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1 Introduction

This paper describes applications of@nputer algebranethod differential elimina-
tion, to applied mathematics problems mostly borrowed from biology. The twe co
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sidered applications are related to fregameters estimatiofchapter 3) and thenodel
reduction(chapter 4) problems. In both cases, differential elimination can beedeas

a preparation to numerical treatments. Those numerical treatments rast partly,
sketched in this paper in order to put some light on the real limitations of thke- ap
cations. Together with the applications, the paper introducesmptementation®f
the differential elimination algorithms: ttdiffalg package, which is embedded in the
MAPLE computer algebra software and tBeAD libraries [4] which are standalone
open source C libraries. Tldiffalg package is designed to be manipulated interac-
tively and can be used very quickly and easily by casual readersBIA® libraries
are designed to provide differential elimination for scientific software pedéeent of
any computer algebra system. They are probably better suitediififelg to the devel-
opment of software dedicated to the described applications. UsirgtAB libraries
implies however to write a C program. For this reason, in this paper, dranape
illustrated withdiffalg rather than wittBLAD.

2 Differential Elimination

The three next sections can be read in any order and provide threeediffintro-
ductions to differential elimination: section 2.1 provides historical notestien 2.2
presents it more algebraically, through the differential ideal memhmpsbblem while
section 2.3 introduces it through software. For a wider survey orrdifteal equations
and computer algebra, see [68].

2.1 Historical Introduction

Differential elimination is an algorithmic subtheory differential algebra(see sec-
tion 2.2 for mathematical definitions). It solves the membership probtematical
differential ideals.

The membership problem for polynomial ideals was one of the main pnadé com-
mutative algebra. It was solved by Bruno Buchberger in [16], thankke theory of
Grobner bases. Similarly, the membership problem for differentiallédis one of the
main problems of differential algebra. It is proven undecidable in iggr&3]. It is
still open for finitely generated differential ideals. It is only solved in theci case
of radical differential ideals.

The development of differential elimination was undertaken by Ritt wiveldged the
concept ofcharacteristic setsIn his book, Ritt gave an algorithm to decompose the
radical of any finitely generated differential ideal as an intersectionngefy many
differential prime ideals presented by characteristic’seRitt’s algorithm relies on
factorizations over towers of algebraic extensions of the base field giollgaomials

1in this paper, differential ideals always refer to diffetiehpolynomial ideals.
2The intersection may be redundant. Surprisingly, the Biolu problem of two differential prime ideals
presented by characteristic sets is still open while thelguest is straightforward [43, Chapter IV, Problem 3].
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and does not cover the case of partial differential polynomials. AtmaSeidenberg
designed in [66] an elimination algorithm for systems of differential potgiads which
only relies on addition, multiplication and the equality test with zero in the base field
of the polynomials. However, Seidenberg’s method is not convenietatkés as input
a differential polynomial, a differential system and decides if the polyiabbelongs
to the radical of the differential ideal generated by the system. It doeprovide a
description of this radical differential ideal. It also involves some usetg®rations
(e.g. computation gbreparation polynomials To cover the case of partial differential
systems, Seidenberg developed an analogue of the S-polynomialsdfittee Grobner
bases theory. However, the proof of his [66, Theorem VI] seemstméomplete.
A few years later, Azriel Rosenfeld fixed and generalized Seideisb&lgeorem VI
in [62, Lemma] but did not provide any algorithm. In his book, Kolchimgelized
"Rosenfeld’s lemma” and described a generalized method [43, SévtRlnHowever,
Kolchin’s method involves some non effective steps: his approachotdre treated
as an algorithm. Later, Wu Wen-Tsiin described in [70] an algorithm ¢ordpose
a given system of differential polynomials as finitely many characteristis Isut the
characteristic sets in the sense of Wu are weaker than those of Ritt amat atdficient
(without any extra process) to decide membership in the radical of ttezetitial ideal
generated by the system. Dongming Wang developed Wu’s method in [75]

Giuseppa Carra-Ferro and Francois Ollivier developed the coon€dfiterential Gro-

bner basesn [19, 57] but the bases they define do not need to be finite. Elizabeth
Mansfield developed another conceptiferential Givbner baseén [50] but Mans-
field’s bases do not solve the membership problem in differential id€ateg Reid
developed the concept eéduced involutive formsgether with an algorithm in [59].
This concept applies more generally to systems of analytic differentiadteoms. In

this setting, no satisfactory analogue of the Rosenfeld’s lemma is howaesiable.

The author developed the so-calRdsenfeld-Gibneralgorithm in [7] from the papers
of Seidenberg and Rosenfeld. He used Grobner bases to corsahield’s lemma
into an algorithm. Rosenfeld-Gsbner gathers as input a differential system and a
ranking It represents the radical of the differential ideal generated by thé Bys-
tem as a finite intersection of radical differential ideals presented byctegistic sets
(in the sense of Ritt). It solves the membership problem to radical diffietedeals
(ordinary or with partial derivatives). It only relies on addition, multiptioa and the
equality test with zero in the base field of the polynomials. The algorithm itbesicr
in [7] was much improved, theoretically and practically, by a lerhmiae to Daniel
Lazar® [9, Lemma 2]. See [13] for a survey on Lazard’s lemma. Some nariaf
Rosenfeld-Gibnerwere published afterwards [48, 40, 14, 41].

3Grobner bases are no more involved in current implememistof Rosenfeld-Grobnerinstead, a variant
[10, 12,RegCharacteristicof LexTriangular[46, 52] is used.

4Lazard’s lemma is a non differential lemma which implies emttombined to Rosenfeld’s lemma, that the
differential ideals presented by characteristic sets ecessarily radical.

5There was a gap in the proof of "Lazard’s lemma” in [9] whichsviaed for the first time by Sally Morrison
in [54, 55].
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2.2 Algebraic Introduction

Differential algebra is an algebraic theory for differential equatiomdifary or with
partial derivatives) which was founded by Joseph Fels Ritt in the @i§oifithe twen-
tieth century. Ritt was much impressed by the development of commutdtebra
and wanted to achieve a similar theory for differential equations. He suired the
work of his team in [61]. One of his students, Ellis Robert Kolchin, devedogtill

further Ritt's theory and summarized his results and that of his team in 863 [18]
for a survey. Adifferential ring (resp. field) is a ring (resp. field® endowed with
a derivation (this paper is restricted to the case of a single derivationédtielory is
more general) i.e. a unitary mappifty— R such that (denoting the derivative of:):

_—

(@+b)=a+b (ab)=ab+ab

Observe that, theoretically, the derivation is an abstract operation. gibilitg, one
views it as the derivation w.r.t. the tinte Algorithmically, one is led to manipulate
finite subsets of somdifferential polynomial ringk = K{U} whereK is the differ-
ential field of coefficients (in practicédy = Q or K = Q(¢)) andU is a finite set of
dependent variablés The elements oR, thedifferential polynomialsre just polyno-
mials in the usual sense, built over the infinite set, den6t&d of all the derivatives
of the dependent variables.

A famous example of Ritt [61, Section II.4]. The left-hand side of the ordinary
differential equation:? — 4 = 0 is a differential polynomial of the differential poly-
nomial ring R = Q{u}. Its analytic solutions are the zero functiaft) = 0 and the
family of parabolasi(t) = (¢ + ¢)? wherec is an arbitrary constant.

Definition 2.1 A differential idealof a differential ringR is an ideal ofR, stable under
the action of the derivation.

