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This paper deals with some aspects of performance of the symmetric successive over-relaxation preconditioner in a distributed en-
vironment. The details of distributed formulation of the preconditioner are presented. Some performance metrics are compared and
discussed for the message passing interface implementation of the algorithm. The properties of the solver are estimated for concurrent
three-dimensional formulation of the finite-element time-domain method. The analyzed benchmark models are approximated by tetra-
hedral first order Whitney elements.

Index Terms—Edge elements, finite-element (FE) method, iterative solver, parallel numerical algorithms, time-domain algorithm.

I. INTRODUCTION

WIDE acceptance of distributed processing in modeling
and optimization of electromagnetic phenomena re-

quires an efficient solver. The overall numerical performance of
the solver, computational cost, and flexibility of the distributed
implementation of the algorithm are the basic issues in efficient
computations.

The general advantages of the conjugate gradient (CG) algo-
rithm make it very useful in computational electromagnetics.
The efficiency of the method is improved by implementation of
different types of preconditioners [1]–[3]. The final formulation
and detailed properties of the distributed solver are determined
by at least three factors:

— the mathematical formulation of the method (i.e., struc-
ture of subtasks and number of independent threads);

— the method of parallelization (i.e., the method of data
and/or task decomposition);

— the technical profile of multicomputer hardware platform.

The objective of this paper is to present the distributed formu-
lation of the symmetric successive over-relaxation (SSOR) pre-
conditioner implemented in the preconditioned conjugate gra-
dient (PCG) algorithm [4]–[6]. The presented algorithm is based
on the single processing multiple data (SPMD) paradigm. To
evaluate the performance gain, the solver is executed on a dis-
tributed processing system, which consists of a collection of in-
terconnected stand-alone computers.

II. DISTRIBUTED PCG ALGORITHM WITH SSOR
PRECONDITIONER

The large-scale time-domain analysis is a computationally
demanding task [7]. The most computationally expensive part
of the algorithm and the hardest problem in the distributed im-
plementation is the solver of matrix equation derived from fi-
nite-element (FE) formulation [8], [9]. The spatial discretization
of an analyzed electromagnetic problem yields a matrix equa-
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tion . The presented algorithm concerns time-do-
main formulation, therefore represents the time-dependent
distribution of electric field, and the matrix is real, positive
definite, and well conditioned, .

The presented formulation of the SSOR preconditioner is
based on the task decomposition and overlapped distributed
processing. The task structure and interdependencies between
concurrent threads (including forward calculation, calculation
of a diagonal matrix, and backward substitution) arise from
the implemented method of matrix decomposition and the
data storage scheme. The computational cost of the solver is
determined by these two factors.

The presented form of the algorithm is based on the com-
pressed row storage (CRS) form of the matrix [5]. Therefore,
the row-wise matrix decomposition is applied. The number of
submatrices is equal to the total number
of processing workstations , and

.
The parallelism of the SSOR preconditioner is achieved

by changing the structure of subtasks in the algorithm. The
mathematical formulation of the forward and backward steps
forces different decomposition of tasks. The matrix is divided
by columns in the forward calculation, while in the backward
substitution the subtasks are defined by rows. The and
vectors are the final results of the forward calculation step
and the backward substitution step, respectively. Both vectors
are split in the distributed version , and

, and .
The second level of concurrency of the algorithm consists in

the decomposition of the local submatrices . In this way, the
granularity of the algorithm (i.e., the relation between concur-
rent and sequential parts) can be matched. The granularity of the
algorithm is described by the integer number .
In this case, the whole structure the algorithm and elementary
tasks concern some elementary matrices

. Large value of the number corre-
sponds with a fine-grained problem formulation. The computing
units perform relatively small number of floating-point oper-
ations between data transfers. Unfortunately, in this way, the
communication load increases.
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Fig. 1. Sequence of matrix operations in the forward stage of the
preconditioner . The submatrices and subvectors
denote active parts of the data sets. Arrows indicate the broadcasting
workstation and is the symbol of the collective communication command.

Fig. 2. Sequence of matrix-vector calculations in the backward stage
.

The forward calculation step (including matrix-vector
product) is the hardest part of the SSOR algorithm in this
formulation (Fig. 1). The total number of data transfers
depends on the number of processing workstations and the
granularity of domain decomposition .
The backward step is not constrained by the implemented CRS
scheme and the matrix decomposition. The number of data
transfers is directly proportional to the number of workstations

(Fig. 2).
The method of domain decomposition is reflected in the struc-

ture of the algorithm and in the mutual dependencies of the
processes. Fig. 3 depicts the time line of a single course of
the presented concurrent SSOR preconditioner. The sequence
of independent data processing and communication tasks for

, and computing units are ordered along vertical
lines. The rhombus represent data transfers commands (either
input or output), while the rectangles describe independent data
processing tasks. The direction of a horizontal arrow determines
the broadcasted processing unit.

The inherently sequential nature of some parts of the SSOR
algorithm limits parallelism of the distributed implementation.
Only the intermediate level (calculation of the diagonal matrix)
works in fully parallel mode (no data transfers between pro-

Fig. 3. Time line of the distributed SSOR preconditioner . Arrows
indicate the broadcasting workstation and is the symbol of the collective
communication command.

cessing units). The tasks in the forward and the backward steps
are partially overlapped.

