On the selection of maximal Cheeger sets
Giuseppe Buttazzo, Guillaume Carlier, Myriam Comte

To cite this version:
Giuseppe Buttazzo, Guillaume Carlier, Myriam Comte. On the selection of maximal Cheeger sets. 2007. <hal-00140075>

HAL Id: hal-00140075
https://hal.archives-ouvertes.fr/hal-00140075
Submitted on 5 Apr 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the selection of maximal Cheeger sets

G. Buttazzo, G. Carlier and M. Comte

1 Introduction

Given a bounded open Lipschitz subset Ω of \mathbb{R}^d Cheeger sets are defined as the subsets C of Ω which maximize the ratio $|C|/\text{Per}(C)$ where $\text{Per}(C)$ is the perimeter of C and $|C|$ denotes the Lebesgue measure of C. By the direct methods of the calculus of variations and in particular by the De Giorgi theory of perimeters and BV spaces (see for instance [2]) the existence of a Cheeger set follows straightforwardly.

We consider here a slightly more general situation, where the Lebesgue measure and the perimeter are weighted by two weight functions f and g; more precisely, we consider the problem

$$
\mu_1 := \sup \left\{ \frac{\int_C f \, dx}{\int_{\partial^* C} g \, d\mathcal{H}^{d-1}} : C \subset \overline{\Omega} \right\}
$$

where $\partial^* C$ is the reduced boundary of C and \mathcal{H}^{d-1} is the Hausdorff $d-1$ dimensional measure. Again, under the assumptions

- $f \in L^\infty(\Omega)$, $f > 0$ a.e.,
- g is continuous on Ω and $\inf g > 0$,

the direct methods of the calculus of variations apply and provide the existence of a Cheeger set.

An important fact is that the shape optimization problem (1.1) is tightly related to the variational problem:

$$
\mu_1 = \inf \left\{ \int_{\Omega} f u \, dx : u \in BV_0(\Omega), \int_{\mathbb{R}^d} g \, d|Du| \leq 1 \right\}
$$

where $BV_0(\Omega)$ denotes the class of functions in $BV(\mathbb{R}^d)$ that vanish outside $\overline{\Omega}$. Note that for $u \in BV_0(\Omega)$, one has:

$$
\int_{\mathbb{R}^d} g \, d|Du| = \int_{\Omega} g \, d|Du| + \int_{\partial \Omega} g|u| \, d\mathcal{H}^{d-1}.
$$

We remark that μ_1 coincides with the inverse of the first eigenvalue λ_1 of an operator of 1-Laplacian type. More precisely,

$$
\lambda_1 = \frac{1}{\mu_1} = \inf \{ R(u) : u \in BV_0(\Omega), u \neq 0 \}
$$
where $R(u)$ is the Rayleigh quotient

$$R(u) := \frac{\int_{\mathbb{R}^d} g \, d|Du|}{\int_{\Omega} f \, |u| \, dx}. $$

In the sequel, we will denote by χ_C the characteristic function of the set $C \subset \mathbb{R}^d$, and define the set of solutions of (1.2):

$$Q := \left\{ u \in BV_0(\Omega) : \int_{\mathbb{R}^d} g \, d|Du| \leq 1, \int_{\Omega} f \, u \, dx = \mu_1 \right\}$$

(1.4)

as well as the family of Cheeger sets:

$$\mathcal{C} := \left\{ C \subset \overline{\Omega} : \chi_C \in BV_0(\Omega), \int_C f \, dx = \mu_1 \int_{\partial^* C} g \, dH^{d-1} \right\}.$$

(1.5)

Of course χ_C is a solution of (1.3) whenever $C \in \mathcal{C}$. There is however a more precise relationship between Cheeger sets and solutions of (1.3): u solves (1.3) if and only if all its level sets are Cheeger sets. We refer to Theorem 2 of [3] for a proof, the case $f = g = 1$ being well-known.