The study of the radical of the differential ideal generatey a finite system of dif-
ferential polynomials is strongly related to the study of the analytic solutiotisi®f
system. Indeed, in algebraic geometry, it is well known that the set gfdly@omials

which vanish over the solutions of a given polynomial system form an ateheven

a radical ideal [78, Section VII.3, Theorem 14]. For differential@ipns, the set of
the differential polynomials which vanish over the anaf/golutions of a given differ-
ential polynomial system form a differential ideal and even a radic&reintial ideal

[61, Sections Il.4 and 11.7].

8In the differential algebra theory, the terminolodifferential indeterminatess preferred talependent vari-
ablesfor derivations are abstract and differential indeterrt@aare not even assumed to correspond to functions.
In order not to mix different expressions in this paper, teeond expression, which seems to be more widely
known, was chosen.

7An ideal 2 is said to beradical if a € 21 whenever there exists some nonnegative intggsuch that
aP € 2. The radical of an idedll is the set of all the ring elements a power of which belongd.td he radical
of a (differential) ideal is a radical (differential) idef@5, Section 4].

8Qver some unspecified domain.
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Ritt’'s example (continued). The analytic solutions of the differential equatioh—
4u = 0 are the function.(¢) = 0 and the family of functions(t) = (¢ + ¢)2. These
solutions are also solutions of all the derivatives of the differential tiojua

20 (i —2) =0, 240+ 2ii(ii — 2) =0,

More generally, they are solutions of every differential polynomial, wgycof which
is a finite linear combination of the derivatives @f — 4 u with arbitrary differential
polynomials as coefficients i.e. every element of the radical of therdiffeal ideal
generated by — 4 u.

The problem of computing a representation of the radical of the diffeledeal gen-
erated by a finite set of differential polynomials is thus an important pnobtelated

to the study of the analytic solutions of this system. So is the membership proble
to radical differential ideals which is solved Rosenfeld-Gibner. To present it, one
needs to define the conceptrahkingand Ritt's reduction.

Definition 2.2 If U is a finite set of dependent variablestamking over U is a total
ordering over the se®U of all the derivatives of the elements of which satisfies:
a<aanda <b=a<bforalla,becOU.

Let U be a finite set of dependent variables. A ranking such that, for everye U,
theith derivative ofu is greater than thgth derivative ofv whenever: > j is said to
beorderly [43, Section 1.8]. IfU andV are two finite sets of differential variables, one
denotedJ > V every ranking such that any derivative of any elemeri a$ greater
than any derivative of any element®f Such rankings are said &éiminate/ w.r.t. V.

Definition 2.3 Assume that some ranking is fixed. Then one may associate with any
differential polynomialf € K{U} \ K the greatest (w.r.t. the given ranking) deriva-
tive v € OU such thatleg(f, v) > 0. This derivative is called thieading derivativeor
theleaderof f.

Ritt's reduction. It is a generalization of the Euclidean division. It is well known
that, if f andg are two polynomials, in one variable with coefficients in a field, the
Euclidean division off by g (¢ nonzero) is possible. It yields a unique p&ijr ) of
polynomials such that = gq + r anddegr < degg. If f andg have coefficients

in a ring, the Euclidean division is no more possible in general for the lgaxieffi-
cient ofg may not be invertible. The closest available algorithm isgheudodivision
which consists in multiplying’ by the leading coefficient of ¢, raised at the power
p = deg f — deg g + 1 before performing the Euclidean division [73, Section 6.12]. It
yields a unique paifq, r) of polynomials such that” f = gq + r anddegr < degg.
The polynomial- is called thepseudoremaindeof f by g and is denotegrem(f, g)

or prem(f, g, v) when the variable is not clear from the context (case of polynomials
depending on many different variables). The pseudodivision géres to the differ-
ential setting, providing Ritt’s reduction algorithm [43, Section 1.9], diésat below.
Observe that only the “remainder” is computed.
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Let f be a differential polynomial, to be reduced by a finite Set {¢1,...,g,} Of
differential polynomials. Denote; the leader ofy; for 1 < i < n (assuming that
none of they; lies in the base field). Ritt's reduction builds a sequefige. ., f, of
differential polynomials starting gt = f. The result is the polynomial

fr = Ritt_reduction(f, C).

To computef,; from f,, three cases may occur. First caffefor eachl < i < n,

the differential polynomialf, does not depend on any proper deriva"tiwéﬁ) of v;
anddeg(f,, v;) < deg(g;, v;) then the computation stops arfd = f, is returned.
Second casdf there exists some indek < ¢ < n such thatleg(fs, v;) > deg(g:, v;)
then fy.1 = prem(fy, g;, v;). Third case if there exists some indek < i < n such
that f, depends on some proper derivatiy&’ of v; then f, 1 = prem(fe, g, v{*).
Remarks. The second rule could actually be viewed as a particular case of the third
one. The sequencg,..., [ described above is not uniquely defined. One could
define a precise algorithm by specifying that the sequence of the kdiecwatives
vfk) must be decreasing. This is the usual strategy but any other stratelgly
applied. Last, observe that whene¥er 1, the differential polynomiaggz“’) has degree
one invz“’) and admits theeparants; = dg;/dv; for leading coefficient. In this case,
writing ¢* = s; v* + 1, 1., one sees that the pseudodivisionfoby ¢!*) amounts to
the following: first perform the following substitution ify

o, ik

S
then clear the denominator of the obtained rational fraction. The resubiyggmial
is free ofv(".

Example. Let us apply Ritt’s reduction ovefy = i — va andC = {a? + v}. The
ranking isu > v so that the leader of = > + v is @. The polynomialf, gets
pseudoreduced by the first derivativef.e. 2w i + v. First one substituteg —
—0/(2 1) over fy, giving the rational fraction

o VU

2u '

Second, the denominator is cleared, givihg= —@ — 2v«2. This polynomial f;
gets pseudoreduced gy one substitutes? — —v over f;, giving the differential
polynomial f> (there is no denominator to clear).

fo= —0 4 207,

Ritt's reduction stops at this step aiigl= f, is returned.

90ne denotes)gk) the kth derivative ofv. Whenk > 1, vgk) is said to be groperderivative ofv;. When
k =0, one defineszgk) = ;.
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Normal forms. Observe that in general, the set of all the differential polynomials
which are reduced to zero by Ritt's reduction has no clear structure@el dot even
need to be an ideal. Observe also that the returned polyngmighot equivalent tgf
modulo the differential ideal generated 6ybecause of the denominator clearing step.
A more careful version was designed in [12]. It returns a ratiorsaition instead of a
polynomial. WhenC' is acharacteristic sebf the ideal2l that it defines, the rational
fraction is guaranteed to bermrmal formof the residue class of modulo2(. Such

a normal form algorithm may be used to detect linear dependenciesdretesidue
classes modul@l, following the idea of [29]. See [8] or [5, Section 6.1].

Rosenfeld-Gidbner. TheRosenfeld-Gibneralgorithm gathers as input a finite sys-
tem F' of differential polynomials and a ranking. It returns a finite family (pllys
empty)C, ..., C, of finite subsets oKk{U} \ K. Each systend’; defines a differen-
tial ideal¢; in the sense that, for anyc K{U}, we have

fec¢; iff  Ritt_reduction(f, C;) = 0.

The relationship with the radical of the differential ideal generated ly is the fol-
lowing:
A=¢N---NE,.

Whenr = 0 we have?l = K{U}. Combining both relations, one gets an algorithm to
decide membership i#1. Indeed, given any € K{U} we have:

fed iff  Rittreduction(f, C;) =0, 1<i<r.

