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SAINT VENANT EQUATIONS IN CURVILINEAR
COORDINATES

PHILIPPE G. CIARLET, CRISTINEL MARDARE AND MING SHEN

ABSTRACT. We establish that the linearized strains in curvilinear coordinates as-
sociated with a given displacement field necessarily satisfy “Saint Venant equations
in curvilinear coordinates”. Furthermore, we show that these equations are also
sufficient, in the following sense: If a symmetric matrix field defined over a simply-
connected open set satisfies the Saint Venant equations in curvilinear coordinates,
then its coefficients are the linearized strains associated with a displacement field.
In addition, our proof provides an explicit algorithm for recovering such a displace-
ment field from its linear strains in curvilinear coordinates. This algorithm may
be viewed as the linear counterpart of the reconstruction of an immersion from a
given flat Riemannian metric.

RESUME. On établit que le tenseur linéarisé des déformations en coordonnées
curvilignes associé a un champ de déplacements donné vérifie nécessairement des
“equations de Saint Venant en coordonnées curvilignes”. On démontre ensuite que
ces équations sont aussi suffisantes, dans le sens suivant: Si un champ de matrices
symétriques satisfait les equations de Saint Venant en coordonnées curvilignes dans
ouvert simplement connexe, alors il est le tenseur linéarisé des déformations associé
a un champ de déplacements. De plus, la preuve fournit un algorithme explicit pour
la reconstruction d’un tel champ de déplacements a partir de son tenseur linéarisé
des déformations en coordonnées curvilignes. Cet algorithme peut étre vu comme
une version linéarisée de la reconstruction d’une immersion a partir d’'une métrique
riemannienne de courbure nulle.

2000 Mathematics Subject Classification. Primary : 49N10. Secondary : 73K15.
Key words and phrases. Differential geometry, Elasticity.
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1. INTRODUCTION

All the notations used, but not defined, here are defined in the next
sections.

It is well known in differential geometry that a flat Riemannian space
can be isometrically immersed, at least locally, in the Euclidean space with
the same dimension. For instance, if Q C R3 is a simply-connected domain
endowed with a flat Riemannian metric (g;;) of class C? in €2, then there
exists an immersion © : Q — R3 of class C3 in € such that

gij = 616) . 836 in Q.

The assumption that the metric (g;;) is flat means that its Riemannian
curvature tensor vanishes in €, i.e.; that

)

Rikij = Gu (&-Fﬁk — 0Ty, + T0,T%, — ngrﬁt) =0in Q,
where
A
Ly = 59 (059tk + Orgtj — O1gjk)
denote the Christoffel symbols associated with the metric (g;;).

The above immersion © is recovered from the metric (g;;) by first solving
the system

0ig; = Ffjgk in €,
with unknowns g; € C%(Q;R3), then by solving the system
8i@ =g in Q.

The mapping © € C3(2;R?) found in this fashion is the sought immersion.
Note that the first system above has solutions because the Riemannian cur-
vature tensor vanishes in €2 and that the second system above has solutions
because the Christoffel symbols satisfy F?k = Fi e

Our objective here is to establish an infinitesimal version of this result.
More specifically, let there be given a simply-connected domain  C R3
and let (e;;) : @ — S? be a symmetric matrix field of class C? in Q (this
regularity assumption, chosen here for simplicity, will be weakened in the
next sections). Then we show that if the matrix field (e;;) satisfies the “Saint
Venant equations in curvilinear coordinates”, viz.,

li )
Ry = €xiljt T €xjllik — €kjllit — Exylik = 0 in €,
then there exists a vector field v :  — R? of class C? such that
1 .
Cij = 5(8117 -gj + g - 0jv) in Q.

The notation e;;x¢, as well as the notation e;;); below, respectively denote
the second and the first covariant derivatives of the matrix field (e;;) (see
Section 3 for their explicit expressions).
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The recovery of the vector field v from the matrix field (e;;) is obtained
by first solving the system

jllk = €kjlli — Ckiflj N €L,

where the unknown is an antisymmetric matrix field (a;;) € C*(2; A3), then
by solving the system
0;v = (e,-j + aij)gj in Q.

The vector field v € C3(Q;R3) found in this fashion has the desired prop-
erties. Note that the first system above has solutions because the Saint
Venant equations are satisfied and that the second system above has solu-
tions because the matrix fields (e;;) and (a;j) are respectively symmetric
and antisymmetric.