Except under special additional assumptions (for instance when $f = g = 1$ and Ω is convex, see [4]), one cannot expect Cheeger sets to be unique and examples are known where they are actually infinitely many (see for instance [8, 9] and the examples of Section 2). On the other hand, the family of Cheeger sets \mathcal{C} is stable by countable union (see Theorem 3 of [3]). This implies that \mathcal{C} possesses a maximal element in the sense of inclusion, the maximal Cheeger set Ω:

Proposition 1.1. There exists a unique maximal Cheeger set, i.e. a unique $C_0 \in \mathcal{C}$ such that for every $C \in \mathcal{C}$, C is included in C_0 up to a Lebesgue negligible set.

Proof. Let us consider the problem of maximizing the Lebesgue measure of C among all Cheeger sets $C \in \mathcal{C}$. Since $\{\chi_C : C \in \mathcal{C}\}$ is compact in $L^1(\Omega)$, we obtain the existence of some maximizer C_0. If $C \in \mathcal{C}$, since $C \cup C_0 \in \mathcal{C}$, we have $C \subset C_0$ up to a Lebesgue negligible set, therefore C_0 is a maximal Cheeger set and it is obviously the only one (up to a Lebesgue negligible set again).

The question of determining the maximal Cheeger set then becomes an interesting issue. The main focus of the present paper is to investigate whether natural approximation schemes select at the limit the maximal Cheeger set.

A possibility, that has been investigated for instance in [8, 10], is to consider the solutions u_p of a PDE involving the p-Laplace operator and to let p tend to 1. The hope is that the limit function u is a characteristic function of the form $u = \alpha \chi_C$ with C the maximal Cheeger set, or that at least the support of u is the maximal Cheeger set. The arguments in favour of this approach are that it
works when \(f = g = 1 \) and \(\Omega \) is convex (see [8]) and that in any case all level sets of the limit function \(u \) are Cheeger sets (see [3]).

We show in Section 2 that the procedure above cannot be expected to work in general. We consider the \(p \)-approximation of problem (1.2)

\[
\mu_p := \sup \left\{ \int_\Omega f u \, dx : \int_\Omega g |Du|^p \, dx \leq 1, \ u \in W^{1,p}_0(\Omega) \right\}.
\]

(1.6)

The unique (nonnegative) maximizer \(u_p \) of (1.6) is of course the solution of the PDE

\[
- \text{div} \left(g |Du|^p - 2 Du \right) = \lambda_p f, \quad u \in W^{1,p}_0(\Omega), \text{ with } \lambda_p := \frac{1}{\mu_p}.
\]

(1.7)

As \(p \to 1 \), the maximal values \(\mu_p \) in (1.6) tend to the maximal Cheeger value \(\mu_1 \) in (1.1) (see Proposition 2.1) and, denoting by \(u_p \) the unique solution of the PDE (1.7), we have convergence of some subsequence to some solution \(u \) of (1.2). However, we show by some onedimensional examples, that neither the limit of \(u_p \) nor its support identify in general the maximal Cheeger set.

In Section 3 we consider a different kind of approximation:

\[
\sup \left\{ \int_\Omega f (u - \varepsilon \Phi(u)) \, dx : \int_{\mathbb{R}^d} g \, d|Du| \leq 1, \ u \in BV_0(\Omega) \right\}
\]

(1.8)

We show that if the function \(\Phi \) is strictly convex and \(\Phi(0) = 0 \) then the optimal solutions \(u_\varepsilon \) of problem (1.8) tend as \(\varepsilon \to 0 \) to a characteristic function \(u = \alpha \chi_C \) where \(C \) is the maximal Cheeger set in \(\Omega \).

2 The \(p \)-Laplacian approximation

2.1 Convergence of the \(p \)-Laplacian approximation

By classical arguments, we know that there exists a unique solution, denoted by \(u_p \), of the variational problem (1.6). In addition \(u_p > 0 \) in \(\Omega \) (see [14]) and by standard elliptic regularity theory (see [13] or [6]), \(u_p \in C^{1,\alpha}(\Omega) \) whenever \(g \) is of class \(C^1 \) (an assumption that we won’t need here). Moreover, \(u_p \) is the unique solution of the \(p \)-Laplace equation

\[
- \text{div} \left(g |Du|^{p-2} Du \right) = \lambda_p f, \quad u \in W^{1,p}_0(\Omega)
\]