The systemg’; are often calleddifferential) characteristic setsr differential regular
chaing? in the literature. The differential idea® do not need to be prime. They are
however necessarily radical, thanks to Lazard’s lemma. Observé thatossible to
refine further the intersection in order to get prime differential ideal$s $ufficient
for this to apply a usual primary decomposition algorithm. However, norékgn is
known to decide inclusion between differential ideals presented by atieaisdic sets,
even when they are prime [43, Section IV.9, Problem 3]. Thus the otedprepre-
sentation can by no means be guaranteed to be minimal though this lattetitediyr
exists.

Ritt’'s example (continued). WhenU = {u} there exists only one ranking:
> > U > .

Take F' = {u? — 4u} and denote the radical differential ideal generated by If
one applies th®osenfeld-Gibnerto F and this ranking, one gets an intersectioe-
&Ny with

Cy = {i® — 4u}, Cy = {u}.

10There is a slight difference between these two notions hidés not matter in this paper.
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The differential polynomial is reduced to zero bgs, not by Cy. Thusu ¢ 2(. The
differential polynomialii — 2 is reduced to zero bg;, not by** Cy. Thusii — 2 ¢ .
The product: (i —2) is reduced to zero by, andCs. Thus it lies in2( (it is one-half of
the first derivative ofi?> — 4 ). This proves that the ideal is not prime. The ideatl;
corresponds to the family of parabolag) = (¢ + ¢)2. The ideale; corresponds to the
solutionu(t) = 0.

Complexity. From a theoretical point of view, differential elimination is a very pow-
erful tool. It permits to decide if a system of differential equations admitsydic
solutions over some unspecified donairSee [67, Embedding theorem] and [60, 47].
Moreover, non differential polynomial elimination can be reduced teckfftial elim-
ination in two different ways. First any non differential polynomial systean be
viewed as a differential system of order zero (one seeks constactidos solutions
instead of numbers) and the differential characteristic sets comput&bsgnfeld-
Grobnerare exactly those that non differential algorithms [45, 42, 53] wouldpzgm
Second, any non differential polynomial system can be encodedyagensof linear
partial differential equations in one dependent variable and consiafftaients ; the
differential characteristic set computed Bpsenfeld-Gsbnerover this linear system
is (up to the inverse encoding) the reduced Grobner basis of the rferedtial system
w.r.t. the admissible ordering induced by the ranking. This last reduptioves that
the membership problem to radical differential ideal is exspace hdid $ee also [5,
Section 9.7].

2.3 Computational Introduction

There are many different ways to tackle systems of ordinary diffedemquations in

a computer algebra softwar®ifferential eliminationis one of them. It is presented
here by comparison with numerical integration and closed form integratidrillus-
trated over thelifferential index reductioproblem. Most computations are performed
using thediffalg package of MAPLE 9. A short presentation of tBeAD libraries is
provided too.

Numerical integration. Here is an example of an ordinary differential equation with
an initial condition. The dependent variahterepresents an unknown time varying
function (one denotes the first derivative of).

t=x(3—u1), x(0) = 1.

Numerical integration of an ordinary differential equation with an initialdiban con-
sists in computing a discrete approximation of the graph of the integrak afrthe
equation as a finite number of points. In principle, it is always possiblerty ttaut.
The simplest method is Euler’s explicit method [36, page 132]. Numeritegration

1proving that¢; ¢ ¢ thoughCy is reduced to zero bgs.
120ne encounters undecidability results when the domaireisiged. See [21, Theorem 4.11].
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is not considered as a method of computer algebra. The commanas siedav how
to numerically integrate the above example using MAPLE 9 (the method ise ot
of Euler but an adaptative stepsize Runge-Kutta scheme). The otitjnet mumerical
integrator is a function which evaluates the solution.

ode := diff(x(t),t) = x(t) * (3-x(1));

d
ode := Ew t)=z()(B—=x(t))
sol := dsolve ({ode, x(0)=1}, x(t), numeric):
sol (0.5);

[t = 0.5, z(t) = 2.07431460567341386]

Closed form integration. Closed form integratiof an ordinary differential equa-
tion consists in computing its solutions as finite formulae. See [15] for andinttory
text. Over the example, it is possible and yields the formula below. Obdeav¢he
formula involves an arbitrary constar@1 for no initial condition is specified. Closed
form integration is part of computer algebra. It is however not possiliieneral. Itis
different from differential elimination.

dsolve (ode, x(t));

3

)= Gizesian

Differential elimination. To explain whatdifferential eliminationis, one needs to
consider a system of at least two ordinary differential equations. dlfeing exam-
ple is borrowed from [37, Chapter VII, page 454]. Since it mixes adjirdifferential
equations and non differential equations, this type of system is sometaihed adif-
ferential algebraic systetd There are three unknown time varying functions (three
dependent variables) y andz :

= 0.7y +sin(2.52),
= 14z +cos(2.5z),
1 = 22442

Even readers not familiar with differential algebraic systems may seestich sys-
tems raise problems. Assume that some initial conditign$, y(0) andz(0) are given

and let us try to numerically integrate the system with Euler's method for sbepe

size h. Evaluating the right-hand sides of the two first equations &t 0 one gets

#(0) andy(0). Using these numbers, Euler's method permits us to compute the estima-
tionsz(h) ~ 2(0) + h2(0) andy(h) ~ y(0) + hy(0). However, one cannot estimate

13For readers familiar with this notion, it haifferentiation index2 [37, Section VII.1, Definition 1.2].
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the value ofz(h) since no ordinary differential equation of the form (2.1) is available.
Thus Euler's method cannot perform the next step.

Z = something (2.2)

The point here is that the ordinary differential equation (2.1) whicnsde be missing
is actually not missing but hidden in some differential id&alt can be automatically
extracted from the initial system by meanddifferential elimination Before showing
how to proceed with the help of thiffalg package of MAPLE, one needs to convert
the system as polynomial differential systentor this, one denotesthe sinec the
cosine and one introduces a few more equations. The following diffat@olynomial
system is equivalent to the above one.

= 0.Ty+s, s = 2.5zc,
= l4dx+c, ¢ = —2b5z2s,
1 = 22 +42 1 = s2+c%

Let’s now compute the hidden equation ustfiffalg. One first stores the differential
polynomial system in the variabkyst converting floating point numbers as rational
numbers.

with (diffalg):
syst = [diff(x(t),t) - 7/10 *y(t) - s(t),
diff(y(t),t) - 14/10 *X(t) - c(t),
X()2 + y)2 - 1,
diff(s(t),t) - 25/10 * diff(z(t),t) * (1),
diff(c(t),t) + 25/10 * diff(z(t),t) *S(t),

s@)2 + c)2 - 1]:

Then one assigns to the varialitethe context of the computation: one indicates that
the only derivation is taken with respect to the time, that the notation is the stnda
diff notation of MAPLE and one provides thanking For short®, let us just say that
the fact that stands on the rightmost place of the list indicates that we are looking for
an ordinary differential equation of the form (2.1).

R := differential_ring (derivations = [t], notation = diff,
ranking = [[s, ¢, X, vy, zZ]]):

Next the Rosenfeld-Gibner function is applied tosystand R. It returns a list of
MAPLE tables. Each table providescharacteristic set The list should be under-
stood as an intersection. Over the example, the list only involves onectérdstc set
so that the characteristic set does represent the radical differemtilgdnerated by
the input system. The desired equation stands on the second place lo&theteristic
set (only the two first equations are displayed). Enlarging the inputreysiéh this
equation, it is now easy to perform any numerical integration method anproblem
is solved. Technically speaking, differential elimination has permitted thecten to
zero of thedifferentiation indedof the input system: it wa%; it is now 0. See [31, 58]
for related works.