This last result may be viewed as an infinitesimal version of the former
because the left-hand side of the Saint Venant equations is the linearized
part with respect to v of the Riemann curvature tensor associated with the
immersion (© + v).

The Saint Venant equations derived here in curvilinear coordinates gener-
alize the classical Saint Venant equations in Cartesian coordinates (see, e.g.,
[2]). In this respect, note that these equations have been likewise extended
to “Sant Venant equations on a surface”; see [5].

2. NOTATIONS AND OTHER PRELIMINARIES

Latin indices and exponents vary in the set {1,2,3} and the summation
convention with respect to repeated indices and exponents is systematically
used in conjunction with this rule. ‘

All spaces, matrices, etc., are real. The Kronecker symbol is denoted (5{ .
The symbols M?, A3, S3, and S?; respectively designate the sets of all square
matrices of order three, of all antisymmetric matrices of order three, of all
symmetric matrices of order three, and of all positive-definite symmetric
matrices of order three.

The Euclidean inner product of w,v € R3 and the Euclidean norm of
u € R3 are denoted by w - v and |u|. The notation (t;;) designates the
matrix of M3 with t;; as its elements, the first index ¢ being the row index.
The inner-product of two matrices (s;;) € M3 and (t;;) € M? is >ij Sigti-
The spectral norm of a matrix A € M? is

|A| := sup{|Av|; v € R", |v| < 1}.

The notation f|y designates the restriction to a set U of a function f, the
notation ¢y designates the identity mapping of the set U.

Let Q be an open subset of R3. The coordinates of a point € Q are
denoted z;. Partial derivative operators of order m > 1 are denoted

oo olal
© 021 0ry2025®
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where a = (y;) is a multi-index satisfying |a| := a1 + a9 + a3 = m. Partial
derivative operators of the first, second, and third order are also denoted
0; == 0/0x;, 05 == ﬁz/ﬁaji@xj, and 0;jj, := 83/8:L‘i8:1:j0:rk.

The space of all continuous functions from a subset X C R? into a normed
space Y is denoted C°(X;Y), or simply C%(X) if Y = R. For any integer
m > 1, the space of all real-valued functions that are m times continuously
differentiable in € is denoted C™(£2).

The space C™ (), m > 1, is defined as that consisting of all vector-valued
functions f € CY(Q) that, together with their partial derivatives of order
< m, possess continuous extentions to the closure Q of . If Q is bounded,
then the space C™(Q) equipped with the norm

fllem (g == max (sup o f )
1 llem @) = max x€Q| f(@)]
is a Banach space. Similar definitions hold for the spaces C™(Q; R3), C™(Q; S?),
etc.

The Lebesgue and Sobolev spaces LP(2;Y') and W™P(;Y'), where m > 1
is an integer, p > 1, and Y is one of the spaces R, R3, or S, are respectively
equipped with the norms

1/p
TP {/ fa |de}

1
flwmsiar = { [ (7P + 3 0 s@P)dc} "
la|<m
We also use the notations W™P(§2) := W™P(;R) and H™(£;Y) := W™2(Q;Y).
The space T/VlOC (©;Y) is the space of all mesurable functions such that
f e WmP(U;Y) for all bounded open sets U that satisfy U C €.

The space of all indefinitely derivable functions ¢ : 2 — R with compact
support included in Q is denoted D(£2) and the space of all distributions
over ) is denoted D’(€2). The closure of D(2) in H™ (1) is denoted H[().
Similar definitions hold for the spaces HJ'(;R3), HI(;S?), etc. The
dual of the space HJ*(f2) is denoted H~™(2) and the corresponding duality
pairing is denoted < -, >.

We conclude this section with the following technical result.

and

Lemma 1. Lel Q2 be an open subset of R3.
a) If f € CH(Q) and x € H1(Y), then the mapping

p € Hy(Q) =<y, fo>€R

belongs to H=(Q)) and is denoted fx.
b) If f € C2(Q) and x € H2(Q), then the mapping

p € H(Q) =< x, fo >€R
belongs to H=2(Q) and is denoted fx.