(2.1)

where \(\lambda_p = 1/\mu_p \) and \(\mu_p \) is the maximal value of (1.6). By construction, one has:

\[
\mu_p = \int_\Omega f u_p \, dx \quad \text{and} \quad \left(\int_\Omega g |Du_p|^p \, dx \right)^{1/p} = 1.
\]

(2.2)

This section is devoted to the convergence of \(\mu_p \) to \(\mu_1 \) and to the convergence (up to a subsequence) of the maximizers \(u_p \) to some maximizer of (1.2).
Proposition 2.1. As $p \to 1$ the maximal values μ_p in (1.6) tend to the maximal Cheeger value μ_1 in (1.1).

Proof. Using Hölder’s inequality, we have
\[
\int g |Du_p| \, dx \leq \left(\int g \, dx \right)^{(p-1)/p} \left(\int \Omega g |Du_p|^p \, dx \right)^{1/p} = \left(\int g \, dx \right)^{(p-1)/p} . \tag{2.3}
\]
We thus deduce
\[
\mu_1 \geq \frac{\int \Omega f u_p \, dx}{\int \Omega g |Du_p| \, dx} \geq \mu_p \left(\int \Omega g \, dx \right)^{(1-p)/p} , \tag{2.4}
\]
hence
\[
\mu_1 \geq \limsup_{p \to 1} \mu_p \left(\int \Omega g \, dx \right)^{(p-1)/p} = \limsup_{p \to 1} \mu_p . \tag{2.5}
\]

Let $\delta > 0$; by standard approximation results (see in particular Remark 2.12 in [7] and Proposition 3.15 in [2]), there exists a nonnegative function $v \in C^\infty(\mathbb{R}^d)$ with $v \equiv 0$ on $\mathbb{R}^d \setminus \Omega$ such that
\[
\int \Omega g |Dv| \, dx = 1 \quad \text{and} \quad \int \Omega f v \, dx \geq \mu_1 - \delta . \tag{2.6}
\]
We then have
\[
\mu_p \geq \frac{\int \Omega f v \, dx}{\left(\int \Omega g |Dv|^p \, dx \right)^{1/p}} ,
\]
so that
\[
\liminf_{p \to 1} \mu_p \geq \liminf_{p \to 1} \frac{\int \Omega f v \, dx}{\left(\int \Omega g |Dv|^p \, dx \right)^{1/p}} \geq \mu_1 - \delta . \tag{2.7}
\]
Since $\delta > 0$ is arbitrary in (2.7), together with (2.5) we finally get $\mu_1 = \lim \mu_p$. \qed

Proposition 2.2. Up to a subsequence, $(u_p)_p$ converges in $L^1(\Omega)$, as $p \to 1$, to a solution u of (1.2).

Proof. Combining Hölder’s inequality with the fact that $\int \Omega g |Du_p|^p \, dx \leq 1$ we obtain $\int \Omega |Du_p| \, dx \leq M$ for a suitable constant $M \geq 0$. The sequence $(u_p)_p$ is therefore bounded in $BV_0(\Omega)$, and thus precompact in $L^1(\Omega)$. Hence (u_p) converges, up to a subsequence (still denoted (u_p)) to some u in $L^1(\Omega)$. Applying standard lower-semi continuity results (see for instance Corollary 1 of [3]), we then get
\[
\int_{\mathbb{R}^d} g \, d|Du| \leq \liminf_{p \to 1} \int \Omega g |Du_p| \, dx \leq \liminf_{p \to 1} \left(\int \Omega g |Du_p|^p \, dx \right)^{1/p} . \tag{2.8}
\]
where the second inequality follows from (2.3). Therefore \(\int_{\mathbb{R}^d} g \, d |Du| \leq 1 \). On the other hand
\[
\lim_{p \to 1} \int_{\Omega} f u_p \, dx = \int_{\Omega} f u \, dx.
\] (2.9)

Finally we get
\[
\frac{\int_{\Omega} f u \, dx}{\int_{\Omega} g \, d |Du|} \geq \limsup_{p \to 1} \frac{\int_{\Omega} f u_p \, dx}{(\int_{\Omega} g |Du_p|^p \, dx)^{1/p}} = \mu_1
\] (2.10)
which concludes the proof. \(\Box \)

Getting back to the main purpose of the present paper, namely the selection of the maximal Cheeger set, at this point, two questions naturally arise:

- is the limit function \(u \) (up to a multiplicative constant) the characteristic function of the maximal Cheeger set?
- in case of a negative answer to the previous question, does the support of \(u \) identify the maximal Cheeger set?