14l the differential algebra terminology used in this seatis precisely defined in section 2.2.
15with the terminology inroduced in section 2.2, this is thderly ranking such thag > ¢ > = > y > z.
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ideal := Rosenfeld_Groebner (syst, R):
rewrite_rules (ideal [1]);

|Gy =ca®)+e),

a_ (t) = 13500 — 12348 (y ()° 413230 ¢ (t) z (£) (y (t))* + 25809 (y (t))*
de” "7 25 441 (y (1))° - 882 (y (£)" + 541 (y () — 100
1 —14700 () (y () c () — 16961 (y ())* + 3940z (1) c () }
25 441 (y (£))° — 882 (y ()" + 541 (y (£))* — 100 ’

Let us now perform some slight change on the chosen ranking. Strjptigking,

the ranking below is different from the above éhéut it also indicates that we are
looking for an ordinary differential equation of the form (2.1). Hoer\f one applies
Rosenfeld-Gibnerover systfor this ranking, one never gets any result because of the
size of the equations the algorithm tries to compute.

R := differential_ring (derivations = [t], notation = diff,
ranking = [[s, ¢, x, y], Z]):
ideal := Rosenfeld_Groebner (syst, R):

Warning, computation interrupted

To summarize, differential elimination is a process which takes as inysters of dif-
ferential equations (ordinary or with partial derivatives) and a ranklhrewrites the
input system into another equivalent system (or an equivalent finitdyfafrsystems
when case splittings are necessary). The ranking permits to controlinfieation
process, indicating what should be eliminated. Differential elimination nosttaoe
considered as computer algebra. In principle, differential eliminatiolwiays possi-
ble. However, in practice, it is restricted by its terrifying worst case derify and the
related problem of choosing rankings.

A few packages are available for differential elimination: thiffigrob package of
Mansfield [50], theif package of Reid, Wittkopf and Boulton [59], te@silonpack-
age of Wang [76] and thdiffalg package which was illustrated just above. The first
version of thediffalg package was written by the author in 1995 for MAPLE 5 [7, 9].
However, the version involved in MAPLE 9 is not the original one since & waich
improved byEvelyne Hubert [40] and, more recently, by Francois Lemaire.[12]

181t is the ranking(s, ¢, =, y) > z which eliminatess, ¢, 2 andy and such that > ¢ > z > .
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The BLAD libraries. In order to overcome (at least partially) the difficulties stated
above, the author has developed a C library, cdledD, from the model of th&sMP
library. This library aims at providing differential elimination methods to st
software which are not necessarily computer algebra systems. lhilsltzle on [4].
One of the important functionnalities it provides consists in bounding inrextvéhe
time and the memory allocated to a given differential elimination request.elodke

of a failure, the calling program gets back a clean working environmea fallowing

C program performs the first elimination provided above. It readsdteeid characters
strings and prints the result of the differential elimination on the standaplibuOf
course, this is not a natural way to use BieAD libraries.

#include "bad.h"

int main ()

{ struct bad_intersectof regchain ideal,;
struct bap_tableof _polynom_mpz eqgns, inegns;
bav_lordering r;

bad_restart (0, 0);
ba0_sscanf2

("ordering (derivations = [t], blocks = [[s, y, ¢, x, z]])",

"%ordering", &r);
bav_R_push_ordering (r);
bad_init_intersectof regchain (&ideal);
ba0_sscanf2

("intersectof_regchain ([], \

[differential, primitive, autoreduced, normalized])",
"%intersectof_regchain”, &ideal);
baO_init_table ((baO_table)&eqns);
baO_init_table ((baO_table)&ineqns);
ba0_sscanf2 ("[10 *X[t] - 7 xy - 10 *s, 10 *y[t] - 14 *x - 10 *c, \
10xg[t] - 25  =*z[t] =*c, 10 *c[t] + 25 =*z[t] =*s, \
X2 +y2 -1 ¢c2+ s2-1],
"%t[%Az]", &eqns);

bad_Rosenfeld_Groebner (&ideal, &egns, &inegns, 0);
ba0_printf ("%intersectof _regchain\n", &ideal);
bad_terminate (baO_init_level);
return (0);

}

There are four stackeBILAD libraries. From top downbad (differential elimination),
bap (differential polynomials)bav (rankings) anda0 (kernel). Functions identifiers
are prefixed by the library they belong to. Thmin function starts by defining some
variables:ideal which is going to contain the resugnsandinegnswhich will serve

to store the input system andwhich will contain the ranking. The first instruction
(bad.restar) starts asequence of call® the library. This sequence terminates with the
call to badterminate The two parameters provided bad. restartgive the limits, in
time and in memory, allocated to the sequence of calls. A zero paramed@isitieat
there is no limit. Then the ranking is read from a string and storedtimebaQ_sscanf2
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function provides a generalization of tlsscanffunction of the standard C library).
The variableideal is initialized to an empty intersection of regular differential chains
(characteristic sets) endowed with some attributes which will serve to paiaenthe
elimination: "differential’ indicates that the ideal represented by the variable is dif-
ferential, the other attributes set some technical properties that the rdgtdeential
chains will have to satisfy. Then the arragnsis initialized with the system to process
(X[t] denotest). We do not need to bother wiithegnswhich is not used here. Last
Rosenfeld-Gibneris called and the content adeal is printed on the screen. Here is
the result of the execution. The desired equation starts on the third line.

intersectof_regchain ([regchain ([100 *C'2 - 420 *cxX"3 + 420 *Cc*X -
441+x"4 + 341 *xX'2, y2 + X2 - 1, 10 *SxX + 10*y*C + 2L*yxX,

11025 *z[t] *x'5 - 11025 =*z[t] *x"3 + 2500 *z[f] *x + 13230 *c*x'4 -
11760 *c* X2 + 2470 *c + 12348 *x'5 - 11235 *X"3 + 2387 *Xx, 5 *x[f] *X
+ 5xyxc + 7xyxX], [differential, autoreduced, primitive,

squarefree, coherent, normalized])], [differential, aut oreduced,
primitive, squarefree, coherent, normalized])

3 Parameters Estimation

This section describes an application of differential elimination and, nrexsely, an
application of algorithms which perform changes of rankings overatheristic sets.
The principle of this application was designed by Ghislaine Joly-Blanchdidnne
Denis-Vidal and Céline Noiret [23] and presented in [56]. The askkeé problem is
this one: estimate parameters values of parametric ordinary differeysg#ms the
dependent variables of which are notaiserved When all the dependent variables of
the system are observed, the method still works but differential eliminetioo more
necessary. The work of Joly-Blanchard, Denis-Vidal and Noiretrisngly related
to the problem of thedentifiability study of differential systems, for which a huge
literature is available. See e.qg. [74, 30, 57, 24, 26, 25, 49, 2, 64].mdthod of Joly-
Blanchard, Denis-Vidal and Noiret is original for two reasons: it rebasrigorous
differential elimination methods and it carries out the study of real eesnyp to the
final numerical treatment. It mixes symbolics and numerics.

