof in [3], we shall prove that Un is bounded by a Riemann sum. Notice that for

all m ✔ n, an,m− an,m+1 = α̃σ̃−1
A m

−1/2+ an,m+1((1+m−1)1/2− 1) and an,m ✕ an,m+1.

If an,m+1 ✕ 0, then α̃σ̃−1
A m

−1/2 ✔ an,m− an,m+1. On the other hand, if an,m+1 ✔ 0, we

have −an,m+1 = (α̃(m + 1) − n)σ̃−1
A m

−1/2 ✔ α̃σ̃−1
A m

1/2 provided that n ✕ α̃. Hence, for

any m such that an,m+1 ✔ 0,

α̃σ̃−1
A m

−1/2 ✔ an,m− an,m+1+ 2−1α̃σ̃−1
A m

−1/2,

and consequently for any m ✕ 2 and n ✕ α̃, we have

α̃σ̃−1
A m

−1/2 ✔ 2(an,m− an,m+1).

We thus obtain that

Un ✔ 2α̃−1σ̃Ae
c3

n∑

m=1

(an,m− an,m+1) exp{−c3a
2
n,m/2}

✔ 2α̃−1σ̃Ae
c3

∫∞

x=−∞

exp(−c3x
2/2)dx = 2α̃−1σ̃A

q
2π/c3e

c3 , (18)

with c3 = 1/(4(1+ |ρ̃|)) ✷ (1/8, 1/4) (in particular, ec3/
♣
c3 ✔ 2

♣
2e1/4).

Besides, proceeding in a similar way, we get

Vn ✔
∑

m✷Ac
n

m−1/2 exp

{

−
9(1+ |ρ̃|)σ̃2

8||M||2
m

}
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✔
∫∞

0

x−1/2 exp

{

−
9(1+ |ρ̃|)σ̃2

8||M||2
x

}

dx

=
2
♣
2||M||

♣
π

3σ̃(1+ |ρ̃|)1/2
✔ 2

♣
2||M||

♣
π

3σ̃
. (19)

Now combining (16), (18) and (19), we obtain Γn ✔ c4 with

c4 =
σ2A+ α2

σ̃2A
(3c1+ c2

π2

6
) + 2σ̃A(c1+ c2)e

c3
α

α̃

s
2π

c3
+ (c1+ c2)

2
♣
2||M||α

♣
π

3σ̃
. (20)

Using (14), this yields the tail bound (5) where CM = e3/2c4 with c4 given by (20). Notice

that CM = O(||M||2) as ||M|| → ∞. And using (13) we obtain the tail bound (6) with the

”Bernstein version” for the exponential term. ✷.

3 Technical Details - Proof of Lemma 2

Set ❙m = m−1/2
∑
i✔nS

✄
j and ▲m = m−1/2

∑
i✔nL

✄
j for notational convenience. For

u = (u1, u2) ✷ ❘
+ ✂ ❘, let ψm(u) = log❊[exp{< u, (❙m, ▲m) >}] be the log-Laplace of

the random vector (❙m, ▲m) and denote by ψ
(1)
u,m and ψ

(2)
u,m its gradient and its hessian

matrix. Consider now the probability measure Pu,m defined by the Esscher transformation

dPu,m = exp{❤u, (❙m,▲m)✐ − ψm(u)}dP. Expectation under Pu,m is denoted by ❊u,m[.]

in what follows. By exponential change of probability measure, we get

P(❙m ✕ y,▲m = λ) = ❊u,m[eψm(u)−❤u,(❙m,▲m)✐
■{❙m✕y,▲m=λ}]

= e−❤u,(y,λ)✐−ψm(u)
❊u,m[e−❤u,(❙m−y,▲m−λ)✐

■{❙m✕y,▲m=λ}].

Now choose u = u✄ such that ψ
(1)
m (u✄) = (y, λ), that is

u✄ = arg sup
u✷❘+✂❘

{< u, (y, λ) > −ψm(u)}.

And as ❊[e<u,(❙m,▲m)>] = eψm(u), by differentiating one obtains

❊[e<u
✄,(❙m, ▲m)>(❙m, ▲m)] = ψ

(1)
m (u✄)eψm(u✄) = (y, λ)eψm(u✄)

yielding ❊u✄,m[(❙m,▲m)] = (y, λ) and Varu✄,m[(❙m,▲m)] = ψ
(2)
m (u✄) in a similar fashion,

denoting by Varu✄,m[.], the variance-covariance matrix under Pu✄,m. By integrating by

parts combined with straightforward changes of variables, one obtains

Am(u) = ❊u,m[e−❤u,(❙m−y,▲m−λ)✐
■{❙m✕y,▲m=λ}]

=

∫

e−❤u,(❙m−y,▲m−λ)✐
■{❙m−y✕0,▲m−λ=0}dPu,m

11



= Pu,m(Sm ✕ y, Lm = λ)

− u1

∫∞

y

e−u1(s−y)
Pu,m(Sm− y ✕ s− y, Lm− λ = 0)ds

✔ u1
∫∞

s=0

e−u1sPu,m(Sm− y ✕ 0, Lm− λ = 0)

− Pu,m(Sm− y ✕ s, Lm− λ = 0)ds.