As we shall see in the next section, by means of simple one-dimensional counter-examples, the answer is actually negative to both questions.

2.2 The one-dimensional case

In this section, we consider problem (1.6) (equivalently equation (2.1)) in dimension one. In this case the differential equation (2.1) can be explicitly integrated and this will enable us to analyze the limit of maximizers of problem (1.6) as \(p \to 1 \).

We take \(\Omega := (-1,1) \) and \(f, g \) two even functions (that satisfy the general assumptions of the paper); then, it is easy to see that the solution of (1.6) is even too. Setting \(n = \frac{1}{p-1} \) (so that \(n \to +\infty \) as \(p \to 1 \)) we thus consider the maximization problem
\[
\sup \left\{ \int_{-1}^{1} f u \, dx : \int_{-1}^{1} g |u'|^{1+1/n} \, dx \leq 1, \; u \in W^{1,1+1/n}_0(-1,1) \right\}
\] (2.11)
and denote by \(w_n \) the solution of (2.11). We also set
\[
F(x) := \int_{0}^{x} f(t) \, dt, \quad h(x) := F(x)/g(x).
\]

Proposition 2.3. The (even) solution of (2.11) is given by
\[
w_n(x) = \frac{\int_{0}^{1} h^n \, dt}{\left(2 \int_{0}^{1} g h^{n+1} \, dt \right)^{n/(n+1)}} \quad \forall x \in [0,1].
\] (2.12)
Proof. Obviously, \(w_n \) is proportional to \(u_n \) that solves

\[
g(x)|u_n'(x)|^{-1+1/n}u_n'(x) = -F(x). \tag{2.13}
\]

Thus \(u_n \) is decreasing on \([0, 1]\) and by (2.13) \(-u_n'(x) = h^n(x)\). Integrating once more and using the fact that \(u_n(1) = 0 \) leads to \(u_n(x) = \int_x^1 h^n(t) \, dt \). Now we set \(w_n = C_nu_n \) with \(C_n \) such that \(2 \int_0^1 g|w_n'|^{1+1/n} \, dt = 1 \) which proves the result. \(\square \)

Proposition 2.4. There exist Cheeger sets of \((-1, 1)\) which are symmetric intervals.

Proof. From Proposition 2.2, we know that \(u_n \) converges in \(L^1 \), up to a subsequence, to a solution \(u \) of (1.2). Since \(u_n \) is even and nonincreasing on \((0, 1]\), the same holds for \(u \). From Theorem 2 of [3] the level sets of \(u \) are Cheeger sets. Therefore there exists a symmetric interval which is a Cheeger set. \(\square \)

Determining Cheeger sets of the form \([-a, a]\) amounts to solve

\[
\sup \{ h(a) : a \in [0, 1] \}.
\]

Proposition 2.5. If \(h(x) \leq h(1) \) for every \(x \in [0, 1] \) then the maximal Cheeger set coincides with the whole interval \([-1, 1]\).

Proof. Indeed in this case \(a = 1 \) is a maximizer of \(h \). \(\square \)

We now study the behaviour of the functions \(w_n \) as \(n \to +\infty \). The function \(h(x) \) is bounded and, since the expression of \(w_n \) is homogeneous of degree zero in \(h \), we may assume that \(\max h = 1 \).

Proposition 2.6. Assume that in an interval \([a, b]\) with \(0 \leq a < b < 1 \) we have \(h(x) = 1 \) and that \(h(x) < 1 \) in an open interval \((\alpha, 1)\). Then \(w_n(x) \to 0 \) for every \(x \in (\alpha, 1) \).

