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1 Introduction

This paper describes applications of acomputer algebramethod,differential elimina-
tion, to applied mathematics problems mostly borrowed from biology. The two con-
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2 Differential Elimination and Biological Modelling, Boulier

sidered applications are related to theparameters estimation(chapter 3) and themodel
reduction(chapter 4) problems. In both cases, differential elimination can be viewed as
a preparation to numerical treatments. Those numerical treatments are,at least partly,
sketched in this paper in order to put some light on the real limitations of the appli-
cations. Together with the applications, the paper introduces twoimplementationsof
the differential elimination algorithms: thediffalg package, which is embedded in the
MAPLE computer algebra software and theBLAD libraries [4] which are standalone
open source C libraries. Thediffalg package is designed to be manipulated interac-
tively and can be used very quickly and easily by casual readers. TheBLAD libraries
are designed to provide differential elimination for scientific software independent of
any computer algebra system. They are probably better suited thandiffalg to the devel-
opment of software dedicated to the described applications. Using theBLAD libraries
implies however to write a C program. For this reason, in this paper, examples are
illustrated withdiffalg rather than withBLAD.

2 Differential Elimination

The three next sections can be read in any order and provide three different intro-
ductions to differential elimination: section 2.1 provides historical notes, section 2.2
presents it more algebraically, through the differential ideal membership problem while
section 2.3 introduces it through software. For a wider survey on differential equations
and computer algebra, see [68].

2.1 Historical Introduction

Differential elimination is an algorithmic subtheory ofdifferential algebra(see sec-
tion 2.2 for mathematical definitions). It solves the membership problem for radical
differential ideals1.
The membership problem for polynomial ideals was one of the main problems of com-
mutative algebra. It was solved by Bruno Buchberger in [16], thanksto the theory of
Gröbner bases. Similarly, the membership problem for differential ideals is one of the
main problems of differential algebra. It is proven undecidable in general [33]. It is
still open for finitely generated differential ideals. It is only solved in the special case
of radical differential ideals.
The development of differential elimination was undertaken by Ritt who developed the
concept ofcharacteristic sets. In his book, Ritt gave an algorithm to decompose the
radical of any finitely generated differential ideal as an intersection of finitely many
differential prime ideals presented by characteristic sets2. Ritt’s algorithm relies on
factorizations over towers of algebraic extensions of the base field of thepolynomials

1In this paper, differential ideals always refer to differential polynomial ideals.
2The intersection may be redundant. Surprisingly, the inclusion problem of two differential prime ideals

presented by characteristic sets is still open while the equality test is straightforward [43, Chapter IV, Problem 3].
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and does not cover the case of partial differential polynomials. Abraham Seidenberg
designed in [66] an elimination algorithm for systems of differential polynomials which
only relies on addition, multiplication and the equality test with zero in the base field
of the polynomials. However, Seidenberg’s method is not convenient: ittakes as input
a differential polynomial, a differential system and decides if the polynomial belongs
to the radical of the differential ideal generated by the system. It does not provide a
description of this radical differential ideal. It also involves some useless operations
(e.g. computation ofpreparation polynomials). To cover the case of partial differential
systems, Seidenberg developed an analogue of the S-polynomials theory of the Gröbner
bases theory. However, the proof of his [66, Theorem VI] seems to be incomplete.
A few years later, Azriel Rosenfeld fixed and generalized Seidenberg’s Theorem VI
in [62, Lemma] but did not provide any algorithm. In his book, Kolchin generalized
”Rosenfeld’s lemma” and described a generalized method [43, SectionIV.9]. However,
Kolchin’s method involves some non effective steps: his approach cannot be treated
as an algorithm. Later, Wu Wen-Tsün described in [70] an algorithm to decompose
a given system of differential polynomials as finitely many characteristic sets but the
characteristic sets in the sense of Wu are weaker than those of Ritt and arenot sufficient
(without any extra process) to decide membership in the radical of the differential ideal
generated by the system. Dongming Wang developed Wu’s method in [75].

Giuseppa Carra-Ferro and François Ollivier developed the conceptof differential Gr̈o-
bner basesin [19, 57] but the bases they define do not need to be finite. Elizabeth
Mansfield developed another concept ofdifferential Gr̈obner basesin [50] but Mans-
field’s bases do not solve the membership problem in differential ideals.Greg Reid
developed the concept ofreduced involutive formstogether with an algorithm in [59].
This concept applies more generally to systems of analytic differential equations. In
this setting, no satisfactory analogue of the Rosenfeld’s lemma is howeveravailable.

The author developed the so-calledRosenfeld-Gr̈obneralgorithm in [7] from the papers
of Seidenberg and Rosenfeld. He used Gröbner bases to convert Rosenfeld’s lemma
into an algorithm3. Rosenfeld-Gr̈obner gathers as input a differential system and a
ranking. It represents the radical of the differential ideal generated by the input sys-
tem as a finite intersection of radical differential ideals presented by characteristic sets
(in the sense of Ritt). It solves the membership problem to radical differential ideals
(ordinary or with partial derivatives). It only relies on addition, multiplication and the
equality test with zero in the base field of the polynomials. The algorithm described
in [7] was much improved, theoretically and practically, by a lemma4 due to Daniel
Lazard5 [9, Lemma 2]. See [13] for a survey on Lazard’s lemma. Some variants of
Rosenfeld-Gr̈obnerwere published afterwards [48, 40, 14, 41].

3Gröbner bases are no more involved in current implementations ofRosenfeld-Gröbner. Instead, a variant
[10, 12,RegCharacteristic] of LexTriangular[46, 52] is used.

4Lazard’s lemma is a non differential lemma which implies, when combined to Rosenfeld’s lemma, that the
differential ideals presented by characteristic sets are necessarily radical.

5There was a gap in the proof of ”Lazard’s lemma” in [9] which was fixed for the first time by Sally Morrison
in [54, 55].
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2.2 Algebraic Introduction

Differential algebra is an algebraic theory for differential equations (ordinary or with
partial derivatives) which was founded by Joseph Fels Ritt in the first half of the twen-
tieth century. Ritt was much impressed by the development of commutativealgebra
and wanted to achieve a similar theory for differential equations. He summarized the
work of his team in [61]. One of his students, Ellis Robert Kolchin, developed still
further Ritt’s theory and summarized his results and that of his team in [43]. See [18]
for a survey. Adifferential ring (resp. field) is a ring (resp. field)R endowed with
a derivation (this paper is restricted to the case of a single derivation but the theory is
more general) i.e. a unitary mappingR → R such that (denotinġa the derivative ofa):

˙̂
(a + b) = ȧ + ḃ,

˙̂
(a b) = ȧ b + a ḃ.

Observe that, theoretically, the derivation is an abstract operation. For legibility, one
views it as the derivation w.r.t. the timet. Algorithmically, one is led to manipulate
finite subsets of somedifferential polynomial ringR = K{U} whereK is the differ-
ential field of coefficients (in practice,K = Q or K = Q(t)) andU is a finite set of
dependent variables6. The elements ofR, thedifferential polynomialsare just polyno-
mials in the usual sense, built over the infinite set, denotedΘU , of all the derivatives
of the dependent variables.

A famous example of Ritt [61, Section II.4]. The left-hand side of the ordinary
differential equatioṅu2 − 4 u = 0 is a differential polynomial of the differential poly-
nomial ringR = Q{u}. Its analytic solutions are the zero functionu(t) = 0 and the
family of parabolasu(t) = (t + c)2 wherec is an arbitrary constant.

Definition 2.1 A differential idealof a differential ringR is an ideal ofR, stable under
the action of the derivation.