4 P.G. CIARLET, C. MARDARE AND M. SHEN

Proof. We only need to prove the continuity of the mappings defined in the
lemma. If f € C}(Q2) and x € H~1(), then there exists a constant C; such
that

| <x: fo > 1 < IXla-v@lfellme) < Cillxlla-1 @)l flle@llellm @)

for all ¢ € H}(2). This means that fy € H1(Q).
Likewise, if f € C2(Q) and x € H~2(f2), then there exists a constant Co
such that

| <x. fo>| < Ixla-2@llfellmz@) < Collxlla-2) | fllez@ llell 2@

for all ¢ € H2(2). This means that fy € H~2(Q).
O

Remark. In other words, this lemma asserts that if f € C!'(Q) and
x € H~1(Q), then the product fy is well defined as an element of H~1(£2);
and likewise, if f € C%(Q) and x € H2(Q), then the product fy is well
defined as an element of H~2(Q). O

3. CURVILINEAR COORDINATES AND COVARIANT DERIVATIVES

A mapping ® € CY(;R3) is an immersion if the vectors 9;0(z) are
linearly independent at all points = € Q.

Let © be an open subset of R? and let there be given an immersion
© € C3(;R3). Then the invariance of domain theorem shows that the
image ©({2) is an open set, thus a three-dimensional manifold immersed in
R3. For each = € €, the vectors

gi(x) = 0,0(x)

form a basis in the tangent space, identified here with R3, to the manifold
©(f) at the point ©(x). The vector fields g7, defined by

gi(z) - g/ (z) = &/ for all z € Q,
form the dual basis of the basis formed by the vector fields g;.

The manifold () being naturally endowed with the Euclidean met-
ric inherited from the surrounding space R3, the immersion © induces a
Riemannian metric on €2, defined by its covariant components

gij(x) = gi(z) - gj(x) for all z € Q.
The contravariant components of this metric are defined by
g (@) = g"(2) - g' (),
or equivalently, by (¢*‘(z) = (9ij(z))~! for all x € Q. In turn, this met-
ric induces the Levi-Civita connection in the manifold €2, defined by the
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Christoffel symbols

1 .
I‘fj = ngé (aigjg + 0jgi¢ — Oegiz) in Q.

Note that the regularity assumption on the immersion ® implies that g;;, =
C%(Q) and that Ffj € CY(Q). The definition of the Christoffel symbols shows
that they satisfy Ff“'j = F?i and that the derivatives of the vector fields g;
and g’ satisfy

Orgi = Fiigg and Og’ = —Fiége in Q.

The covariant derivatives of the covariant components u; € H L(Q) of a
vector field u;g" are defined by

wji = Oiuj — Ffjuk,
or, equivalently, by
uj||igj = 8i(ujgj).
The covariant derivatives of a second-order tensor field with covariant
components T;; € L*(2) are defined by

Tijiw = 0Ty — TiiToy — TiTie

and they belong to the space H~1(Q) (cf. Lemma 1). Since the matrix fields
gog =g@)"
form a basis in the space C2(Q; M?) and since
(g’ @) = Tie'0g —Tig o8,

the above definition of the covariant derivatives T, shows that

Tijixg' @ g = 0k(T;;8" ® g’). (1)
Note that such equations are to be understood in the distributional sense,
the functions 7;; being only in L?().

Finally, for all third-order tensor field with covariant components T, €
H=1(Q), we define the covariant derivatives

Tijk||£ = 0fTiji — FZthk - %Titk - F%kTijt:
which, in view of Lemma 1, are well defined as distributions in H~2(Q).

If T;; € L*(Q), the second-order covariant derivatives T;jjke are defined
by the relations

Tijine = 0cTijin — LuTejie — Loy Tinpr — Do T

It is then easily seen, in view of relation (1), that these second-order covari-
ant derivatives satisfy

Tijineg’ © 8" = (O — Tp0)(Ti58" @ &7). (2)
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Indeed, relation (1) implies that
O (Tijg' @ g') = 00Ty’ @ &)
= (0T 1)g @8 — TyTyneg' © g — T3Tyne ©g'
= (0eTijy — TlTyjpn — L0 Tupe)8" © &7
= (Tijee + T Tij108" @ &
= (Tij k)8’ @ &7 +T0:(T58' @ &).
Note that relation (2) implies in particular that the second-order covariant
derivatives satisfy:

Tijike = Tijpen-

4. POINCARE THEOREM IN CURVILINEAR COORDINATES

In what follows, a domain in R is a bounded and connected open set
with a Lipschitz-continuous boundary, the set w being locally on the same
side of its boundary. The definition of such a boundary is the usual one, as
found for instance in Adams [1], Grisvard [6], or Necas [7].