III. TEST PROBLEM AND DISTRIBUTED ENVIRONMENT

The presented form of the PCG solver with SSOR precondi-
tioner is used to calculate different size test problem. The prop-
erties of the algorithm are discussed for a time-domain analysis
of an open boundary high frequency electromagnetic bench-
mark problem. The presented algorithm is used to calculate a
problem with a monochromatic plane wave propagating in free
space. The final matrix equation is derived from the Maxwell’s
equations for some linear and isotropic media.

The forms of the matrix and vector arise from the im-
plemented time integration scheme [10]. Since the conditionally
stable central Euler time integration schemes is used, the coef-
ficients of the linear matrix are stated by equation

(1)

where , and is the vector shape function
because the model is approximated by the first order incomplete
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Fig. 4. Fixed speedup of the PCG algorithm versus number of edges in the FE
model .

tetrahedral edge elements [11]. The components of
the vector, according to time-domain multistep formulation,
represents time dependent electromagnetic load.

The presented preconditioner is designed and developed
to execute in a distributed memory environment. The com-
munication between concurrent threads of the algorithm and
the final form of parallelism of the code is controlled by the
standard message passing interface calls [12]. The algorithm is
validated on a cluster of workstations (COW) consisting of four
processing nodes. Each computational unit is equipped with
Intel Xeon 2.6-GHz CPU and 1-GB local RAM memory. The
computers are connected through Gigabit Ethernet.

The performance of the presented SSOR distributed algo-
rithm is compared to the point Jacobi preconditioner [5], [6].
The concurrent implementation of this algorithm requires a min-
imum number of data transfers. Therefore, the simple formula-
tion of this method makes it useful as a relative benchmark mea-
sure in the distributed message passing environment.

IV. COMPARATIVE STUDIES

The general properties of the presented iterative solvers are
defined by two metrics. The first one is the typical fixed speedup
of the algorithm

(2)

where is the latency time of the PCG solver in a single step
of the time-domain algorithm. The second coefficient describes
relative speedup of the SSOR solver with different value of
granularity

(3)

The different scale, typical test cases are used to verify the
performance of the preconditioners. The largest benchmark
model is approximated by edges.

The fixed speedup of the solver for the coarse grained algo-
rithm is presented in Fig. 4. The large-scale benchmark
problems ( edges) reveal the relative efficiency
of the preconditioners in the COW system. The speedup of the

Fig. 5. Performance of the distributed SSOR preconditioner as a function of
granularity ( edges).

PCG algorithm with both diagonal and SSOR preconditioners
does not depend on the number of degrees of freedom (for the
largest FE models), and it is below one. The size of transferred
package depends on the size of benchmark problem, and it does
not change the efficiency of the solver.

The PCG algorithm is executed repeatedly for each time step,
and the initial guess distribution of the calculated field is
stated by the final solution of the foregoing step . The ex-
ternal electromagnetic excitation in the system is represented by
smooth, physically constrained function, and the initial guess
step in the step is close to the final solution. In this case,
the successive solution of the partial differential equation has
near linear convergence is achieved, the number of iterations
and number of data transfer commands are reduced.

The PCG algorithm with the SSOR preconditioner averagely
consists of six–eight iterations. The PCG algorithm with Jacobi
preconditioner needs about two times more iterations than the
same algorithm with SSOR preconditioner. The diagonal pre-
conditioner is relatively better parallelized, since there is no de-
pendencies between concurrent subtasks. Experimental results
prove, that there is no significant difference in the absolute time
of computation. The gain in number of iterations in the SSOR
preconditioner is leveled by some sequential and not-overlapped
parts of the algorithm.

The curves of the speedup for some medium and large-
scale benchmark FE models are not some monotone functions
(Figs. 5–7). The real speedup of the PCG solver is gained for
the granularity number less than 10. The optimum value of the
granularity factor is approximately equal to 4. It depends on
the number of processing workstations and the number of de-
grees of freedom in the model. The fine-grained formulation of
the algorithm does not improve performance of the
distributed computations.

There is no gain in the speedup of the presented algorithm for
some small FE models. The curves of the speedup are below
reference level for the benchmark problems with the number
of degrees of freedom (i.e., number of edges) less than 30 000
edges.

These effects arise from intensive communication and inter-
dependencies between concurrent threads. The advantages of
the distributed data processing are faded away. The faults of a
loosely coupled multicomputer environment (i.e., synchronous
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Fig. 6. Performance of the distributed SSOR preconditioner as a function of
granularity ( edges).

Fig. 7. speedup of the PCG solver with SSOR preconditioner for different
granularity coefficients ( edges).

data transfers, latency of data transfers, etc.) dominate over the
profits of the algorithm.

V. CONCLUSION

The efficiency and flexibility of the SSOR preconditioner
are shaped by the proper task decomposition. Particularly, the
granularity of the task decomposition plays a significant role.
The presented benchmark calculations show that the paral-
lelized SSOR preconditioner gain the same performance as the
most efficient, fully parallelized point Jacobi algorithm.

The profile of performance metrics of the SSOR precondi-
tioner indicates its satisfactory scalability for the typical small
COW. The computational speedup is highly determined by the

number of broadcasted subresults and the bandwidth of the
network.

The presented algorithm is not constrained by shape and order
of implemented edge elements. The type of FE determines ac-
curacy and stability of computations, convergence of the PCG
algorithm, as well as performance of the presented distributed
implementation of the SSOR preconditioner. This issue can be
investigated in the future.
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