The study of the radical of the differential ideal generated7 by a finite system of dif-
ferential polynomials is strongly related to the study of the analytic solutions ofthis
system. Indeed, in algebraic geometry, it is well known that the set of thepolynomials
which vanish over the solutions of a given polynomial system form an ideal and even
a radical ideal [78, Section VII.3, Theorem 14]. For differential equations, the set of
the differential polynomials which vanish over the analytic8 solutions of a given differ-
ential polynomial system form a differential ideal and even a radical differential ideal
[61, Sections II.4 and II.7].

6In the differential algebra theory, the terminologydifferential indeterminatesis preferred todependent vari-
ablesfor derivations are abstract and differential indeterminates are not even assumed to correspond to functions.
In order not to mix different expressions in this paper, the second expression, which seems to be more widely
known, was chosen.

7An ideal A is said to beradical if a ∈ A whenever there exists some nonnegative integerp such that
ap ∈ A. The radical of an idealA is the set of all the ring elements a power of which belongs toA. The radical
of a (differential) ideal is a radical (differential) ideal[65, Section 4].

8Over some unspecified domain.
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Ritt’s example (continued). The analytic solutions of the differential equationu̇2 −
4 u = 0 are the functionu(t) = 0 and the family of functionsu(t) = (t + c)2. These
solutions are also solutions of all the derivatives of the differential equation:

2 u̇ (ü − 2) = 0, 2 u̇
...
u + 2 ü (ü − 2) = 0, . . .

More generally, they are solutions of every differential polynomial, a power of which
is a finite linear combination of the derivatives ofu̇2 − 4 u with arbitrary differential
polynomials as coefficients i.e. every element of the radical of the differential ideal
generated bẏu2 − 4 u.

The problem of computing a representation of the radical of the differential ideal gen-
erated by a finite set of differential polynomials is thus an important problem, related
to the study of the analytic solutions of this system. So is the membership problem
to radical differential ideals which is solved byRosenfeld-Gr̈obner. To present it, one
needs to define the concept ofrankingand Ritt’s reduction.

Definition 2.2 If U is a finite set of dependent variables, aranking over U is a total
ordering over the setΘU of all the derivatives of the elements ofU which satisfies:
a < ȧ anda < b ⇒ ȧ < ḃ for all a, b ∈ ΘU .

Let U be a finite set of dependent variables. A ranking such that, for everyu, v ∈ U ,
the ith derivative ofu is greater than thejth derivative ofv wheneveri > j is said to
beorderly [43, Section I.8]. IfU andV are two finite sets of differential variables, one
denotesU ≫ V every ranking such that any derivative of any element ofU is greater
than any derivative of any element ofV . Such rankings are said toeliminateU w.r.t.V .

Definition 2.3 Assume that some ranking is fixed. Then one may associate with any
differential polynomialf ∈ K{U} \ K the greatest (w.r.t. the given ranking) deriva-
tive v ∈ ΘU such thatdeg(f, v) > 0. This derivative is called theleading derivativeor
the leaderof f .

Ritt’s reduction. It is a generalization of the Euclidean division. It is well known
that, if f andg are two polynomials, in one variablev, with coefficients in a field, the
Euclidean division off by g (g nonzero) is possible. It yields a unique pair(q, r) of
polynomials such thatf = g q + r anddeg r < deg g. If f andg have coefficients
in a ring, the Euclidean division is no more possible in general for the leading coeffi-
cient ofg may not be invertible. The closest available algorithm is thepseudodivision
which consists in multiplyingf by the leading coefficientc of g, raised at the power
p = deg f − deg g + 1 before performing the Euclidean division [73, Section 6.12]. It
yields a unique pair(q, r) of polynomials such thatcp f = g q + r anddeg r < deg g.
The polynomialr is called thepseudoremainderof f by g and is denotedprem(f, g)
or prem(f, g, v) when the variable is not clear from the context (case of polynomials
depending on many different variables). The pseudodivision generalizes to the differ-
ential setting, providing Ritt’s reduction algorithm [43, Section I.9], described below.
Observe that only the “remainder” is computed.
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Let f be a differential polynomial, to be reduced by a finite setC = {g1, . . . , gn} of
differential polynomials. Denotevi the leader ofgi for 1 ≤ i ≤ n (assuming that
none of thegi lies in the base field). Ritt’s reduction builds a sequencef0, . . . , fr of
differential polynomials starting atf0 = f . The result is the polynomial

fr = Ritt reduction(f, C).

To computefℓ+1 from fℓ, three cases may occur. First case: if, for each1 ≤ i ≤ n,
the differential polynomialfℓ does not depend on any proper derivative9 v

(k)
i of vi

and deg(fℓ, vi) < deg(gi, vi) then the computation stops andfℓ = fr is returned.
Second case: if there exists some index1 ≤ i ≤ n such thatdeg(fℓ, vi) ≥ deg(gi, vi)
thenfℓ+1 = prem(fℓ, gi, vi). Third case: if there exists some index1 ≤ i ≤ n such
that fℓ depends on some proper derivativev

(k)
i of vi thenfℓ+1 = prem(fℓ, g

(k)
i , v

(k)
i ).

Remarks. The second rule could actually be viewed as a particular case of the third
one. The sequencef0, . . . , fr described above is not uniquely defined. One could
define a precise algorithm by specifying that the sequence of the reduced derivatives
v
(k)
i must be decreasing. This is the usual strategy but any other strategy could be

applied. Last, observe that wheneverk ≥ 1, the differential polynomialg(k)
i has degree

one inv
(k)
i and admits theseparantsi = ∂gi/∂vi for leading coefficient. In this case,

writing g
(k)
i = si v

(k)
i + ti,k, one sees that the pseudodivision offℓ by g

(k)
i amounts to

the following: first perform the following substitution infℓ

v
(k)
i −→ −

ti,k
si

then clear the denominator of the obtained rational fraction. The resulting polynomial
is free ofv(k)

i .

Example. Let us apply Ritt’s reduction overf0 = ü − v u̇ andC = {u̇2 + v}. The
ranking isu ≫ v so that the leader ofg = u̇2 + v is u̇. The polynomialf0 gets
pseudoreduced by the first derivative ofg i.e. 2 u̇ ü + v̇. First one substitutes̈u −→
−v̇/(2 u̇) overf0, giving the rational fraction

−
v̇

2 u̇
− v u̇.

Second, the denominator is cleared, givingf1 = −v̇ − 2 v u̇2. This polynomialf1

gets pseudoreduced byg: one substituteṡu2 −→ −v over f1, giving the differential
polynomialf2 (there is no denominator to clear).

f2 = −v̇ + 2 v2.

Ritt’s reduction stops at this step andf2 = fr is returned.

9One denotesv(k)
i thekth derivative ofv. Whenk ≥ 1, v

(k)
i is said to be aproperderivative ofvi. When

k = 0, one definesv(k)
i = vi.
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Normal forms. Observe that in general, the set of all the differential polynomials
which are reduced to zero by Ritt’s reduction has no clear structure. It does not even
need to be an ideal. Observe also that the returned polynomialfr is not equivalent tof
modulo the differential ideal generated byC because of the denominator clearing step.
A more careful version was designed in [12]. It returns a rational fraction instead of a
polynomial. WhenC is a characteristic setof the idealA that it defines, the rational
fraction is guaranteed to be anormal formof the residue class off moduloA. Such
a normal form algorithm may be used to detect linear dependencies between residue
classes moduloA, following the idea of [29]. See [8] or [5, Section 6.1].

Rosenfeld-Gr̈obner. TheRosenfeld-Gr̈obneralgorithm gathers as input a finite sys-
tem F of differential polynomials and a ranking. It returns a finite family (possibly
empty)C1, . . . , Cr of finite subsets ofK{U} \ K. Each systemCi defines a differen-
tial idealCi in the sense that, for anyf ∈ K{U}, we have

f ∈ Ci iff Ritt reduction(f, Ci) = 0.