It assumes that the phenomenon under study is quite accurately maedlduht quite
precise measures are available for the observed variables. Thughthevas applied
with quite some success in pharmacokinetics [20, 71], biological modetiiag not
be the most suitable field of application of the method. The method is ded@vies
an example coming from biology anyway, but it is more presented acatemic
challenge than as a real application.

Here is a summary of the rest of this section. The addressed probl¢éated sver an
example. The classical numerical solution is recalled. it relies on thef aseumerical
nonlinear least squares solver i.e. a Newton method. Differential elimmagets
involved in the process to help solving the most difficult part of the Newtethod:
guessing the starting point. Last the difficulties of the overall method atestisd.
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3.1 Statement of the Problem over an Example

Figure 3.1 represents @mpartmental modelThe twocompartmentsepresent the
blood and some organ. A medical product is injected in the bload=abt. It can go
from the blood to the organ and conversely. It may also get degradeexit from the
system. In order to write the corresponding differential system, sgmpetheses must
be made on the nature of the exchanges: exchanges between the tpartroemts are
assumed to be linear i.e. that, over every small enough interval of tirmegntount
of product going from compartmento compartmenj is proportional to the concen-
tration of product in compartmert The proportionality constant is denoteg. The
degradation is assumed to followMichaelis-Mentertlaw. This law is a bit more diffi-
cult to explain. It can be derived from the modelling of an enzyme-cag¢alyeaction
by means of sommodel reductionTwo parameters are associated to this degradation:
a maximal speed, and another constaht.

(linear exchange)

(Michaelis—Menten exchange) k12

compartment compartmeng

blood

organ

(linear exchange)

Figure 3.1 Compartmental model

From Figure 3.1, it is possible to derive a system of parametric ordidiffigrential
equations. One associates to compartmérasd 2, dependent variables; and x»
which represent the concentrations of product present in theseacomgnts. Dif-
ferential equations are built by considering exchanges the ones ateitbar ones.
Each exchange appends one term to the right-hand side of the diffesntation of
the source compartment (with a minus sign) and a term to the right-hanadfside
differential equation of the target compartment (with a plus sign). Bewathe trap:
guantities are conserved by exchanges while exchanges are defimstthé concentra-
tions, which depend on the volumes of the compartments. For simplicity,9sisaed
here that both compartments have a unitary volume. Applying the abocegs, one
gets the following differential system. The second one is either linear lgnpmial
(it depends the way parameters are viewed). The first one is a rafractibn but
it is equivalent to a polynomial since its denominator cannot vanish:npateas and
dependent variables are positive real numbers.

Ve 1
ke+$1’

1 = —kiox + koy o —

k12 x1 — ko1 22.

T

Let us consider now some instance of the above model and assursertextra in-
formation is available: parameteks, andks; are completely unknown, an interval of
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possible valueg0 < V, < 110 is known forV, and thatt, = 7 is knownt Some infor-
mation is available on compartments also: compartnestassumed to bebserved
i.e. afile of measures is assumed to be availablecforCompartmen® is assumed
to be non observed. One just knows that(0) = 0 i.e. that no product is initially
present in the organ. To fix ideas and help the reader to reproduceaimple studied
in this section, here is a part of a file ®f measuresfor ;.

t x1
0.00000e-01 5.00000e+01
5.00000e-02 4.45078e+01

1.50000e+00 4.95270e-02

We are now ready to state the problem over this examgileen the system of para-
metric ordinary differential equations, the file of measures and the extoanation,
estimate the values of the three unknown parametérs:;» and ko;.

3.2 The Numerical Method

There exists a purely numerical method to solve this problem. Inisrelinearleast
squares solving method i.e. a Newton method. Precisely, a LeveMzegsardt
solver is called. The idea is simple: pickndomvalues for the three unknown pa-
rameters. Integrate numerically the differential system w.r.t. thesewvalud compare
the curve obtained by simulation with the file of measures. @ier is defined as
the sum, for all abscissas, of the squares of the ordinates differbet@een the two
curves. The Levenberg-Marquardt method updates the values tfré® unknown
parameters if the error is considered as too large. It stops either if theigismall
enough of if a stationary point is reached.

Let us try and take the following valuedi = 70, k15 = 4.5 andks; = 1.5. One
gets the two curves on the left-hand side picture of Figure 3.2. After ddeps,
the Levenberg-Marquardt yields the two curves on the right-hand saderg with

V. = 82.8, k1o = .76 andks; = .16. Numerical computations (numerical integration
of ODE, Levenberg-Marquardt method) were performed byGhe Scientific Library
(GSD. The picture was produced gnuplot According to the pictures, the purely
numerical method seems to work perfectly. However, the obtainedneseas values
are wrong: the Levenberg-Marquardt ended in a local minimum.

1it is realistic to assume that one of the parameters is knamee ®quations can often be normalized by
dividing some of the system parameters by one of them or, gemerally, by studying their Lie symmetries.

2Unknown initial conditions do not raise any problem for then be handled as plain parameters. See e.qg.
[36, Section 1.14].

3The file was produced by numerical integration with(0) = 50, z2(0) = 0, V. = 101, k12 = 0.5 and
ko1 = 3. The time ranges from= 0tot = 1.5 by steps of lengtld.05.
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ig ! ! " reference curve of | — | ig N ! " reference curVe of ;' — |
20F k21=1.5 k12=4.5 Ve=70. err=33.—_ a0k k21=.16 k12=.76 Ve=82.8 err:.2~8—_
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20} 1 20t 1
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Figure 3.2: The reference (thin) and the simulated (thick) curves, before (left) an
after (right) running the Levenberg-Marquardt method

3.3 The Symbolic-Numeric Method

The previous method has a drawback: it reliesionlinearleast squares which require
thea priori knowledge of a good approximation of the parameters values. Thanks to
differential elimination and tdinear least squares, it is possible to estimate a first ap-
proximation of the parameters values. This first approximation maydxtafserwards

by the purely numerical method as a starting point.

The idea here consists Eliminating the non observed variable$ the model. In
other words, the idea consists in computing a differential polynomial wiigshin

the differential ideal generated by the model equations and which onbyvas the
observed variable, its derivatives up to any order and the model parameters. Let us
show how to do this with the help diiffalg.

To compute this polynomial, thRosenfeld-Gibner algorithm is applied over the
model equations. The ranking eliminatesw.r.t. z;:

To > T1.

In other words, the ranking indicates that we are looking for a polynofreal of z-.
The right-hand side of the first model equation is a rational fraction.de@mposed
as a numerator and a denominator. The numerator is stored in the listerfuh&ons
(first parameter tdRosenfeld-Gibne). The denominator is stored in the list of the
inequationé (second parameter tRosenfeld-Gsbne). To avoid splitting cases on
parameters values, one views them as (transcendental) elements aéhieehd of the
differential polynomials.

K := field_extension
(transcendental_elements = [k21, k12, ke, Ve]):
R := differential_ring
(derivations = [t], notation = diff,
field_of_constants = K, ranking = [x2, x1]):

“4Inequations are polynomials which are considered as iblert Indeed, ifh is an inequation and some
polynomial ~ p lies in the ideal therp lies in the ideal. The ideal theoretic corresponding opemais the
saturation
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ideal := Rosenfeld_Groebner
([numer (eql), eq2], [denom (eql)], R);

ideal := [characterizablg

The characteristic satleal involves two polynomials. The one which does not in-
volve z5 is the second one, which is displayed below, slightly pretty printed. The
expressions enclosed between square brackets are pati@teters blocks

B1 (x1 + ke)? + [k1z + ko1] 1 (v1 + ke)? + [Ve] @1 ke + [ko1 Ve] 21 (21 + ke) = 0.