Poincaré Theorem, which is classically proved only for continuously dif-
ferentiable functions, was generalized by Ciarlet & Ciarlet, Jr. [2] into the
following.

Theorem 1. Let Q be a simply connected domain of R3. Let hy, € H=(Q)
be distributions that satisfy

Oghi, = Orhy in HiQ(Q).
Then there exists a function p € L?(Q), unique up to an additive constant,
such that
hi = Op in H_I(Q).
Clearly, this theorem remains valid if the functions hy are replaced with
matrix fields with components in H~!(Q), the function p being then replaced

by a matrix field with components in L?(£2).
‘We now show that a similar result holds in curvilinear coordinates.

Theorem 2. Let Q be a simply connected domain of R3 and let ® €
C3(Q;R3) be an immersion. Let hij, € H1(Q) be distributions that sat-
isfy

hijkle = hijeyr in H2(9Q). (3)
Then there exists functions p;; € L3(Y), unique up to additive constants,
such that

hije = pijje in HH(Q).
Proof. Define the matrix fields
g'og =g'(g) eCl(®M),
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and note that {g'(r) ® g/(z)} form a basis in M? for all x € Q. Its dual
basis with respect to the usual inner product of matrices is {g;(z) ® g;(x)},
where

g ®g; = gi(g) inQ
Let the matrix fields Hy be defined by
Hy = hijng' ® g’
The derivatives in the distributional sense of the fields Hy, which belong to
H~1(Q;M?) by Lemma 1, are given by

OHy, = (Orhijr)g’ ® & + hijrdi(g' © g7)
= (D¢hijr)g’ @ g — hijk(Th,g° @ g7 + T g' ® g®)
= (Ochiji — Tiihsji — Tiihisk)g’ ® g/ in H2(Q).
Using the definition of covariant derivatives, the above expressions read
OcHy, = (hijiye + Tichijs)g’ © g7 in H2(Q).
Hence assumption (3) shows that
OHy = 0pH, in H2(Q; M),

Then Theorem 1 shows that there exists a matrix field P € L?(Q; M3),
unique up to additive constant matrix field, such that

H; = 0P in H1(Q;M?).

Since {g’(z) ® g/(z)} form a basis in M? for all z € Q, the matrix field P
can be expanded over this basis as

P =p;g ®g’ inQ,

and since p;; = tr(PT(g; ® g;)), we clearly have p;; € L?(Q).
Hence the matrix fields Hy, can be re-written as

Hy, = hijg' ® g7 = Ok(pijg' ® g7).
But the definition of the covariant derivative shows that
O(pijg' © &) = pijjg ® &
Combining now the last two equations, we finally find that
hijk = Dij|k-
That the solution p;; is unique up to additive constants is clear. O
Remark. Theorem 2 can also be established as a consequence of Theorem

A4 of [10] establishing the existence of solutions to Pfaff systems, of which
the equations p;j|, = hjjx constitutes a special case. O
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5. SAINT VENANT EQUATIONS IN CURVILINEAR COORDINATES

Let © be a bounded open subset of R and let ® € (f’(ﬁ; R3) be an
immersion. As in Section 3, let the vector fields g; € C?(Q;R?) and g’ €
C%(Q;R3) be defined by

g, ‘= 82@ and g - gj = (5{

With every vector field u € H(Q;R?), we associate the linearized strains
in curvilinear coordinates, also known as the covariant components of the
linearized change of metric tensor, defined by

1
eij(u) == 5 (O - g; + gi - Oju).
Note that e;;(u) € L*(Q) for all i,j and that e;;(u) = j;(u).
The next theorem shows that the functions €;;(u) satisfy crucial compat-
ibility relations, which we will call the Saint Venant equations in curvilinear
coordinates since they generalize the well-known saint Venant equations in

Cartesian coordinates.