The relationship with the radicalA of the differential ideal generated byF is the fol-
lowing:

A = C1 ∩ · · · ∩ Cr.

Whenr = 0 we haveA = K{U}. Combining both relations, one gets an algorithm to
decide membership inA. Indeed, given anyf ∈ K{U} we have:

f ∈ A iff Ritt reduction(f, Ci) = 0, 1 ≤ i ≤ r.

The systemsCi are often called(differential) characteristic setsor differential regular
chains10 in the literature. The differential idealsCi do not need to be prime. They are
however necessarily radical, thanks to Lazard’s lemma. Observe thatit is possible to
refine further the intersection in order to get prime differential ideals. Itis sufficient
for this to apply a usual primary decomposition algorithm. However, no algorithm is
known to decide inclusion between differential ideals presented by characteristic sets,
even when they are prime [43, Section IV.9, Problem 3]. Thus the computed repre-
sentation can by no means be guaranteed to be minimal though this latter theoretically
exists.

Ritt’s example (continued). WhenU = {u} there exists only one ranking:

· · · > ü > u̇ > u.

TakeF = {u̇2 − 4 u} and denoteA the radical differential ideal generated byF . If
one applies theRosenfeld-Gr̈obnerto F and this ranking, one gets an intersectionA =
C1 ∩ C2 with

C1 = {u̇2 − 4 u}, C2 = {u}.

10There is a slight difference between these two notions but itdoes not matter in this paper.
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The differential polynomialu is reduced to zero byC2, not byC1. Thusu /∈ A. The
differential polynomial̈u − 2 is reduced to zero byC1, not by11 C2. Thusü − 2 /∈ A.
The producṫu (ü−2) is reduced to zero byC1 andC2. Thus it lies inA (it is one-half of
the first derivative oḟu2 − 4 u). This proves that the idealA is not prime. The idealC1

corresponds to the family of parabolasu(t) = (t+ c)2. The idealC2 corresponds to the
solutionu(t) = 0.

Complexity. From a theoretical point of view, differential elimination is a very pow-
erful tool. It permits to decide if a system of differential equations admits analytic
solutions over some unspecified domain12. See [67, Embedding theorem] and [60, 47].
Moreover, non differential polynomial elimination can be reduced to differential elim-
ination in two different ways. First any non differential polynomial system can be
viewed as a differential system of order zero (one seeks constant functions solutions
instead of numbers) and the differential characteristic sets computed byRosenfeld-
Gröbnerare exactly those that non differential algorithms [45, 42, 53] would compute.
Second, any non differential polynomial system can be encoded as a system of linear
partial differential equations in one dependent variable and constant coefficients ; the
differential characteristic set computed byRosenfeld-Gr̈obnerover this linear system
is (up to the inverse encoding) the reduced Gröbner basis of the non differential system
w.r.t. the admissible ordering induced by the ranking. This last reductionproves that
the membership problem to radical differential ideal is exspace hard [44]. See also [5,
Section 9.7].

2.3 Computational Introduction

There are many different ways to tackle systems of ordinary differential equations in
a computer algebra software.Differential eliminationis one of them. It is presented
here by comparison with numerical integration and closed form integrationand illus-
trated over thedifferential index reductionproblem. Most computations are performed
using thediffalg package of MAPLE 9. A short presentation of theBLAD libraries is
provided too.

Numerical integration. Here is an example of an ordinary differential equation with
an initial condition. The dependent variablex represents an unknown time varying
function (one denoteṡx the first derivative ofx).

ẋ = x (3 − x), x(0) = 1.

Numerical integration of an ordinary differential equation with an initial condition con-
sists in computing a discrete approximation of the graph of the integral curve of the
equation as a finite number of points. In principle, it is always possible to carry it out.
The simplest method is Euler’s explicit method [36, page 132]. Numerical integration

11Proving thatC1 6⊂ C2 thoughC1 is reduced to zero byC2.
12One encounters undecidability results when the domain is precised. See [21, Theorem 4.11].
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is not considered as a method of computer algebra. The commands below show how
to numerically integrate the above example using MAPLE 9 (the method is not the one
of Euler but an adaptative stepsize Runge-Kutta scheme). The output of the numerical
integrator is a function which evaluates the solution.

ode := diff(x(t),t) = x(t) * (3-x(t));

ode :=
d

dt
x (t) = x (t) (3 − x (t))

sol := dsolve ({ode, x(0)=1}, x(t), numeric):
sol (0.5);

[t = 0.5, x(t) = 2.07431460567341386]

Closed form integration. Closed form integrationof an ordinary differential equa-
tion consists in computing its solutions as finite formulae. See [15] for an introductory
text. Over the example, it is possible and yields the formula below. Observethat the
formula involves an arbitrary constantC1 for no initial condition is specified. Closed
form integration is part of computer algebra. It is however not possiblein general. It is
different from differential elimination.

dsolve (ode, x(t));

x(t) =
3

(1 + 3 e−3 t C1 )

Differential elimination. To explain whatdifferential eliminationis, one needs to
consider a system of at least two ordinary differential equations. The following exam-
ple is borrowed from [37, Chapter VII, page 454]. Since it mixes ordinary differential
equations and non differential equations, this type of system is sometimes called adif-
ferential algebraic system13. There are three unknown time varying functions (three
dependent variables)x, y andz :

ẋ = 0.7 y + sin(2.5 z),

ẏ = 1.4 x + cos(2.5 z),

1 = x2 + y2.

Even readers not familiar with differential algebraic systems may see that such sys-
tems raise problems. Assume that some initial conditionsx(0), y(0) andz(0) are given
and let us try to numerically integrate the system with Euler’s method for somestep-
sizeh. Evaluating the right-hand sides of the two first equations att = 0 one gets
ẋ(0) andẏ(0). Using these numbers, Euler’s method permits us to compute the estima-
tionsx(h) ≃ x(0) + h ẋ(0) andy(h) ≃ y(0) + h ẏ(0). However, one cannot estimate

13For readers familiar with this notion, it hasdifferentiation index2 [37, Section VII.1, Definition 1.2].
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the value ofz(h) since no ordinary differential equation of the form (2.1) is available.
Thus Euler’s method cannot perform the next step.

ż = something (2.1)

The point here is that the ordinary differential equation (2.1) which seems to be missing
is actually not missing but hidden in some differential ideal14. It can be automatically
extracted from the initial system by means ofdifferential elimination. Before showing
how to proceed with the help of thediffalg package of MAPLE, one needs to convert
the system as apolynomial differential system. For this, one denotess the sine,c the
cosine and one introduces a few more equations. The following differential polynomial
system is equivalent to the above one.

ẋ = 0.7 y + s,

ẏ = 1.4 x + c,

1 = x2 + y2.

ṡ = 2.5 ż c,

ċ = −2.5 ż s,

1 = s2 + c2.

Let’s now compute the hidden equation usingdiffalg. One first stores the differential
polynomial system in the variablesyst, converting floating point numbers as rational
numbers.

with (diffalg):
syst := [diff(x(t),t) - 7/10 * y(t) - s(t),

diff(y(t),t) - 14/10 * x(t) - c(t),
x(t)ˆ2 + y(t)ˆ2 - 1,
diff(s(t),t) - 25/10 * diff(z(t),t) * c(t),
diff(c(t),t) + 25/10 * diff(z(t),t) * s(t),
s(t)ˆ2 + c(t)ˆ2 - 1]:

Then one assigns to the variableR the context of the computation: one indicates that
the only derivation is taken with respect to the time, that the notation is the standard
diff notation of MAPLE and one provides theranking. For short15, let us just say that
the fact thatz stands on the rightmost place of the list indicates that we are looking for
an ordinary differential equation of the form (2.1).