This equation tells us that the modegisbally identifiabld.e. that, given a functiom;

and a parameter valug, the three unknown parameters are uniquely defined. Indeed,
assume that the functian is known. Then so are its derivativésandz;. These three
functions can therefore be evaluated for three different values ¢iftiee. The known
parametelk, can be replaced by its value. One thereby gets an exactly determined
system of three linear equations whose unknowns are the parameteks. bIbhis
system admits a unique solution. The values of the parameters blocksfixeithgit

is obvious (over this example !) that the valueskef, ko1 andV, also are uniquely
defined. QED.

In practice, the functior:; is known from a file of measures and one can try to nu-
merically estimate the values of its first and its second derivative. If tresuores are
free of noise, the first derivative can be quite accurately estimatethisuis usually

not the case for the second derivative. To overcome these difficdliz$o numerical
approximations, one builds an overdetermined linear system that ores dnhmeans

of linear least squares. Over the example, one gets the following values:

lkio + kot] = 2.1, Vo] =87.29, [koy Vo] = 144.01.

The values of the blocks of parameters being known, one still has teeet® values
of the parameters by solving the above algebraic system. Over this anipvery
easy and one gets:

Ve =8729, Fki2=0.45, ko3 =1.65.

The above values can now be used as a starting point for the purelyinahmeethod.
Still over the example, one gets the correct parameters values:

V. =101, ki =0.5, ko1 =3.

3.4 Issues and Implementation

In general, there is no guarantee that the first estimation provided byyiieo$ic-
numeric method leads the purely numerical method in the global minimutim&isg
parameters only makes sense for models at leaatly identifiable However, testing
this property does not raise any difficulty. Some seminumerical algositma avail-
able [64]. These are probabilistic algorithms for which the failure pridibals known
and can be decreased up to any value. Numerically estimating the dexdvedises
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an important difficulty. To overcome it, a good method consists in conggtitie dif-
ferential equations as integral equations as suggested in [22]. Unialer onditions,
integral equations are less sensitive to the noise than differential eqaialioare exists
another important difficulty: there may exist algebraic relations betwesparame-
ters blocks. There is no such relation over the example. But assuntbefeake of
the explanation, that the computed differential polynomial involves the tloteowing
blocks of parameters so that the third block is the product of the two fiest:o

(Vel, [kaa],  [Ve k2]

There is no doubt that the numerical values produced during the tiesoddi the linear
overdetermined system would not satisfy this relation. This would imply ttestfirial
algebraic system to solve in order to get the values of the parameters beirdon-
sistent. A way to overcome this problem consists in applying a nonlineardgaates
method to solve the algebraic system. But then one needs to provideesfinsation
of the parameters values: the problem to be overcome ! A symbolic meiased
on algebraic elimination would be much more interesting. Indeed, it wouldighe
the desired solution and could also compute the number of solutions of tierailg)
system. It would solve in the same time the problem of estimating the paramater
ues and the problem of the identifiability of the model. Is it reasonable to trgpty a
algebraic elimination here ? One may think so, provided that many modeables
are observed (at least one half). In this case, the differential elimmestiast and the
parameters blocks are small: the algebraic elimination should be cheap.

A first draft of the above method was implemented in kP ISMEproject [6]. The
Gnu Scientific Librarywas used to perform the numerical methods. Bhe\D li-
braries were used to perform the differential elimination. The method fisutfto
implement in a satisfactory way: it involves many different steps. E&these steps
can be performed using a few different methods. When any metligd itas diffi-
cult to provide synthetic informations on the failure to the userBLAD, instead of
Rosenfeld-Gibner, the more specialized and more effici@®fRDI algorithm is used
[11]. It takes advantage of the fact that the model equations gereriféerential
prime ideal and already form a characteristic set of this ideal w.r.tesmaterly rank-
ing. It avoids all the discussions thRbsenfeld-Gibnerwould perform and always
computes only one characteristic set.

3.5 Prospects

In spite of all the difficulties, the project is being continBeaven in the case the
symbolic-numeric method fails, the purely numerical method is still availablee
existing method is thus improved. The use of BieAD libraries is particularly inter-
esting here for they permit to bound in advance the time and the memorgtakbmo
the symbolic part of the symbolic-numeric method. Observe that the limitation
often due to the numerical part of the computations.

5The author is getting involved in a project which aims at gipg this method for modelling the biosynthesis
of fatty acids and oil in oilseed embryos.
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4 Model Reduction

The green algastreococcus taurfFigure 4.1) was discovered in 1994 in théang

de Thay in the south of France. It is the minimal non parasitic known organism. Its
genom, constituted of1 millions of pairs of bases was published in 2006. Though
very simple, this unicellular organism is endowed bgirgadian clock. See [51] for

an historical perspective essay on circadian clocks and [28, CHiutef32] for more
general texts about oscillations in biology. This clock permits the alga toitaedeat

the top of the water before the sunrise. The alga is one of the main objesttsdgfof

the theObservatoire Oganologique de Banyuls

" ®

Figure 4.1: Ostreococcus tauri: a nucleus with a hole (bottom right), a chloroplast
(top) with an amide ball (white spot), a Golgi apparatus (bottom left) and a- mito
chondry (center). The size is about one micrometer.

The author has been involved for two years in a pluridisciplinary workirogig (in-
cluding computer scientists, physicists and biologists), led by Frangaes-Bouget of
theObservatoire oeanologique de Banyufer the biological part and Marc Lefranc of
thenonlinear dynamicg$eam for the physics and computer science part. This working
group aims at modelling the cell division cycle @$treococcus tauri Our first goal
has been to try to model the circadian clockosfreococcus taunivhich control$ the
division cycle. In the genom of the green alga, two genes (nah@d and CCAJ)
were identified. They are known to be central components of clocksha¥e thus
been seeking a model under the form of a system of parametric oydiifeerential
equations, describing a two genes regulatory network and produdiiiatisg trajec-
tories. We have very quickly met the following difficulty: many systemsarfmetric
ordinary differential equations have integral curves which do natlateat all and,
even the ones which have oscillating integral curves, only have sugbstor very
restricted ranges of parameters. Our problem can thus be reforchaatéollows:
given a system of parametric ordinary differential equations, does theéseranges of
parameters w.r.t. which integral curves oscillate ?

1A circadian clock is a clock the period of which is ab@dthours. The qualifier is built fromirca (around)
anddies(day).