Proof. We have

\[
2 \int_0^1 gh^{n+1} \, dt \geq 2 \int_a^b gh^{n+1} \, dt = 2 \int_a^b g \, dt \tag{2.14}
\]

therefore

\[
\left(2 \int_0^1 gh^{n+1} \, dt\right)^{n/(n+1)} \geq \left(2 \int_a^b g \, dt\right)^{n/(n+1)} \tag{2.15}
\]

and then for \(n \) large enough

\[
\left(2 \int_0^1 gh^{n+1} \, dt\right)^{n/(n+1)} \geq \int_a^b g \, dt. \tag{2.16}
\]

On the other hand, since \(h(x) < 1 \) in \((\alpha, 1)\), \(h^n(x) \to 0 \) as \(n \to \infty \) in \((\alpha, 1)\). Taking into account the expression of \(w_n \) given by (2.12), this gives the result. \(\square \)
Putting together Propositions 2.5 and 2.6 we can easily construct functions f and g such that the maximal Cheeger set is the whole interval $[-1, 1]$ whereas the limit function $\lim_n w_n(x)$ vanishes in a neighbourhood of 1.

Example 2.7. Taking for instance $f \equiv 1$ and

$$g(x) = \begin{cases}
1/4 & \text{if } x \in [0, 1/4] \\
x & \text{if } x \in [1/4, 1/2] \\
4x & \text{if } x \in [1/2, 1] \\
3 + |4x - 3| & \text{if } x \in [1/2, 1]
\end{cases}$$

provides the desired counterexample. Indeed in this case, by Proposition 2.5, the maximal Cheeger set is the full interval (and all the intervals $[-a, a]$ with $a \in [1/4, 1/2]$ are Cheeger sets) whereas the limit of the w_n’s vanishes on $[1/2, 1]$.

We have plotted the graph of $w = \lim_n w_n$ in the next figure.

Example 2.8. Take $f \equiv 1$ and

$$g(x) = \begin{cases}
1/2 & \text{if } x \in [0, 1/2] \\
x & \text{if } x \in [1/2, 1].
\end{cases}$$

All the intervals $[-a, a]$ with $a \in [1/2, 1]$ are Cheeger sets and w_n again converges to some function plotted below which is not a characteristic function but whose support is the maximal Cheeger set.
Remark 2.9. We notice that in both examples, \(\lim_{n} w_n \) is a solution of (1.2) which is continuous and nonconstant. Of course, such solutions can exist only if there is a continuum of Cheeger sets as in the previous examples.

Example 2.10. We now consider a case where \(h \) achieves its maximum only at 1 and 1/2, for instance:

\[
h(x) = \begin{cases}
2x & \text{if } x \in [0, 1/2] \\
2(1 - x) & \text{if } x \in [1/2, 3/4] \\
2x - 1 & \text{if } x \in [3/4, 1]
\end{cases}
\]

which is obtained by taking \(f \equiv 1 \) and

\[
g(x) = \begin{cases}
1/2 & \text{if } x \in [0, 1/2] \\
x/(2 - 2x) & \text{if } x \in [1/2, 3/4] \\
x/(2x - 1) & \text{if } x \in [3/4, 1].
\end{cases}
\]

In this case, \(w_n \) still converges to a multiple of the characteristic of \([-1/2, 1/2]\). The next graph represents \(w_{100} \).
3 Concave penalizations select maximal Cheeger sets

In this section, we approximate the maximization problem

$$\sup \left\{ \int_{\Omega} f u \, dx : \int_{\mathbb{R}^d} g \, d|Du| \leq 1, \ u \in BV_0(\Omega) \right\} \tag{3.1}$$

by the strictly concave penalization

$$\sup \left\{ \int_{\Omega} f (u - \varepsilon \Phi(u)) \, dx : \int_{\mathbb{R}^d} g \, d|Du| \leq 1, \ u \in BV_0(\Omega) \right\} \tag{3.2}$$

where $\varepsilon > 0$ is a perturbation parameter and Φ is a strictly convex nonnegative function that satisfies:

$$\Phi(0) = 0, \quad 0 \leq \Phi(t) < +\infty \quad \forall t \in \mathbb{R}^+. \tag{3.3}$$

Again, we denote by μ_1 the optimal value of (3.1). We recall that, from Theorem 4 of [3], the set Q of solutions of (3.1) is in fact included in $L^\infty(\Omega)$.