R := differential_ring (derivations = [t], notation = diff,
ranking = [[s, c, x, y, z]]):

Next theRosenfeld-Gr̈obner function is applied tosystand R. It returns a list of
MAPLE tables. Each table provides acharacteristic set. The list should be under-
stood as an intersection. Over the example, the list only involves one characteristic set
so that the characteristic set does represent the radical differential ideal generated by
the input system. The desired equation stands on the second place of the characteristic
set (only the two first equations are displayed). Enlarging the input system with this
equation, it is now easy to perform any numerical integration method and our problem
is solved. Technically speaking, differential elimination has permitted the reduction to
zero of thedifferentiation indexof the input system: it was2 ; it is now0. See [31, 58]
for related works.

14All the differential algebra terminology used in this section is precisely defined in section 2.2.
15With the terminology inroduced in section 2.2, this is theorderly ranking such thats > c > x > y > z.
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ideal := Rosenfeld_Groebner (syst, R):
rewrite_rules (ideal [1]);

[ d

dt
y (t) =

7

5
x (t) + c (t) ,

d

dt
z (t) =

1

25

3500− 12348 (y (t))
6

+ 13230 c (t)x (t) (y (t))
4

+ 25809 (y (t))
4

441 (y (t))
6
− 882 (y (t))

4
+ 541 (y (t))

2
− 100

+
1

25

−14700 x (t) (y (t))
2
c (t) − 16961 (y (t))

2
+ 3940 x (t) c (t)

441 (y (t))
6
− 882 (y (t))

4
+ 541 (y (t))

2
− 100

, · · ·
]

Let us now perform some slight change on the chosen ranking. Strictly speaking,
the ranking below is different from the above one16 but it also indicates that we are
looking for an ordinary differential equation of the form (2.1). However, if one applies
Rosenfeld-Gr̈obneroversystfor this ranking, one never gets any result because of the
size of the equations the algorithm tries to compute.

R := differential_ring (derivations = [t], notation = diff,
ranking = [[s, c, x, y], z]):

ideal := Rosenfeld_Groebner (syst, R):

Warning, computation interrupted

To summarize, differential elimination is a process which takes as input a system of dif-
ferential equations (ordinary or with partial derivatives) and a ranking. It rewrites the
input system into another equivalent system (or an equivalent finite family of systems
when case splittings are necessary). The ranking permits to control the elimination
process, indicating what should be eliminated. Differential elimination methods are
considered as computer algebra. In principle, differential elimination is always possi-
ble. However, in practice, it is restricted by its terrifying worst case complexity and the
related problem of choosing rankings.

A few packages are available for differential elimination: thediffgrob package of
Mansfield [50], therif package of Reid, Wittkopf and Boulton [59], theepsilonpack-
age of Wang [76] and thediffalg package which was illustrated just above. The first
version of thediffalg package was written by the author in 1995 for MAPLE 5 [7, 9].
However, the version involved in MAPLE 9 is not the original one since it was much
improved byÉvelyne Hubert [40] and, more recently, by François Lemaire [12].

16It is the ranking(s, c, x, y) ≫ z which eliminatess, c, x andy and such thats > c > x > y.



12 Differential Elimination and Biological Modelling, Boulier

The BLAD libraries. In order to overcome (at least partially) the difficulties stated
above, the author has developed a C library, calledBLAD, from the model of theGMP
library. This library aims at providing differential elimination methods to scientific
software which are not necessarily computer algebra systems. It is available on [4].
One of the important functionnalities it provides consists in bounding in advance the
time and the memory allocated to a given differential elimination request. In the case
of a failure, the calling program gets back a clean working environment. The following
C program performs the first elimination provided above. It reads the data in characters
strings and prints the result of the differential elimination on the standard output. Of
course, this is not a natural way to use theBLAD libraries.

#include "bad.h"

int main ()
{ struct bad_intersectof_regchain ideal;

struct bap_tableof_polynom_mpz eqns, ineqns;
bav_Iordering r;

bad_restart (0, 0);
ba0_sscanf2

("ordering (derivations = [t], blocks = [[s, y, c, x, z]])",
"%ordering", &r);

bav_R_push_ordering (r);
bad_init_intersectof_regchain (&ideal);
ba0_sscanf2

("intersectof_regchain ([], \
[differential, primitive, autoreduced, normalized])",

"%intersectof_regchain", &ideal);
ba0_init_table ((ba0_table)&eqns);
ba0_init_table ((ba0_table)&ineqns);
ba0_sscanf2 ("[10 * x[t] - 7 * y - 10 * s, 10 * y[t] - 14 * x - 10 * c, \

10* s[t] - 25 * z[t] * c, 10 * c[t] + 25 * z[t] * s, \
xˆ2 + yˆ2 - 1, cˆ2 + sˆ2 - 1]",

"%t[%Az]", &eqns);
bad_Rosenfeld_Groebner (&ideal, &eqns, &ineqns, 0);
ba0_printf ("%intersectof_regchain\n", &ideal);
bad_terminate (ba0_init_level);
return (0);

}

There are four stackedBLAD libraries. From top down:bad(differential elimination),
bap (differential polynomials),bav (rankings) andba0 (kernel). Functions identifiers
are prefixed by the library they belong to. Themain function starts by defining some
variables:ideal which is going to contain the result,eqnsandineqnswhich will serve
to store the input system andr which will contain the ranking. The first instruction
(bad restart) starts asequence of callsto the library. This sequence terminates with the
call to bad terminate. The two parameters provided tobad restartgive the limits, in
time and in memory, allocated to the sequence of calls. A zero parameter means that
there is no limit. Then the ranking is read from a string and stored inr (theba0 sscanf2
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function provides a generalization of thesscanffunction of the standard C library).
The variableideal is initialized to an empty intersection of regular differential chains
(characteristic sets) endowed with some attributes which will serve to parametrize the
elimination: ”differential” indicates that the ideal represented by the variable is dif-
ferential, the other attributes set some technical properties that the regular differential
chains will have to satisfy. Then the arrayeqnsis initialized with the system to process
(x[t] denotesẋ). We do not need to bother withineqnswhich is not used here. Last
Rosenfeld-Gr̈obner is called and the content ofideal is printed on the screen. Here is
the result of the execution. The desired equation starts on the third line.

intersectof_regchain ([regchain ([100 * cˆ2 - 420 * c* xˆ3 + 420 * c* x -
441* xˆ4 + 341 * xˆ2, yˆ2 + xˆ2 - 1, 10 * s* x + 10 * y* c + 21 * y* x,
11025 * z[t] * xˆ5 - 11025 * z[t] * xˆ3 + 2500 * z[t] * x + 13230 * c* xˆ4 -
11760 * c* xˆ2 + 2470 * c + 12348 * xˆ5 - 11235 * xˆ3 + 2387 * x, 5 * x[t] * x
+ 5* y* c + 7 * y* x], [differential, autoreduced, primitive,
squarefree, coherent, normalized])], [differential, aut oreduced,
primitive, squarefree, coherent, normalized])

