MODELING OF A NONLINEAR CONDUCTIVE MAGNETIC-CIRCUIT .1. Definition and Experimental Validation of an Equivalent Problem
F. Marthouret, Jean-Pierre Masson, H. Fraisse

To cite this version:
F. Marthouret, Jean-Pierre Masson, H. Fraisse. MODELING OF A NONLINEAR CONDUCTIVE MAGNETIC-CIRCUIT .1. Definition and Experimental Validation of an Equivalent Problem. IEEE Transactions on Magnetics, Institute of Electrical and Electronics Engineers, 1995, 31 (6), pp.4065-4067. hal-00140530

HAL Id: hal-00140530
https://hal.archives-ouvertes.fr/hal-00140530
Submitted on 6 Apr 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modeling of a Non-Linear Conductive Magnetic Circuit
Part 1: Definition and Experimental Validation of an Equivalent Problem

F. Marthouret
I.N.S.A. Lyon France

J. P. Masson and H. Fraisse
L.E.E.P. U.C.B.L. Lyon France

Abstract—Dynamic representation model of a magnetic circuit including effects of hysteresis and transients is described. This dynamic modeling is worthwhile regarding time spent on different calculations and it requires only two parameters for the entire simulation. An experimental validation is presented on industrial cases.

I. INTRODUCTION

The behavior of an electrical circuit involving wound components is mainly modified by the properties of the magnetic materials used for its construction. In addition to the circuit's equations, magnetic formulations have to be performed.

The classical self-inductance and mutual inductance quantities, using linearization techniques, lead to problems in high level signal operations, or in fast transient conditions. We propose circuit representation, an alternative formulation for simple shaped magnetic describing the instantaneous evolution of the mean flux in a cross-section coupled with electrical equations.

The magnetic behavior of a conducting circuit is time dependent. For fast solicitations (power electronics), this effect can be very important.

II. MODELING TECHNIQUE

An insulating magnetic circuit is fully described by the quasi-static characteristic, with no time dependence thus excitation inputs. For a conductive circuit, we assume that local eddy-currents or dynamical properties can be represented by a lumped fictitious winding of "n" turns, shorted with a resistor "r" on an insulating magnetic circuit with the same magnetic characteristics (Fig. 1). The addition of applied and fictitious ampere-turns verifies the quasi-static characteristic.

With these considerations we obtain the instantaneous value of the flux $\Phi(t)$ as a function of the input ampere-turns $N_1 I_p$.

$$\frac{d\Phi}{dt} = \frac{r}{n^2} \cdot \left(N_1 I_p - F^{-1}(\Phi) \right)$$ \hspace{1cm} (1)

The "n^2/r" quantity defined in the equivalent problem is theoretically independent of the inputs.

III. RESULTS AND DISCUSSION

All these experimentations have been carried out through accurate measures involving the primary current and the integral of the secondary induced voltage. The only data used to elaborate the Preisach-Neel model is the first static magnetization linked to the descending saturation cycle.

The n^2/r factor can be determined by the first dynamic magnetization cycle of any transient. With these two static and dynamic experiments, the model is fully described for a particular circuit, and does not need any adjustment on any parameter in relation with the inputs.

With this representation, we obtain accurate results for the magnetic behavior $B(H)$ of a magnetic material, and for the electrical behavior $V_2(t)$ of the secondary circuit.

Many experiments on materials and different samples have pointed out that the equivalence principle gives good results in harmonic excitations for frequencies up to ten times the nominal frequency.
In order to illustrate the validity of the method, we present a comparison between experimental and simulated values of magnetic and electrical variables in several cases:

- for two materials (fig. 2),
- for two sine current excitation frequencies (fig. 3),
- for a transient under a full rectified sine voltage excitation, with a previously demagnetized material (fig. 4).

The figures 5a, 5b show a coupling of the magnetic model with electrical circuit equations in an industrial application: a current sensor feeds the passive circuit of a fault detector.

All these simulations are performed without parameter adjustment, with fixed values of the r/a^2 coefficient previously identified on a single test for each magnetic circuit.
IV. CONCLUSION

The use of a resistor in order to represent eddy currents is classical [5]-[7]. Generally authors characterize the magnetic core without loss, then add a resistor on an equivalent electrical circuit and place it in parallel with the exciting winding. The resistance is determined by using the equivalent mean iron losses of energy. The experiment shows that this value of resistance varies under exciting conditions.

In the model we propose, the current flowing in the fictitious secondary circuit represents iron losses and changes in the stored magnetic energy.

The evaluation of this contribution is performed starting from data which is uncorrelated with the inputs (fictitious circuit components and quasi-static characteristics) in the area where the dynamic local effects can be globalized. The limits of this area have been achieved by experimental evaluations. The experimental results support these theoretical hypothesis and show that with constant parameters it is possible to give a quite precise representation of the dynamic behavior of the magnetic circuit, without any knowledge of the exciting conditions. This last point is particularly important for the description of transient working conditions. The corresponding non linear differential equation has been coupled with the circuit electrical equations in order to take into account easily coupling effects with other physical energies (electrical, mechanical, ...) a bond-graph formulation has been performed. This work is presented a second paper entitled "Modeling of a Non-Linear Conductive Magnetic Circuit Part 2 : Bond Graph formulation ".

REFERENCES