Theorem 3. The linearized strains in curvilinear coordinates e;;(u) €
L%(Q) associated with a vector field u € H'(Q;R3) satisfy the relations

exifje(w) + egjin(w) — exjpie(w) — egyp(w) = 0 in H2(Q). (4)
Proof. Given a vector field u € H'(Q;R3), let
eij = ei;(u) € L*(Q)
and .
aij := 5 (Oru - gj — gi - dju) € L*(Q),

i.e., e;; and a;; are respectively the symmetric and the antisymmetric parts
of the tensor w;;. The derivatives in the distributional sense of the vector
field w are then given by

diu = (Ou - g;)g’ = (eij + aij)g’
in L2(Q;R?), which shows that these derivatives are completely determined
by the symmetric tensor e;; and the antisymmetric tensor a;;. In fact, they

are determined only by the tensor e;;, as we now show. Since 0;g; = 0;8;,
we first have

28kaij = O 1 - g; + o;u - 8kgj — akju - g — aju - Ok
= ai(Qekj — aju . gk) — (9j(2€/ﬂ‘ — alu . gk) + 81'11 . 8kgj — aju . akgi
= 2(0sex; — Ojex; + Ou - 98, — Oju - 9;gk),

all equalities being valid in the distributional sense. Combining this last
equality with the relations

O - 981, = T (Dyw - ) = Ty (ear + au),
=1
— tik

Oju - Oigr = I'y(0ju - go) (eje + aje),
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we next deduce that
Vi ¢ ? ?
akaij — ijaiz + Fikajg = (8¢€kj - Fikejf) - (8]'6;%' - ijei[)
= Ckjlli — Ckillj-

But the first term is equal to the covariant derivative a;jx, since ajp = —ay;.
Hence the previous equality becomes

ijl|k = ki ~ Ckilj- (5)
Then the relations (see the Section 3)
; -2
Qijlke = Qe in H (), (6)
imply that
. -2
€kjllie — Cki|lj¢ = €ej|ik — €ei||jk 11 H™=(Q).

This means that the Saint Venant equations (4) are satisfied in the distri-
butional sense.
O

Remarks. (1) Equation (5) shows that the antisymmetric matrix field (a;;)
is uniquely determined by the linear strains £;;(u) up to an antisymmetric
matrix field that is constant in each connected component of €.
(2) Equation (6) shows that the Saint Venant equations in curvilinear
coordinates simply express that w;|xe = w;||jer- To see this, we note that
Uj)|; = €ij T Qij,

relations which combined with relations (5) show that

Uil jke = €ij|lke + €kjllit — €kl je-

Hence the Saint Venant equations hold true if and only if w; ke = w|jer-
These relations are also equivalent with the relations

Oiut|| ke = Oiu| gk,

where the second-order covariant derivatives of the wvector fields O;u €
L?(2; R3) are defined by replacing T} with d;u in the definition of the second-
order covariant derivatives of first-order tensor field with covariant compo-
nents T;. More specifically, if v; := O;u € L?(Q2;R?), then

Usz = ORv; — F};i’v,« in H_l(Q;Rg),

illke == (Ville)lle = Opvillk — Thvrllk — Tpvilly in H2(Q;R?).
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6. RECOVERY OF A VECTOR FIELD FROM THE ASSOCIATED LINEARIZED
CHANGE OF METRIC TENSOR

Let © be a bounded and open subset of R? and let CHS C3(Q;R3) be an
immersion. As in Section 3, the vectors fields g; and g’ are defined by

gi(x) := 0;0(x) and g;(z) - g/ (z) = 5{ for all z € Q,

the covariant components of the Riemannian metric induced in € by the
immersion ® are defined by

9ij(x) = gi(x) - g;(x),
the contravariant components of the same metric are defined by
9" (x) = g'(z) - & (),

and the Christoffel symbols associated with the metric (g;;) are defined by

1
pi?j = 59“ (0igje + 0;9it — Ougij) -

Finally, the second-order covariant derivatives of a matrix field eijgi ® g’
with e;; € L?() are defined by

o t t t
eijike = Oeeijir — Duiesjin — Dojeirgn — Doneajiies
where
e Tt Tt
€ijllk = Okeij — e — ije,t

are the (first-order) covariant derivatives of the same matrix field.
We are now in a position to characterize the space of all symmetric matrix
fields that satisfy the Saint Venant equations in curvilinear coordinates:

Theorem 4. Let Q be a simply-connected domain in R3 and let ® €
C3(Q;R3) be an immersion. Let there be given a symmetric matriz field
(eij) € L*(;S?) that satisfies the Saint Venant equations in curvilinear
coordinates

exillje + ecjlik — exjlie — eeilgp =0 in H7*(Q). (7)
Then there exists a vector field v € Hl(Q;R3) such that
Py 1(8,0 co g 81)) in L2(QS3)
) 2 7 g] gl ] 3 .