Theorem 3.1. Let u_ε be the solution of (3.2); then the following holds:

- $(u_\varepsilon)_\varepsilon$ converges in $L^1(\Omega)$, as $\varepsilon \to 0^+$, to the solution \overline{u} of

$$\inf \left\{ \int_{\Omega} f \Phi(u) \, dx : \ u \in Q \right\}, \tag{3.4}$$
• \(\bar{u} = \alpha \chi_{C_0} \) for some \(\alpha > 0 \) and \(C_0 \subset \Omega \).

• \(C_0 \) is the maximal Cheeger set, i.e. \(C_0 \in \mathcal{C} \) and \(C_0 \) contains every other Cheeger set (up to a Lebesgue negligible set).

Proof. Since \((u_\varepsilon)_\varepsilon \) is bounded in \(BV(\Omega) \), it admits a subsequence (not relabeled) that converges in \(L^1(\Omega) \) to some \(\bar{u} \in BV_0(\Omega) \) and

\[
\bar{u} \geq 0, \quad \int_{\mathbb{R}^d} g \, d|D\bar{u}| \leq 1.
\]

Let \(v \in Q \); for every \(\varepsilon > 0 \) we have

\[
0 \geq \int_\Omega f(u_\varepsilon - v) \, dx \geq \varepsilon \int_\Omega f(\Phi(u_\varepsilon) - \Phi(v)) \, dx. \quad (3.5)
\]

Letting \(\varepsilon \to 0^+ \) in (3.5) and using the facts that \(\Phi \geq 0 \) and \(\Phi(v) \) is bounded since \(v \in L^\infty(\Omega) \) (by Theorem 4 of [3]), we then get

\[
\int_\Omega f\bar{u} \, dx = \int_\Omega f v \, dx = \mu_1
\]

hence \(\bar{u} \in Q \). Dividing by \(\varepsilon \) in (3.5), thanks to Fatou’s Lemma, we get

\[
\int_\Omega f\Phi(\bar{u}) \, dx \leq \liminf_{\varepsilon \to 0^+} \int_\Omega f\Phi(u_\varepsilon) \, dx \leq \int_\Omega f\Phi(v) \, dx
\]

so that \(\bar{u} \) solves (3.4). By the strict convexity of \(\Phi \), the minimization problem (3.4) admits \(\bar{u} \) as unique solution and the whole family \((u_\varepsilon)_\varepsilon \) converges to \(\bar{u} \).

Let us now prove the second assertion. Assume by contradiction that \(\bar{u} \) is not of the form \(\alpha \chi_{C_0} \) with \(\alpha > 0 \) and \(C_0 \subset \Omega \); then \(\bar{u} \neq \bar{w} \) with

\[
\bar{w} := \frac{\int_\Omega f\bar{u} \, dx}{\int_{\{\bar{u} > 0\}} f \, dx \chi_{\{\bar{u} > 0\}}}. \quad (3.6)
\]

From Theorem 3 of [3] it follows that the set \(C = \{\bar{w} > 0\} = \{\bar{u} > 0\} \) is a Cheeger set and that \(\bar{w} \in Q \). Now using \(\Phi(0) = 0 \), the fact that \(\bar{u} \neq \bar{w} \) and Jensen’s inequality, we get

\[
\int_\Omega f\Phi(\bar{w}) \, dx = \int_{\{\bar{w} > 0\}} f\Phi(\bar{w}) \, dx > \left(\int_{\{\bar{w} > 0\}} f \, dx \right) \Phi \left(\frac{\int_\Omega f\bar{u} \, dx}{\int_{\{\bar{u} > 0\}} f \, dx} \right) = \int_\Omega f\Phi(\bar{u}) \, dx
\]

contradicting the fact that \(\bar{u} \) solves (3.4). This proves that \(\bar{u} = \alpha \chi_{C_0} \) with