3 Parameters Estimation

This section describes an application of differential elimination and, more precisely, an
application of algorithms which perform changes of rankings over characteristic sets.
The principle of this application was designed by Ghislaine Joly-Blanchard,Lilianne
Denis-Vidal and Céline Noiret [23] and presented in [56]. The addressed problem is
this one: estimate parameters values of parametric ordinary differentialsystems the
dependent variables of which are not allobserved. When all the dependent variables of
the system are observed, the method still works but differential eliminationis no more
necessary. The work of Joly-Blanchard, Denis-Vidal and Noiret is strongly related
to the problem of theidentifiability study of differential systems, for which a huge
literature is available. See e.g. [74, 30, 57, 24, 26, 25, 49, 2, 64]. The method of Joly-
Blanchard, Denis-Vidal and Noiret is original for two reasons: it relieson rigorous
differential elimination methods and it carries out the study of real examples up to the
final numerical treatment. It mixes symbolics and numerics.
It assumes that the phenomenon under study is quite accurately modelledand that quite
precise measures are available for the observed variables. Thus, though it was applied
with quite some success in pharmacokinetics [20, 71], biological modellingmay not
be the most suitable field of application of the method. The method is described over
an example coming from biology anyway, but it is more presented as an academic
challenge than as a real application.
Here is a summary of the rest of this section. The addressed problem is stated over an
example. The classical numerical solution is recalled. it relies on the use of a numerical
nonlinear least squares solver i.e. a Newton method. Differential elimination gets
involved in the process to help solving the most difficult part of the Newton method:
guessing the starting point. Last the difficulties of the overall method are discussed.
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3.1 Statement of the Problem over an Example

Figure 3.1 represents acompartmental model. The twocompartmentsrepresent the
blood and some organ. A medical product is injected in the blood att = 0. It can go
from the blood to the organ and conversely. It may also get degraded and exit from the
system. In order to write the corresponding differential system, some hypotheses must
be made on the nature of the exchanges: exchanges between the two compartments are
assumed to be linear i.e. that, over every small enough interval of time, the amount
of product going from compartmenti to compartmentj is proportional to the concen-
tration of product in compartmenti. The proportionality constant is denotedkij . The
degradation is assumed to follow aMichaelis-Mentenlaw. This law is a bit more diffi-
cult to explain. It can be derived from the modelling of an enzyme-catalyzed reaction
by means of somemodel reduction. Two parameters are associated to this degradation:
a maximal speedVe and another constantke.

blood organ

compartment1 compartment2

k12

k21

(linear exchange)

(linear exchange)

Ve, ke

(Michaelis–Menten exchange)

Figure 3.1Compartmental model

From Figure 3.1, it is possible to derive a system of parametric ordinarydifferential
equations. One associates to compartments1 and2, dependent variablesx1 andx2

which represent the concentrations of product present in these compartments. Dif-
ferential equations are built by considering exchanges the ones after the other ones.
Each exchange appends one term to the right-hand side of the differential equation of
the source compartment (with a minus sign) and a term to the right-hand sideof the
differential equation of the target compartment (with a plus sign). Beware to the trap:
quantities are conserved by exchanges while exchanges are defined from the concentra-
tions, which depend on the volumes of the compartments. For simplicity, it is assumed
here that both compartments have a unitary volume. Applying the above process, one
gets the following differential system. The second one is either linear or polynomial
(it depends the way parameters are viewed). The first one is a rationalfraction but
it is equivalent to a polynomial since its denominator cannot vanish: parameters and
dependent variables are positive real numbers.

ẋ1 = −k12 x1 + k21 x2 −
Ve x1

ke + x1
,

ẋ2 = k12 x1 − k21 x2.

Let us consider now some instance of the above model and assume thatsome extra in-
formation is available: parametersk12 andk21 are completely unknown, an interval of
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possible values70 ≤ Ve ≤ 110 is known forVe and thatke = 7 is known1 Some infor-
mation is available on compartments also: compartment1 is assumed to beobserved
i.e. a file of measures is assumed to be available forx1. Compartment2 is assumed
to be non observed. One just knows that2 x2(0) = 0 i.e. that no product is initially
present in the organ. To fix ideas and help the reader to reproduce the example studied
in this section, here is a part of a file of31 measures3 for x1.

t x1
0.00000e-01 5.00000e+01
5.00000e-02 4.45078e+01

... ...
1.50000e+00 4.95270e-02

We are now ready to state the problem over this example:given the system of para-
metric ordinary differential equations, the file of measures and the extra information,
estimate the values of the three unknown parameters:Ve, k12 andk21.

3.2 The Numerical Method

There exists a purely numerical method to solve this problem. It is anon linear least
squares solving method i.e. a Newton method. Precisely, a Levenberg-Marquardt
solver is called. The idea is simple: pickrandomvalues for the three unknown pa-
rameters. Integrate numerically the differential system w.r.t. these values and compare
the curve obtained by simulation with the file of measures. Theerror is defined as
the sum, for all abscissas, of the squares of the ordinates differences between the two
curves. The Levenberg-Marquardt method updates the values of thethree unknown
parameters if the error is considered as too large. It stops either if the error is small
enough of if a stationary point is reached.

Let us try and take the following values:Ve = 70, k12 = 4.5 andk21 = 1.5. One
gets the two curves on the left-hand side picture of Figure 3.2. After a fewloops,
the Levenberg-Marquardt yields the two curves on the right-hand side picture with
Ve = 82.8, k12 = .76 andk21 = .16. Numerical computations (numerical integration
of ODE, Levenberg-Marquardt method) were performed by theGnu Scientific Library
(GSL). The picture was produced bygnuplot. According to the pictures, the purely
numerical method seems to work perfectly. However, the obtained parameters values
are wrong: the Levenberg-Marquardt ended in a local minimum.

1It is realistic to assume that one of the parameters is known since equations can often be normalized by
dividing some of the system parameters by one of them or, moregenerally, by studying their Lie symmetries.

2Unknown initial conditions do not raise any problem for theycan be handled as plain parameters. See e.g.
[36, Section I.14].

3The file was produced by numerical integration withx1(0) = 50, x2(0) = 0, Ve = 101, k12 = 0.5 and
k21 = 3. The time ranges fromt = 0 to t = 1.5 by steps of length0.05.
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Figure 3.2: The reference (thin) and the simulated (thick) curves, before (left) and
after (right) running the Levenberg-Marquardt method

3.3 The Symbolic-Numeric Method

The previous method has a drawback: it relies onnonlinearleast squares which require
thea priori knowledge of a good approximation of the parameters values. Thanks to
differential elimination and tolinear least squares, it is possible to estimate a first ap-
proximation of the parameters values. This first approximation may be used afterwards
by the purely numerical method as a starting point.
The idea here consists ineliminating the non observed variablesof the model. In
other words, the idea consists in computing a differential polynomial whichlies in
the differential ideal generated by the model equations and which only involves the
observed variablex1, its derivatives up to any order and the model parameters. Let us
show how to do this with the help ofdiffalg.
To compute this polynomial, theRosenfeld-Gr̈obner algorithm is applied over the
model equations. The ranking eliminatesx2 w.r.t. x1:

x2 ≫ x1.

In other words, the ranking indicates that we are looking for a polynomialfree ofx2.
The right-hand side of the first model equation is a rational fraction. It isdecomposed
as a numerator and a denominator. The numerator is stored in the list of theequations
(first parameter toRosenfeld-Gr̈obner). The denominator is stored in the list of the
inequations4 (second parameter toRosenfeld-Gr̈obner). To avoid splitting cases on
parameters values, one views them as (transcendental) elements of the base field of the
differential polynomials.

K := field_extension
(transcendental_elements = [k21, k12, ke, Ve]):

R := differential_ring
(derivations = [t], notation = diff,

field_of_constants = K, ranking = [x2, x1]):

4Inequations are polynomials which are considered as invertible. Indeed, ifh is an inequation and some
polynomial h p lies in the ideal thenp lies in the ideal. The ideal theoretic corresponding operation is the
saturation.



Chapter 3 Parameters Estimation 17

ideal := Rosenfeld_Groebner
([numer (eq1), eq2], [denom (eq1)], R);

ideal := [characterizable]

The characteristic setideal involves two polynomials. The one which does not in-
volve x2 is the second one, which is displayed below, slightly pretty printed. The
expressions enclosed between square brackets are calledparameters blocks.