Proof. The proof consists in first finding an antisymmetric matrix field
(aij) € L*(€2; A3) that satisfies the equations

Qg = €kjli — exi; i H (),
then in solving in H'(Q;R3) the system

O = (eij + aij)g’ in L (4 R?),

the field v being that announced in the statement of the theorem.
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We now begin the detailed proof. Since the equations (7) are satisfied,
Theorem 2 shows that there exist functions a;; € L?(2), unique up to addi-
tive constants, such that

Gijik = exjli — exi; i H ().
Since the right-hand side of this equation is antisymmetric in (4, 5), we de-
duce that
Ak + gk = 0 in HH(Q).
Therefore, again by Theorem 2, there exist constants c;; such that
a;j(z) + aji(x) = ¢;; for almost all z € Q.
Noting that the constants ¢;; must be symmetric in (4, j), we deduce that
the functions
aij = Qi + Cii
are antisymmetric in (4, j), belong to the space L?(£2), and satisfy the equa-
tions
Wijllk = Cxjli — kil (8)
Let us now prove that there exists a solution v € H'(2;R?) to the system
O0iv = (ej; + aij)gj.
To this end, we need to prove that
Ok ((esj + ai)g’) = il(ens + axy)g’).
Since
O((eij + aij)g’) = Oleij + ai)g’ — (e + aij)riegz
= (Okeir — Thyei)8" + (Oraie — TY0i5)8"
= (eir + Thiejo)g’ + (i + Th;ai0)8",
it suffices to prove the equality
(eaepe + Tlse50) + (e + Thya0) = (s + Dlpeje) + (anep + Thpaje)-
Since I‘ii = ng,, this equality becomes
€it||k T Qig||k = €ke||i T Ake)|is
which, in view of (8), is equivalent with
€it||k T €keli — Cki|l¢ = Cke|li T Cit||k — Cik||e-

But this last equation is clearly satisfied, since the matrix field (e;;) is sym-
metric. Hence Theorem 1 shows that there exists a field v € L?(2;R3),
unique up to an additive constant vector field, that satisfies the system

div = (eij + a;5)g’ .
Since the right-hand side of this system belongs in fact to L2(Q;R3), the
field v belongs to the space H'(2;R?).
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That the vector field v does indeed satisfy the required equations is a con-
sequence of the symmetry of the matrix field (e;;) and of the anti-symmetry
of the matrix field (a;;), which together show that

1 1
5(81"0 "8+ 8- 6jv) = §(€ij +ai; + €5 + aji) = €j;-
O

Remark. Theorem 3 of Ciarlet & C. Mardare [3] shows that, if the open
set Q is connected, any other vector field © € H'(Q;R3) that satisfies

1 . o .
eij = 5(61"0 -gj +8i-0;0) in LQ(Q;S?’)
is necessarily of the form

v(x) =v(x) 4+ (a+bAO(x)) for almost all z € Q,

where a and b are vectors in R3. O

7. THE RIEMANN CURVATURE TENSOR AND THE SAINT VENANT
EQUATIONS

The objective of this Section is to show that the Saint Venant equations
in curvilinear coordinates are nothing but an infinitesimal version of the
compatibility conditions that a three-dimensional Riemannian space must
satisfy in order to be isometrically immersed in the three-dimensional Eu-
clidean space. These compatibility conditions are recalled in the next theo-
rem, which is a straighforward extension of a well-known result in differential
geometry, classicaly established only for smooth immersions @ € C3(2;R?).

Theorem 5. Let Q be an open subset of R® and let p > 3. Given any
immersion © € VVlzg)(Q;RS), let the functions g;; € VVliép(Q;Si) be defined
by

Then the Riemann curvature tensor associated with the matriz field (g;;)
vanishes in the distributional sense, i.e.,

Rpij := gse (airﬁk - 3jrfk + P;krfr - Ffﬁ%) =0 in D'(Q). (10)

Proof. Since VVI;’CP(Q) C C%9) by the Sobolev embedding theorem and
since det(g;;) > 0 in Q (the matrix (g;;(z)) being positive definite for all
x € Q by assumption), the definition of the inverse of a matrix shows that
(") = (gij) L € I/Vl;’p(Q; S2). Hence the Christoffel symbols

C

1
0 . L ¢
ij-—§gr(

belong to the space L ().

