Approximation of the distribution of a stationary Markov process with application to option pricing

Abstract : We build a sequence of empirical measures on the space D(R_+,R^d) of R^d-valued càdlàg functions on R_+ in order to approximate the law of a stationary R^d-valued Markov and Feller process (X_t). We obtain some general results of convergence of this sequence. Then, we apply them to Brownian diffusions and solutions to Lévy driven SDE's under some Lyapunov-type stability assumptions. As a numerical application of this work, we show that this procedure gives an efficient way of option pricing in stochastic volatility models.
Type de document :
Article dans une revue
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2009, 15 (1), pp.146-177
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00139496
Contributeur : Fabien Panloup <>
Soumis le : lundi 7 septembre 2009 - 14:55:27
Dernière modification le : lundi 29 mai 2017 - 14:24:30
Document(s) archivé(s) le : vendredi 24 septembre 2010 - 11:20:50

Fichiers

bej142.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00139496, version 4
  • ARXIV : 0704.0335

Collections

Citation

Gilles Pagès, Fabien Panloup. Approximation of the distribution of a stationary Markov process with application to option pricing. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2009, 15 (1), pp.146-177. 〈hal-00139496v4〉

Partager

Métriques

Consultations de la notice

186

Téléchargements de fichiers

79