ẍ1 (x1 + ke)
2 + [k12 + k21] ẋ1 (x1 + ke)

2 + [Ve] ẋ1 ke + [k21 Ve] x1 (x1 + ke) = 0.

This equation tells us that the model isglobally identifiablei.e. that, given a functionx1

and a parameter valueke, the three unknown parameters are uniquely defined. Indeed,
assume that the functionx1 is known. Then so are its derivativesẋ1 andẍ1. These three
functions can therefore be evaluated for three different values of thetime t. The known
parameterke can be replaced by its value. One thereby gets an exactly determined
system of three linear equations whose unknowns are the parameters blocks. This
system admits a unique solution. The values of the parameters blocks beingfixed, it
is obvious (over this example !) that the values ofk12, k21 andVe also are uniquely
defined. QED.
In practice, the functionx1 is known from a file of measures and one can try to nu-
merically estimate the values of its first and its second derivative. If the measures are
free of noise, the first derivative can be quite accurately estimated butthis is usually
not the case for the second derivative. To overcome these difficultiesdue to numerical
approximations, one builds an overdetermined linear system that one solves by means
of linear least squares. Over the example, one gets the following values:

[k12 + k21] = 2.1, [Ve] = 87.29, [k21 Ve] = 144.01.

The values of the blocks of parameters being known, one still has to recover the values
of the parameters by solving the above algebraic system. Over this example, it is very
easy and one gets:

Ve = 87.29, k12 = 0.45, k21 = 1.65.

The above values can now be used as a starting point for the purely numerical method.
Still over the example, one gets the correct parameters values:

Ve = 101, k12 = 0.5, k21 = 3.

3.4 Issues and Implementation

In general, there is no guarantee that the first estimation provided by the symbolic-
numeric method leads the purely numerical method in the global minimum. Estimating
parameters only makes sense for models at leastlocally identifiable. However, testing
this property does not raise any difficulty. Some seminumerical algorithms are avail-
able [64]. These are probabilistic algorithms for which the failure probability is known
and can be decreased up to any value. Numerically estimating the derivatives raises
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an important difficulty. To overcome it, a good method consists in converting the dif-
ferential equations as integral equations as suggested in [22]. Under some conditions,
integral equations are less sensitive to the noise than differential equations. There exists
another important difficulty: there may exist algebraic relations between the parame-
ters blocks. There is no such relation over the example. But assume, for the sake of
the explanation, that the computed differential polynomial involves the three following
blocks of parameters so that the third block is the product of the two first ones:

[Ve], [k21], [Ve k21].

There is no doubt that the numerical values produced during the resolution of the linear
overdetermined system would not satisfy this relation. This would imply that the final
algebraic system to solve in order to get the values of the parameters wouldbe incon-
sistent. A way to overcome this problem consists in applying a nonlinear leastsquares
method to solve the algebraic system. But then one needs to provide a firstestimation
of the parameters values: the problem to be overcome ! A symbolic method, based
on algebraic elimination would be much more interesting. Indeed, it would provide
the desired solution and could also compute the number of solutions of the algebraic
system. It would solve in the same time the problem of estimating the parameters val-
ues and the problem of the identifiability of the model. Is it reasonable to try to apply
algebraic elimination here ? One may think so, provided that many model variables
are observed (at least one half). In this case, the differential elimination is fast and the
parameters blocks are small: the algebraic elimination should be cheap.

A first draft of the above method was implemented in theLEPISMEproject [6]. The
Gnu Scientific Librarywas used to perform the numerical methods. TheBLAD li-
braries were used to perform the differential elimination. The method is difficult to
implement in a satisfactory way: it involves many different steps. Each of these steps
can be performed using a few different methods. When any method fails, it is diffi-
cult to provide synthetic informations on the failure to the user. InBLAD, instead of
Rosenfeld-Gr̈obner, the more specialized and more efficientPARDIalgorithm is used
[11]. It takes advantage of the fact that the model equations generatea differential
prime ideal and already form a characteristic set of this ideal w.r.t. some orderly rank-
ing. It avoids all the discussions thatRosenfeld-Gr̈obnerwould perform and always
computes only one characteristic set.

3.5 Prospects

In spite of all the difficulties, the project is being continued5: even in the case the
symbolic-numeric method fails, the purely numerical method is still available. The
existing method is thus improved. The use of theBLAD libraries is particularly inter-
esting here for they permit to bound in advance the time and the memory allocated to
the symbolic part of the symbolic-numeric method. Observe that the limitations are
often due to the numerical part of the computations.

5The author is getting involved in a project which aims at applying this method for modelling the biosynthesis
of fatty acids and oil in oilseed embryos.
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4 Model Reduction

The green algaostreococcus tauri(Figure 4.1) was discovered in 1994 in theÉtang
de Thau, in the south of France. It is the minimal non parasitic known organism. Its
genom, constituted of11 millions of pairs of bases was published in 2006. Though
very simple, this unicellular organism is endowed by acircadian clock1. See [51] for
an historical perspective essay on circadian clocks and [28, Chapter9] or [32] for more
general texts about oscillations in biology. This clock permits the alga to raiseitself at
the top of the water before the sunrise. The alga is one of the main objects ofstudy of
the theObservatoire Oćeanologique de Banyuls.

Figure 4.1: Ostreococcus tauri: a nucleus with a hole (bottom right), a chloroplast
(top) with an amide ball (white spot), a Golgi apparatus (bottom left) and a mito-
chondry (center). The size is about one micrometer.

The author has been involved for two years in a pluridisciplinary working group (in-
cluding computer scientists, physicists and biologists), led by François-Yves Bouget of
theObservatoire oćeanologique de Banyulsfor the biological part and Marc Lefranc of
thenonlinear dynamicsteam for the physics and computer science part. This working
group aims at modelling the cell division cycle ofostreococcus tauri. Our first goal
has been to try to model the circadian clock ofostreococcus tauriwhich controls2 the
division cycle. In the genom of the green alga, two genes (namedTOC andCCA1)
were identified. They are known to be central components of clocks. Wehave thus
been seeking a model under the form of a system of parametric ordinary differential
equations, describing a two genes regulatory network and producing oscillating trajec-
tories. We have very quickly met the following difficulty: many systems of parametric
ordinary differential equations have integral curves which do not oscillate at all and,
even the ones which have oscillating integral curves, only have such curves for very
restricted ranges of parameters. Our problem can thus be reformulated as follows:
given a system of parametric ordinary differential equations, does thereexist ranges of
parameters w.r.t. which integral curves oscillate ?

1A circadian clock is a clock the period of which is about24 hours. The qualifier is built fromcirca (around)
anddies(day).

2This is our simplifying working assumption. The clock itself might actually very well be regulated by the
division cycle.
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This problem can be addressed by looking for conditions on parameterswhich produce
Hopf bifurcations[38, Chapter 11]. This approach was recently studied in the com-
puter algebra community [27, 77, 35, 34]. It applies the Routh-Hurwitz criterion [36,
Section I.13] and involves non differential elimination. It is not discussed in this paper.
Another approach consists in applying the Poincaré-Bendixson theorem [38, Chapter
12] together withdifferential elimination. It was applied by members of the biology
community in [72] over an abstract two genes regulatory network. This isthe approach
described in this chapter3.
What does the Poincaré-Bendixson theorem state and how can it be applied in this
context ? Roughly speaking, the theorem states that, if the integral curvesof an au-
tonomous ordinary differential system intwo dependent variablesstay in a bounded
area and if this area does not involve any stable steady point then this areainvolves
limit cycles. Limit cycles correspond to oscillating trajectories. Where is differen-
tial elimination involved ? The initial model (section 4.1) involves seven dependent
variables. The idea consists in approximating it by areduced modelof two ordinary
differential equations in two variables by means ofmodel reduction. Differential elim-
ination permits to simplify4 the reduced model (section 4.2). The application of the
Poincaré-Bendixson theorem is afterwards pretty straightforward. Indeed, in biology,
trajectories of variables are always bounded. So are the ones of the reduced model,
at least for parameters values which are biologically consistent (positivity is the least
requirement). The steady points of the reduced model can be computedby algebraic
elimination (e.g. Gröbner bases methods). There are three steady points but only one
of them correspond to positive values of the variables (the other ones are discarded).
Its stability can be studied by linearizing the model in the neighborhood of the steady
point: the point is unstable if and only if at least one of the eigenvalues of thecoeffi-
cients matrixJ of the linearized system has a positive real part [36, Section I.13]. The
conditions on parameters values which make the reduced system oscillate correspond
thus to conditions on parameters values which make the trace and the determinant of
the matrixJ (which is2× 2) both positive. These parameters ranges make the reduced
system oscillate. Do they make the initial model oscillate ? Yes . . . provided that the
model reduction is a good reduction ! This theoretically very difficult question can
actually be checked, as in [72], by numerically integrating the initial model for many
different parameters values picked in the estimated parameters ranges.