0jgrk + Okgrj — Orgjk)
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Let the vectors fields g; and g’ by defined by
g =00andg; g = 51‘7 in Q.
Then we deduce from the relations (9) that
Djgrk = 08r - 8k + & - 08k
relation which combined with the above definition of the Christoffel symbols
implies that
I = g" (g - Oik).

Since gf = ¢g*g;, and since the vectors {g;(x)} form a basis in R? for all
x € Q, we next deduce that

0;8r = Tipge in LD (O R?).

Using now Schwarz lemma applied to the second derivatives of gi in the
space of distributions, we next infer from the above relation that

0y(T%8e) = 9;(T,80)

for all 4, j, k, £ in the distributional sense. Combining the last two relations
then shows that

0Ly, — i + T3 If, =TT, =0

in the distributional sense, which means that the Riemann curvature tensor
of the metric g;; vanishes in 2. O

Remarkably, the converse of Theorem 5 is also true, but inevitable, under
slightly more restrictive assumptions:

Theorem 6. Let Q be a connected and simply-connected open subset of
R3 and let (gi;) € I/Vkl)fo(Q;Si) be a field of positive-definite symmetric
matrices.

If the Riemann curvature tensor associated with the matriz field (g;j)
vanishes in the distributional sense, i.e., if

Rpij = gse (@'F?k — T + F;krfr - F?Ji«) =0 in D'(Q), (11)

then there exists an immersion © € VVlgfo(Q;]R‘g) such that

Proof. See the proof of Theorem 4.4 in S. Mardare [9]. O

Our objective is to show that Theorems 3 and 4 are nothing but the
“infinitesimal” versions of Theorems 5 and 6, respectively. To this end,
we will show that the left-hand side of the Saint Venant equations is the
linear part of the Riemann curvature tensor associated with an appropriate
Riemannian metric:
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Theorem 7. Let Q be a bounded open subset in R® and let there be given
a matriz field (gij) € C3(;S2) whose associated Riemann curvature tensor
field vanishes in Q.

Then, for all symmetric matriz fields (e;;) € WHP(Q;S%), p > 3, the
linear part with respect to the “increment” matriz field (e;;) of the covari-
ant components of the Riemann curvature tensor associated with the metric
(gij + €ij) are given by the relations

lin
Rgpii(€ij) = €rijljs T €sjllik — Ckjllis — Csiljk> (13)

where ey ;s denote the second-order covariant derivatives of ey; (cf. Section

3).

llis

Proof. For all € > 0, we define the matrix field
(9ij(€)) := (g15) + e(ei) € WHP(2;S?).
Since W1P(Q) c C°(Q) by the Sobolev embedding theorem, there exists

a number gy > 0 such that, for all 0 < € < g9, the matrix field (g;;(¢))

is positive definite in Q. As in the proof Theorem 5, this implies that
g*(e) € WLP(Q), where (¢**(¢)) = (gij(¢))~! is the inverse of the matrix
field (g;j(€)). Hence the Christoffel symbols

Tk(e) == % {0i9rk(2) + Okgjr(e) — Orgjr(e)} and T, (c) := g™ ()T (e)

belong to the space LP(2). Consequently, the Riemann curvature tensor
associated with the metric (g;;(¢)) is well defined in the space of distributions
by its mixed components

Riij(€) == 0T (e) — 9T () + T (e)T5.(e) — Ti(e)T%,(e),
or by its covariant components

1
Rikij(e) = gse(e) Rigy;(e).

The linear part with respect to (e;;) of the covariant components of the
Riemann curvature tensor associated with the metric (gi; + e;;) is then
defined by the limit

~ Rkij(¢)
1 T skij
i, = iy P

Recall that the Riemann curvature tensor of the metric (g;;), whose co-

variant components are defined by

Rakij == gst (@'Fﬁk — ;i + I, — ;krgr) ;

vanishes in ) by assumption.

In order to compute this linear part, we expand all the above functions
in power series in €. Using the notation O(e?) for any function f such that
(¢72f) is bounded in spaces that will be specified at each occurence, we have

gij(a?) = gij + 2661']' + 0(82) in Wl’p(Q),
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which next implies that
g9 () =g — QSg"erngj + O(£?) in WHP(Q).