\[
C_0 = \{\bar{u} > 0\} \quad \text{and} \quad \alpha = \frac{\int_\Omega f\bar{u} \, dx}{\int_{\{\bar{u} > 0\}} f \, dx}.
\]
It remains to prove that C_0 is the maximal Cheeger set. Let us remark that for every $C \in \mathcal{C}$, one has
\[
\frac{\chi_C}{\int_{\partial^* C} g \, d\mathcal{H}^{d-1}} = \frac{\mu_1 \chi_C}{\int_C f \, dx} \in Q
\]
so that by (3.4)
\[
\left(\int_C f \, dx \right) \Phi \left(\frac{\mu_1}{\int_C f \, dx} \right) \geq \left(\int_{C_0} f \, dx \right) \Phi \left(\frac{\mu_1}{\int_{C_0} f \, dx} \right) \quad \forall C \in \mathcal{C}.
\]
(3.7)

Moreover, the function $t \mapsto t \Phi \left(\frac{\mu_1}{t} \right)$ is decreasing, and thus (3.7) implies
\[
\int_{C_0} f \, dx \geq \int_C f \, dx \quad \forall C \in \mathcal{C}.
\]
(3.8)

Since $C_0 \cup C \in \mathcal{C}$ for every $C \in \mathcal{C}$, we then have
\[
\int_{C \setminus C_0} f \, dx = 0 \quad \forall C \in \mathcal{C}
\]
and since $f > 0$ this proves that $C \subset C_0$ (up to a negligible set). \qed

4 Concluding remarks and related problems

This paper has focused on the selection of the maximal Cheeger set and we have given elementary examples for which there are several (even infinitely many) Cheeger sets. In such nonuniqueness cases, we have shown that the natural p-Laplacian approximation does not always select the maximal Cheeger set (but the concave penalization scheme of Section 3 does). However, when there is a unique Cheeger set (equivalently when (1.2) possesses a unique solution), Propositions 2.1 and 2.2 of course imply the convergence of the p-Laplacian approximations u_p to (a multiple of) the characteristic function of the unique Cheeger set. Of course, when there is such uniqueness, the selection of the maximal Cheeger set is not a relevant issue. In fact, nonuniqueness is rather rare as the following genericity result shows:

Proposition 4.1. Let $g \in C^0(\Omega)$ with $g \geq g_0$ for a positive constant g_0. Then there exists a G_δ dense subset X of $C^0(\Omega, \mathbb{R}^+)$ such that for every $f \in X$, (1.2) admits a unique solution (equivalently \mathcal{C} is a singleton).

Proof. For every $f \in C^0(\Omega)$ (not necessarily nonnegative) we define
\[
V(f) := \sup \left\{ \int_{\Omega} f u \, dx : u \in BV_0(\Omega), \; u \geq 0, \; \int_{\mathbb{R}^d} g \, d|Du| \leq 1 \right\},
\]

11
then V is a convex continuous (even Lipschitz) functional on $C^0(\overline{\Omega})$. Since $C^0(\overline{\Omega})$ is separable and complete, when equipped with the sup norm, it follows from a theorem of Mazur (see [11] or Theorem 1.20 in [12]) that V is Gâteaux differentiable on a $G_δ$ dense subset of $C^0(\overline{\Omega})$. Generic uniqueness then follows at once from the fact that the subgradient of V at $f \in C^0(\overline{\Omega}, \mathbb{R}^+)$ is exactly the set of solutions of (1.2).

Remark 4.2. The previous proof works in the same way when the weight f is taken in any separable Banach space naturally related to the problem (e.g. $L^q(\Omega)$ with $q \in [d, +\infty)$). A similar proof also works for fixed f and a generic g.

Also, in the present paper, we have only considered the stationary case, although another related interesting issue is the asymptotic behaviour of the (motion by mean curvature-like) evolution equation

$$\partial_t u - \text{div} \left(g \frac{D u}{|D u|} \right) = f.$$

Acknowledgements. This research has been conceived during a visit of the first author to CEREMADE of Université de Paris Dauphine; he wishes to thank this institution for the warm and friendly atmosphere provided during all the visit.

References

Giuseppe Buttazzo, Dipartimento di Matematica, Università di Pisa, buttazzo@dm.unipi.it

Guillaume Carlier, CEREMADE, Université de Paris-Dauphine, carlier@ceremade.dauphine.fr

Myriam Comte, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, comte@ann.jussieu.fr