Using the results in [7] and [8] or the local Berry-Esseen Bound proved in [4] (see Theorem

4), we know that there exists a constant Cu such that, uniformly in (y, λ),

|Pu,m(❙m− y ✕ s,▲m− λ = 0) −
h♣
m

∫∞

s

φWu (t, 0)dt| ✔ Cum−1,

where Wu = Varu,m[(❙m,▲m)] and φWu is the density of the bivariate gaussian distribu-

tion with covariance matrix Wu. From [7] (see also [8]) a crude bound for Cu is given by

ck3(Pu,1) where k3(Pu,1) = ❊u,1[|X−❊u,1[X]|3]/❊u,1[(X−❊u,m[X])2]3/2 and c is a universal

constant . Notice that

φWu (s, 0) =
exp{−1

2
s2/α2u,m}♣

2πVaru,m(▲m)
q
2πα2u,m

,

with

αu,m = Varu,m(❙m)1/2(1− ρ2u,m)1/2

ρ2u,m = Covu,m(❙m,▲m)2/Varu,m(▲m)Varu,m(❙m).

This yields for u = u✄,

Am(u✄) ✔ u✄1
∫∞

0

e−u✄
1
s(
h♣
m

∫s

0

φWu✄ (t, 0)dt+ 2Cu✄m
−1)ds

=
h♣
m

∫∞

0

e−u✄
1
sφWu✄ (s, 0)ds+ 2Cu✄m

−1

=
h♣
m

1♣
2πVaru✄,m(▲m)

Φ(u✄1αu,m)

2πφ(u✄1αu,m)
+ 2Cu✄m

−1,

where φ(x) denotes the density of the standard normal distribution and Φ(x) its survivor

function. Recall that for all x > 0 (see [24]),

1♣
2π(1+ x)

✔ Φ(x)♣
2πφ(x)

✔ 1♣
2πmax(x, 1)

,

which leads to

Am(u✄) ✔ h♣
m

1

2πVaru✄,m(▲m)1/2
+ 2Cu✄m

−1. (21)
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The matter is now to find an upper bound for the quantity

L(u✄) = e−❤u✄,(y,λ)✐−ψm(u✄) = inf
u
e−(❤u,(y,λ)✐−ψm(u)).

As ❤u, (❙m, ▲m)✐ ✔ 1+ ||u||2B2, we have ❊[e❤u,(❙m,▲m)✐] ✔ e exp{||u||2B2} for all u, so that

L(u✄) ✔ e exp(−(y2+ λ2)/4B2). (22)

It only remains to bound k3(Pu✄,m) explicitely. Using (22), observe first that

❊u✄,1[(❙1− ❊u✄,1[❙1])2] = ❊u✄,m[(❙m− ❊u✄,m[❙m])2] (23)

=

∫

(s− y)2e❤u
✄,(s,l)✐−ψm(u✄)dP(s, l) (24)

✕ e−1

∫

(s− y)2e(s2+l2)/4B2

dP(s, l)

✕ e−1

∫

(s− y)2dP(s, l) = e−1(1+ y2) ✕ e−1,

and similarly Varu✄,m(▲m) ✕ e−1. Moreover, since we have the bound

❊u✄,1[|❙1− ❊u✄,1[❙1]|3] ✔ 2BVaru✄,1(❙1),

and it follows from (23) that

k3(Pu✄,1) ✔ 2e1/2B. (25)

The desired result follows by combining (21) with (22) and the estimate (25).

To obtain the Bernstein-Bennett type bound, we replace the crude bound (22) by a

more refined one by using standard arguments. We have

❊[e❤u,(❙m,▲m)✐] =

m∏

i=1

❊[exp{
u1♣
m
S✄i +

u2♣
m
L✄i}].

Since s ✼→ (es− 1− s)/s2 is increasing on ❘✄
+ and | u1♣

m
S✄i + u2♣

m
L✄i | ✔ m−1/2||u||B, we have

❊[exp{
u1♣
m
S✄i +

u1♣
m
L✄i}] ✔ ❊[1+

u1♣
m
S✄i +

u1♣
m
L✄i)]

+ ❊[(u1S
✄
i + u2L

✄
i)
2]

exp{m−1/2||u||B) − 1−m−1/2||u||B)

||u||2B2

✔ 1+ (1+ |ρ|)
exp{m−1/2||u||B} − 1−m−1/2||u||B)

B2
.

The last inequality follows from the trivial inequality

❊[(u1S
✄
i + u2L

✄
i)
2] = u21+ 2ρu1u2+ u22

13



✔ u21+ |ρ|(u21+ u22) + u22.

Then, we obtain

❊[e❤u,(❙m,▲m)✐] ✔ (1+ ((1+ |ρ|)(exp{m−1/2||u||B} − 1−m−1/2||u||B)/B2))m

✔ exp{m(1+ |ρ|)(exp{m−1/2||u||B} − 1−m−1/2||u||B)/B2}.

If we choose u such that ||u|| = m1/2

B
log(1 +m−1/2(1 + |ρ|)−1B||(y, λ)||) and u colinear to

(y, λ), then we get

L(u✄) ✔ e−||u||||(y,λ)||+m(1+|ρ|)(exp{m−1/2 ||u||B}−1−m−1/2 ||u||B)/B2

= exp{−m
(1+ |ρ|)

B2
H(

B||(y, λ)||

m1/2(1+ |ρ|)
)},

where H(x) = (1+x)ln(1+x)−x. The last inequality follows from the classical inequality

H(x) ✕ x2

2(1+ x/3)
, for x ✕ 0.
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