2This is our simplifying working assumption. The clock ifselight actually very well be regulated by the
division cycle.
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This problem can be addressed by looking for conditions on paranvetéris produce
Hopf bifurcations[38, Chapter 11]. This approach was recently studied in the com-
puter algebra community [27, 77, 35, 34]. It applies the Routh-Hurwitereon [36,
Section 1.13] and involves non differential elimination. Itis not discdsaehis paper.
Another approach consists in applying the Poincaré-Bendixson the@& Chapter

12] together withdifferential elimination It was applied by members of the biology
community in [72] over an abstract two genes regulatory network. Thieiapproach
described in this chapter

What does the Poincaré-Bendixson theorem state and how can it bedajopthis
context ? Roughly speaking, the theorem states that, if the integral coinegsau-
tonomous ordinary differential system two dependent variablestay in a bounded
area and if this area does not involve any stable steady point then thigheobses
limit cycles. Limit cycles correspond to oscillating trajectories. Where isrbff-
tial elimination involved ? The initial model (section 4.1) involves seven déest
variables. The idea consists in approximating it breduced modebf two ordinary
differential equations in two variables by meangradel reductionDifferential elim-
ination permits to simplif§ the reduced model (section 4.2). The application of the
Poincaré-Bendixson theorem is afterwards pretty straightforwaidked, in biology,
trajectories of variables are always bounded. So are the ones ofdheeck model,

at least for parameters values which are biologically consistent (dbsitvthe least
requirement). The steady points of the reduced model can be compuidebraic
elimination (e.g. Grobner bases methods). There are three steedy pat only one

of them correspond to positive values of the variables (the other oratisrarded).
Its stability can be studied by linearizing the model in the neighborhood oftélael s
point: the point is unstable if and only if at least one of the eigenvalues afdbfi-
cients matrixJ of the linearized system has a positive real part [36, Section 1.13. Th
conditions on parameters values which make the reduced system osali@spond
thus to conditions on parameters values which make the trace and the idaterof

the matrixJ (which is2 x 2) both positive. These parameters ranges make the reduced
system oscillate. Do they make the initial model oscillate ? Yes ... providedhba
model reduction is a good reduction ! This theoretically very difficult joascan
actually be checked, as in [72], by numerically integrating the initial moafehfany
different parameters values picked in the estimated parameters ranges

4.1 The Initial Model

This section describes the initial abstract model of [72]. The modehiagdwo genes:
an activatore7 and a represso%. These genes get transcribed into two mRNA
andMpz. The mRNAs then get translated into proteihand R. ProteinA can fix itself

on the promotors of both geneg and %, speeding up both transcription rates. The

3The author would like to thank Natacha Skrzypczak: an inguampart of the following analysis was initiated
by her in [69].

4The author of [72] did not actually use any differential ehiation method: they simplified their system
interactively with MATHEMATICA. As shown later, the use ofdifferential elimination method permits to
improve their result.
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two proteinsA and R can react together and form a comptéx Intuitively, one sees
that the action of gene’ consists in speeding up the reaction by producing protein
while the action of gene? consists in slowing down it by producing proteihwhich
catchesA to form the complex.

The seven model variables. The variables\/ 4, and M r denote the concentrations of
MRNA transcribed from geneg and#%. The variablesi, R andC denote the concen-
trations of the corresponding proteins. For each gene, one needotiuicera variable
to distinguish the case where proteinis bound to its promotor from the case where
protein A is not bound to its promotér This variable is not a concentration. It should
rather be considered as a probability or a mean value: the vaiiablsorresponds to
the genew/. The valuel indicates that proteint is bound to the promotor of/. The
value0 indicates that proteinl is not bound to the promotor. A similar variablg; is
introduced for gene?. There arel 5 parameters, denoted by Greek letters.

The model equations. They are derived from a picture. Since the complete picture
might be a bit difficult to interpret for casual readers, it is explained lauilt piece

by piece. Picture 4.2 describes the possible binding of proteim the promotors of
genes« and#.

@ ©

+ YA + TR
— —~ @ — (O
4 N~ A N~
i 0a Or i
promotor of genez?, promotor of genez?, promotor of genez promotor of geneZ,
protein A is not bounded protein A is bounded protein A is not bounded protein A is bounded
genes/ geneZz

Figure 4.2 The two possible states of genesand.%.

The corresponding model equatibrase given below. The “plus signs” in the diagram
indicate that the binding rate of protei is proportional to the product of the con-
centration ofA by the variablesD 4 and Dg. It is a variant of thanass action law

variablesD 4 and Dy being handled as concentratién©bserve that one temporarily

5The promotorof a gene is an area located in front of the gene. For a genetramscribed into mRNA, it
is necessary that some protein binds itself to the gene gmymidany different proteins may play this role. In
this model, it is implicitly assumed that some unspecifieatgins different fromA may bind themselves to the
promotors of the two genes, but with more difficulty tharso that the transcription rates of the two genes are
higher whenA is bound than wher is not bound.

6The model given in [72] involves nine variables instead afese two extra variables were introduced to
avoid the(1 — D) terms.

70One may wonder why differential equations are used to madei phenomenons while stochastic equations
might better correspond to the reality. An answer is thagtheitative analysis of the model is much easier with
the rich theory of systems of ordinary differential equasichan with stochastic equations. Of course, the
conclusions derived from the differential model should bédated afterwards by stochastic simulations as the
authors of [72] actually do.
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omits the differential equation which describes the evolutiod dlecause it would be
incomplete at this step.

Dy=-yaADs+04(1—Dys), Dr=-—yrADg+0g(1— Dg).

The leftmost part of Figure 4.3 shows that gewegets transcribed into mMRNA/ 4

at different rates depending on whether protgiis bound or not to its promotor. The
MmRNA M, can be degraded at ratg;,. The rightmost part of the figure shows a
symmetric phenomenon for geé. The corresponding model equations are given

M, (the waved pictogram denotes mRNA) Mp

Figure 4.3 Transcriptions of the two genes into mRNA.

below. They enlarge the above set of two differential equations. @bseat the terms
aaDy + oy (1 — Da) andar Dr + o'y (1 — Dg) are not subtracted to the right-
hand sides of the differential equations which describe the evolutiofs,adnd Dy
(contrarily to what is usually done when translating chemical reactions ificoehtial
equations) since genes are not consumed by transcriptions.

MAZO&% (1—DA)—|—O¢ADA—(SJWAMA, MRzalR(l—DR)—i-OzRDR—éMRMR.

The complete diagram is given in Figure 4.4. It indicates that mMRINAsand M 5 get
translated into proteind and R. Since translations do not consume mRNA, the terms
Ba M4 and 3r Mg are not subtracted to the right-hand sides of the two differential
equations above. Figure 4.4 also shows that protdimsd R can react together to
form® a complexC. The complexC may break, producing back proteih There are
degradations rates for proteidsand R. The new model equations are given below.
They enlarge the set of four equations previously built.

C’:’ycAR—(SAC, RZﬁRMR_'YCAR‘FéAC_(SRRa
A=04(1-Da)+0r(1 —Dg)+ BaMa— (yaDa+vr Dr+vc R+64) A

4.2 Reduction of the Model

One tries to approximate the model built in section 4.1, which involves Jes@met-
ric ordinary differential equations, in seven variables, by a system ofg@vametric

8This dimerizationof the two proteins does not seem to occur in the contexstieococcus tauri This
causes a difficulty to apply the model of [72] to the green &tgdhe oscillating behaviour of the model seems
to be strongly related to the dimerization.
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Ma /;A /;N Mp
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Figure 4.4 The complete diagram.

ordinary differential equations, in two variables. To eliminate five vargiiee idea
consists in separating the seven variables into a set ofstew variables, a set of
five fastvariables and to proceed tosteady state approximatidi36, Section 1.16].
Roughly speaking, here is the idea: consider a differential system dblioging
form, where= denotes amallpositive constant:

= f(r,y), cy=g(x, y).