4.1 The Initial Model

This section describes the initial abstract model of [72]. The model involves two genes:
an activatorA and a repressorR. These genes get transcribed into two mRNAMA

andMR. The mRNAs then get translated into proteinsA andR. ProteinA can fix itself
on the promotors of both genesA andR, speeding up both transcription rates. The

3The author would like to thank Natacha Skrzypczak: an important part of the following analysis was initiated
by her in [69].

4The author of [72] did not actually use any differential elimination method: they simplified their system
interactively with MATHEMATICA. As shown later, the use of adifferential elimination method permits to
improve their result.
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two proteinsA andR can react together and form a complexC. Intuitively, one sees
that the action of geneA consists in speeding up the reaction by producing proteinA
while the action of geneR consists in slowing down it by producing proteinR which
catchesA to form the complex.

The seven model variables. The variablesMA andMR denote the concentrations of
mRNA transcribed from genesA andR. The variablesA, R andC denote the concen-
trations of the corresponding proteins. For each gene, one needs to introduce a variable
to distinguish the case where proteinA is bound to its promotor from the case where
proteinA is not bound to its promotor5. This variable is not a concentration. It should
rather be considered as a probability or a mean value: the variableDA corresponds to
the geneA . The value1 indicates that proteinA is bound to the promotor ofA . The
value0 indicates that proteinA is not bound to the promotor. A similar variableDR is
introduced for geneR. There are15 parameters, denoted by Greek letters.

The model equations. They are derived from a picture. Since the complete picture
might be a bit difficult to interpret for casual readers, it is explained and built piece
by piece. Picture 4.2 describes the possible binding of proteinA on the promotors of
genesA andR.

θA θR

γA γR

A A

A A

+ +

promotor of geneA ,
proteinA is not bounded

promotor of geneA ,
proteinA is bounded

geneA geneR

promotor of geneR
proteinA is not bounded

promotor of geneR,
proteinA is bounded

Figure 4.2The two possible states of genesA andR.

The corresponding model equations6 are given below. The “plus signs” in the diagram
indicate that the binding rate of proteinA is proportional to the product of the con-
centration ofA by the variablesDA andDR. It is a variant of themass action law,
variablesDA andDR being handled as concentrations7. Observe that one temporarily

5Thepromotorof a gene is an area located in front of the gene. For a gene to betranscribed into mRNA, it
is necessary that some protein binds itself to the gene promotor. Many different proteins may play this role. In
this model, it is implicitly assumed that some unspecified proteins different fromA may bind themselves to the
promotors of the two genes, but with more difficulty thanA so that the transcription rates of the two genes are
higher whenA is bound than whenA is not bound.

6The model given in [72] involves nine variables instead of seven: two extra variables were introduced to
avoid the(1 − D) terms.

7One may wonder why differential equations are used to model such phenomenons while stochastic equations
might better correspond to the reality. An answer is that thequalitative analysis of the model is much easier with
the rich theory of systems of ordinary differential equations than with stochastic equations. Of course, the
conclusions derived from the differential model should be validated afterwards by stochastic simulations as the
authors of [72] actually do.
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omits the differential equation which describes the evolution ofA because it would be
incomplete at this step.

ḊA = −γA ADA + θA (1 − DA), ḊR = −γR ADR + θR (1 − DR).

The leftmost part of Figure 4.3 shows that geneA gets transcribed into mRNAMA

at different rates depending on whether proteinA is bound or not to its promotor. The
mRNA MA can be degraded at rateδMA

. The rightmost part of the figure shows a
symmetric phenomenon for geneR. The corresponding model equations are given

θA θR

γA γR

A A

A A

+ +

(the waved pictogram denotes mRNA)MA
MR

δMA
δMR

αA
α′

A αR
α′

R

Figure 4.3Transcriptions of the two genes into mRNA.

below. They enlarge the above set of two differential equations. Observe that the terms
αA DA + α′

A (1 − DA) and αR DR + α′

R (1 − DR) are not subtracted to the right-
hand sides of the differential equations which describe the evolutions ofDA andDR

(contrarily to what is usually done when translating chemical reactions into differential
equations) since genes are not consumed by transcriptions.

ṀA = α′

A (1−DA)+ αA DA − δMA
MA, ṀR = α′

R (1−DR)+ αR DR − δMR
MR.

The complete diagram is given in Figure 4.4. It indicates that mRNAsMA andMB get
translated into proteinsA andR. Since translations do not consume mRNA, the terms
βA MA andβR MR are not subtracted to the right-hand sides of the two differential
equations above. Figure 4.4 also shows that proteinsA andR can react together to
form8 a complexC. The complexC may break, producing back proteinR. There are
degradations rates for proteinsA andR. The new model equations are given below.
They enlarge the set of four equations previously built.

Ċ = γC AR − δA C, Ṙ = βR MR − γC AR + δA C − δR R,

Ȧ = θA (1 − DA) + θR (1 − DR) + βA MA − (γA DA + γR DR + γC R + δA)A.

4.2 Reduction of the Model

One tries to approximate the model built in section 4.1, which involves sevenparamet-
ric ordinary differential equations, in seven variables, by a system of two parametric

8This dimerizationof the two proteins does not seem to occur in the context ofostreococcus tauri. This
causes a difficulty to apply the model of [72] to the green algafor the oscillating behaviour of the model seems
to be strongly related to the dimerization.
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θA θR

γA γR

A A

A A

+ +

MA
MR

δMA
δMR

αA
α′

A αR
α′

R

A + R

C

βA

δA

βR

δR
γC

δA

Figure 4.4The complete diagram.

ordinary differential equations, in two variables. To eliminate five variables, the idea
consists in separating the seven variables into a set of twoslow variables, a set of
five fast variables and to proceed to asteady state approximation[36, Section I.16].
Roughly speaking, here is the idea: consider a differential system of thefollowing
form, whereε denotes asmallpositive constant:

ẋ = f(x, y), ε ẏ = g(x, y).