Over a generic pointr, y) € R? and, in particular, in the neighborhood of the initial
conditions, the speed gfis high and thus rapidly approaches an area whérey) ~
0. Itis thus reasonable to approximate such a system by the following one:

= f(x,y), 0=g(z, y)

which mixes differential and algebraic equations. The study of sudersgsis not
easy, in particular when there are many different algebraic equagioa®. Numeri-

cal integrators cannot usually guarantee that the computed integvalscstay on the
algebraic variety defined by the algebraic equations. For such sydtersmay also
exist hidden algebraic equations, consequences af; the0, which must be satisfied.
Differential elimination is a tool which may simplify such systems and uncthese
hidden equations. The authors of [72] decided that Dy, M4, Mr and A are fast
andR andC are slow. They were thus led to study the following differential algebraic
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system:
/A0 = 0a(1—Da)—~aDaA,
/D#O = O0r(1—Dg)—7yrDrA,
/MAO = OéfA(l—DA)—FOéADA—(SjuAMA,
/MFO = ol (1= Dg)+ar Dr — o, M,
JAO = 04(1—Da)+0r(1—Dg)+Ba My
. —(YADA+vrRDr+vc R+ 04) A,
R = 6RMR—’)/0AR+5AC—5RR,
C = ’ycAR—éAC.

The authors of [72] did actually perform a differential elimination preceser the
above example, without stating the wordifferential elimination They did it inter-
actively, using MATHEMATICA. Thediffalg package of MAPLE can indeed perform
the same task. We are somehow looking for a differential system invobuihg R
andC. A natural ranking to choose is the following one, which eliminates the fast
variables:

(fast variables > (slow variables.

However, to avoid a pointless expression swell and to obtain exactly the rest as
[72], itis better to keep the fast variablein the set of the slow variables. Here are the
coresponding MAPLE commands:

syst := [thetaA *(1 - DA) - gammaA *DA:A,
thetaR *(1 - DR) - gammaR *DR:A,
alphaAp *(1 - DA) + alphaA *DA - deltaMA *MA,
alphaRp *(1 - DR) + alphaR *DR - deltaMR * MR,
thetaA *(1 - DA) + thetaR (1 - DR) + betaA *MA
- (gammaA=*DA + gammaRDR + gamma€R + deltaA) =*A,
R[t] - (betaR *MR - gamma€AxR + deltaA »C - deltaR *R),
C[t] - (gammaC =*AxR - deltaA *C)]:

K := field_extension (transcendental_elements = [thetaA, thetaR,
gammaA, gammaR, gammacC, alphaA, alphaAp, alphaR, alphaRp,
betaA, betaR, deltaA, deltaR, deltaMA, deltaMR]):
Ring := differential_ring (derivations = [t],
field_of constants = K,
ranking = [[DA, DR, MA, MR], [A, R, CI));

ideal := Rosenfeld_Groebner (syst, Ring):

The listideal only involves one characteristic set, involving seven equations. The three
last equations only depend @) C, A, R andC. They have the following form:

R = arational fraction
C = v AR-64C,
0 = (y40m404+7400m,7c R) A%+

(04040n, + 0400, ve R— )y vaBa)A—Babsca.
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Observe that the above system is not so easy to integrate numericallyngstite
third equation implies to choose a root of a degree two polynomial. Herehibiee

is straightforward ford, being a concentration, needs to be positive and the equation
always has only one positive roHowever, this argument needs some understanding
of the system: the user has to manipulate the equation and solve it explicitlglen or
to select the positive root. Having a differential elimination algorithm at tgarchits

us however to try to compute many different representations of the sgstem. In
particular, if one tries the following ranking, obtained by permutihg?z andC in the
second block, one gets a simpler represent#tion

Ring differential_ring (derivations = [t],

field_of constants = K,
ranking = [[DA, DR, MA, MR], [R, C, A]]):
ideal := Rosenfeld_Groebner (syst, Ring);

The listideal only involves one characteristic set. The last three equations provide
another presentation of the reduced model with two ordinary differesdizghtions and
a degree one algebraic equation:

C = arational fraction A = a rational fraction R = a rational fraction

Moreover, the variablé? does not appear anywhere in the two differential equations
since any occurence d@f would have been replaced by the right-hand side of the last
equation. One can thus just omit the third, algebraic, equation.

The above system might be surprising for readers not familiar with ptetate ap-
proximations. Indeed, the reduced model was obtained by letting thelspée¢he
fast variables (includingl) equal to zero. How is it then possible to end up with a
differential equation defining a nonzero speed fo? The answer comes from the
fact that the above sentence is wrong: the speed whs not séf to zero ! Indeed,
the differential equations describing the evolutions of the fast varialdes vemoved.
The resulting system of two ordinary differential equations was justialmsd on the
algebraic variety defined by the right-hand sides of the removed egsation

4.3 Prospects

Ranges of parameters values which make the reduced and the initial osodkate
are given in [72] but the authors do not describe the method they applieampute
these ranges. Clearly, one now needs a method able to automatically derjes of

9The first coefficient is positive and the last coefficient igatee: the number of positive real roots is at least
one. Now, whatever the sign of the central coefficient, thmlmer of sign changes is one. By Descartes rule of
sign [3], the number of positive real roots is at most one. pblgnomial thus always has exactly one positive
real root.

1%0bserve that there are other possible permutations ovesettend block of variables. Most of them lead
to untractable computations. This example illustratesntresd of software able to try many different reasonable
rankings with a time limit. Th&LAD libraries are designed to offer such a functionnality.

11The interested reader may try to appRpsenfeld-Grobneover the initial system enlarged with the five
ordinary differential equations setting to zero the spesfdthe five fast variables. One gets an inconsistent
system.



26 Differential Elimination and Biological Modelling, Boudr

parameters from the sign conditions on the trace and the determinantaafrtiprited
matrix. Observe that even heuristic methods would be helpful and thatettieed
ranges of parameters do not need to be complete in any sense. Thatilgmethods
can certainly be designed in theory (e.g. based on interval arithmej)¢c {39 choice is
not so easy in practice. It must still be done in order to get an automatiwohe/hich
would help modelling the circadian clock oktreococcus tauriLast, observe that it
would be very interesting to compare the approach based on the ReBeadixson
theorem, and the one based on the direct application of the Routh-Humitézon
over the initial model. This study also is still in progress.

5 Conclusion

Differential elimination is a tool which may play a real role to improve somgiagd
mathematics methods. As illustrated in section 2.3 and 4, it permits to redeidé-th
ferentiation index of differential-algebraic systems. It permits also topedendifferent
representations of the same system. Both features may help desigtiergibenerical
integrators. Differential elimination may help guessing good starting pantddwton
methods (section 3). It may also be involved in the qualitative analysisradrdical
system for it permits to simplify these systems after model reduction (settid’ hese
examples show that differential elimination is complementary to numerieghauls.
It is interesting here to compare the non differential and the differeritrairation.
From an algorithmic point of view, both theories are very close to each. dthem the
applications standpoint, the situations are very different. In the non eliffie setting,
one may hope to bypass all numerical methods. For instance, in thdirnertssional
case, there exists symbolic algorithms [1, 63] able to isolate the real ridatge poly-
nomials. It thus makes sense to compute large Grobner bases actehigtic sets. In
the differential setting however, no such algorithms are known. Catipgrwith nu-
merical methods is thus mandatory. Now, differential systems whiclt@rsidered
as difficult from the numerical point of view are actually very small aedyveasy
from the symbolic one (see [37, Section IV.1]). It thus may not realikensense to
compute large differential characteristic sets. Note that this observatoraggument
which minimizes the importance of the terrible worst case complexity ofrefifiteal
methods ! The examples considered in this paper also show that difé¢rimina-
tion only play very local roles in the different processes: it helps but quate often
be bypassed. Since moreover, the theory is rather difficult and usualifaught in
traditional university courses, it seems very important to develop teasye software
components. ThBLAD libraries are an attempt in that direction.
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