Over a generic point(x, y) ∈ R2 and, in particular, in the neighborhood of the initial
conditions, the speed ofy is high and thus rapidly approaches an area whereg(x, y) ≃
0. It is thus reasonable to approximate such a system by the following one:

ẋ = f(x, y), 0 = g(x, y)

which mixes differential and algebraic equations. The study of such systems is not
easy, in particular when there are many different algebraic equationsgi = 0. Numeri-
cal integrators cannot usually guarantee that the computed integral curves stay on the
algebraic variety defined by the algebraic equations. For such systems,there may also
exist hidden algebraic equations, consequences of thegi = 0, which must be satisfied.
Differential elimination is a tool which may simplify such systems and uncover these
hidden equations. The authors of [72] decided thatDA, DR, MA, MR andA are fast
andR andC are slow. They were thus led to study the following differential algebraic



24 Differential Elimination and Biological Modelling, Boulier

system:
ḊA//// 0 = θA(1 − DA) − γA DA A,

ḊR//// 0 = θR (1 − DR) − γR DR A,

ṀA//// 0 = α′

A (1 − DA) + αA DA − δMA
MA,

ṀR//// 0 = α′

R (1 − DR) + αR DR − δMR
MR,

Ȧ// 0 = θA (1 − DA) + θR (1 − DR) + βA MA

−(γA DA + γR DR + γC R + δA)A,

Ṙ = βR MR − γC AR + δA C − δR R,

Ċ = γC AR − δA C.

The authors of [72] did actually perform a differential elimination process over the
above example, without stating the wordsdifferential elimination. They did it inter-
actively, using MATHEMATICA. Thediffalg package of MAPLE can indeed perform
the same task. We are somehow looking for a differential system involvingonly R
andC. A natural ranking to choose is the following one, which eliminates the fast
variables:

(fast variables) ≫ (slow variables).

However, to avoid a pointless expression swell and to obtain exactly the same result as
[72], it is better to keep the fast variableA in the set of the slow variables. Here are the
coresponding MAPLE commands:

syst := [thetaA * (1 - DA) - gammaA * DA* A,
thetaR * (1 - DR) - gammaR * DR* A,
alphaAp * (1 - DA) + alphaA * DA - deltaMA * MA,
alphaRp * (1 - DR) + alphaR * DR - deltaMR * MR,
thetaA * (1 - DA) + thetaR * (1 - DR) + betaA * MA

- (gammaA* DA + gammaR* DR + gammaC* R + deltaA) * A,
R[t] - (betaR * MR - gammaC* A* R + deltaA * C - deltaR * R),
C[t] - (gammaC * A* R - deltaA * C)]:

K := field_extension (transcendental_elements = [thetaA, thetaR,
gammaA, gammaR, gammaC, alphaA, alphaAp, alphaR, alphaRp,
betaA, betaR, deltaA, deltaR, deltaMA, deltaMR]):

Ring := differential_ring (derivations = [t],
field_of_constants = K,
ranking = [[DA, DR, MA, MR], [A, R, C]]);

ideal := Rosenfeld_Groebner (syst, Ring):

The listidealonly involves one characteristic set, involving seven equations. The three
last equations only depend onR, C, A, Ṙ andĊ. They have the following form:

Ṙ = a rational fraction,

Ċ = γC AR − δA C,

0 = (γA δMA
δA + γA δMA

γC R)A2+

(δA θA δMA
+ θA δMA

γC R − α′

A γA βA)A − βA θA αA.
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Observe that the above system is not so easy to integrate numerically: solving the
third equation implies to choose a root of a degree two polynomial. Here, thechoice
is straightforward forA, being a concentration, needs to be positive and the equation
always has only one positive root9. However, this argument needs some understanding
of the system: the user has to manipulate the equation and solve it explicitly in order
to select the positive root. Having a differential elimination algorithm at handpermits
us however to try to compute many different representations of the samesystem. In
particular, if one tries the following ranking, obtained by permutingA, R andC in the
second block, one gets a simpler representation10:

Ring := differential_ring (derivations = [t],
field_of_constants = K,
ranking = [[DA, DR, MA, MR], [R, C, A]]):

ideal := Rosenfeld_Groebner (syst, Ring);

The list ideal only involves one characteristic set. The last three equations provide
another presentation of the reduced model with two ordinary differentialequations and
a degree one algebraic equation:

Ċ = a rational fraction, Ȧ = a rational fraction, R = a rational fraction.

Moreover, the variableR does not appear anywhere in the two differential equations
since any occurence ofR would have been replaced by the right-hand side of the last
equation. One can thus just omit the third, algebraic, equation.
The above system might be surprising for readers not familiar with steady state ap-
proximations. Indeed, the reduced model was obtained by letting the speeds of the
fast variables (includingA) equal to zero. How is it then possible to end up with a
differential equation defining a nonzero speed forA ? The answer comes from the
fact that the above sentence is wrong: the speed ofA was not set11 to zero ! Indeed,
the differential equations describing the evolutions of the fast variables were removed.
The resulting system of two ordinary differential equations was just specialized on the
algebraic variety defined by the right-hand sides of the removed equations.

4.3 Prospects

Ranges of parameters values which make the reduced and the initial model oscillate
are given in [72] but the authors do not describe the method they appliedto compute
these ranges. Clearly, one now needs a method able to automatically derive ranges of

9The first coefficient is positive and the last coefficient is negative: the number of positive real roots is at least
one. Now, whatever the sign of the central coefficient, the number of sign changes is one. By Descartes rule of
sign [3], the number of positive real roots is at most one. Thepolynomial thus always has exactly one positive
real root.

10Observe that there are other possible permutations over thesecond block of variables. Most of them lead
to untractable computations. This example illustrates theneed of software able to try many different reasonable
rankings with a time limit. TheBLAD libraries are designed to offer such a functionnality.

11The interested reader may try to applyRosenfeld-Gröbnerover the initial system enlarged with the five
ordinary differential equations setting to zero the speedsof the five fast variables. One gets an inconsistent
system.
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parameters from the sign conditions on the trace and the determinant of thecomputed
matrix. Observe that even heuristic methods would be helpful and that thederived
ranges of parameters do not need to be complete in any sense. Thoughsuch methods
can certainly be designed in theory (e.g. based on interval arithmetic [39]), the choice is
not so easy in practice. It must still be done in order to get an automatic method which
would help modelling the circadian clock ofostreococcus tauri. Last, observe that it
would be very interesting to compare the approach based on the Poincar´e-Bendixson
theorem, and the one based on the direct application of the Routh-Hurwitz criterion
over the initial model. This study also is still in progress.

5 Conclusion

Differential elimination is a tool which may play a real role to improve some applied
mathematics methods. As illustrated in section 2.3 and 4, it permits to reduce the dif-
ferentiation index of differential-algebraic systems. It permits also to compute different
representations of the same system. Both features may help designing better numerical
integrators. Differential elimination may help guessing good starting points for Newton
methods (section 3). It may also be involved in the qualitative analysis of dynamical
system for it permits to simplify these systems after model reduction (section 4). These
examples show that differential elimination is complementary to numerical methods.
It is interesting here to compare the non differential and the differential elimination.
From an algorithmic point of view, both theories are very close to each other. From the
applications standpoint, the situations are very different. In the non differential setting,
one may hope to bypass all numerical methods. For instance, in the zerodimensional
case, there exists symbolic algorithms [1, 63] able to isolate the real roots of large poly-
nomials. It thus makes sense to compute large Gröbner bases or characteristic sets. In
the differential setting however, no such algorithms are known. Cooperating with nu-
merical methods is thus mandatory. Now, differential systems which areconsidered
as difficult from the numerical point of view are actually very small and very easy
from the symbolic one (see [37, Section IV.1]). It thus may not really make sense to
compute large differential characteristic sets. Note that this observation isan argument
which minimizes the importance of the terrible worst case complexity of differential
methods ! The examples considered in this paper also show that differential elimina-
tion only play very local roles in the different processes: it helps but may quite often
be bypassed. Since moreover, the theory is rather difficult and usuallynot taught in
traditional university courses, it seems very important to develop easyto use software
components. TheBLAD libraries are an attempt in that direction.
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[31] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon,Index and Decomposition of
Nonlinear Implicit Differential Equations, Proceedings of IFAC, 1995, pp. 43–48.

[32] Jean-Pierre Françoise,Oscillations en biologie, Mathématiques et Applications, vol. 46,
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