Consequently,

1
Drij(e) = Phij + §{ai(gkj(€) — gkj) + 0i(gri(€) — gri) — Ok(9i(€) — gij) }
= Thij + e(Diexj + Ojer; — Oeij) + O(e?) in LP(Q).
Likewise,

k (kO kr st 2 g o o) — g 2
Lii(e) = (g 269" ersg™ + O(e”))(Trij + €(0see; + Ojen — Opeyj) + O(e7))
= gMI‘gij + agu(&e@j + 0jeq; — Ogeij) — 259kT€r598€Fez’j +0(?)

=T% + g™ (0ieq; + 0jeq; — Opeij — 215 e05) + O(?)
= Ffj + sgkz(egj”i + €€i||j — Gz]Hg) + 0(62) in LP(Q)
Letting
Xuij 1= eqj|i + eqi)j — eijje and X5 = g% Xy,
we thus have the following relations in LP():
Ffj(a) = Ffj + &?ij + O(e%)
Pkij(é‘) = Fkij + &‘inj + 0(82).
Using these relations and the relations R,ekij = 0 in the definition of
Rgpij(e), we next deduce that the relations

R-ekij(g) = 5(@‘ka — ;X[ + ngXfr + X;krfr - gkar - fkrfr) +0(e?)

hold in the space W~1(Q), hence also in the space H ().
Note that the covariant derivatives
l l 1 l ¢
Xiplli = 0: X5, — Ui Xoy, — T X5, + T3 X0
Xejngi = 0iXejk — Ui Xerk — Ui Xojr — Ui Xojiks
ngHi .— 8igké + FéchM + Ffr k:r)
satisfy
ka”i = g" Xy i + 97 i X in HH(Q).
Moreover, the definition of the Christoffel symbols associated with the metric
(9ij) shows that

ks rt kr sé)l-\ )
sir

1
g"l; = 0ig™ + = (g™ g™ + g*"g

2(
1
= ;g™ + 5{9’“(9’”@&950 + g (9% 0igsr) + (6" g™ + 9" 9°°) (0r9is — Osgir)}

1 S T T S.
= 0ig"" — 5{9’“ (0197 ) gsr + 6" (0;9°°) Digsr }
=0 in LP(92),
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which, combined with the previous relations, implies that
ka;”z = gthiji in H71(Q).
Using this relation in the previous expression of R,ekl- j (€), we thus obtain
the following relations in H~1(£):
¢ ‘ ¢
Rii(e) = e(XGplli — Xoxlly) + O(e%)
= eg" (Xpjupi — Xrinyy) + O(%)

_ or 2
= €9 (erjjki — €jk|ri — Eri|kj T €ik||rj) + O(€7)

and
Ryrij(e) = 5g€rgrs(esj||ki — €jk||si — Csi||kj T eikl\sj) + 0(52)
= €yj|ki — €jk|ei — €ei|lkj T Cik|je; T O(e?).
This completes the proof of the theorem. O

Remark. The matrix field (e;;) was assumed in Theorem 7 to be in the
space WhP(€;S?), and not only in L?(Q;S?), in order to have (g;;(¢)) €
WP(Q;S?), which is the minimal regularity assumption under which the
components Ryy;j(¢) of the Riemannian curvature tensor are well defined in
the space of distributions. However, the right hand side of the equation (13)
can be extended by continuity to matrix fields (e;;) that belong only to the
space L?(2;S?). O

8. COMPARISON WITH THE SAINT VENANT EQUATIONS IN CARTESIAN
COORDINATES

Let Q2 be an open subset of R?. The cartesian coordinates of a point & € Q
are denoted #; and the partial derivative operators of the first, second, and
third order of functions defined over ) are denoted 9; := /0%, él-j =
0?/07;0%;, and Oyj, := 0% /00707

With these notations, the following theorem was proved by Ciarlet &
Ciarlet, Jr. [2].

Theorem 8. Let () be a simply-connected domain of R? and let (éi5) €

LQ(Q; S3) be a symmetric matriz field that satisfies the following compatibil-
ity conditions

égjéik + ém’éjg — 8giéjk — ékjéig =0 1n HiQ(Q).
Then there exists a vector field © = (0;) € H (S R3) such that

(éj@i + éﬂ}j).

N =

eij =
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The compatibility relations in Theorem 8 are the well-known Saint Venant
equations in Cartesian coordinates. Note that the Saint Venant equations in
curvilinear coordinates established in Section 5 corresponds to the particular
case where ® = i, which thus justifies their name. Therefore, Theorem
4 implies Theorem 8. Remarkably, the converse is also true, at least for
one-to-one immersions, as we now show:

Theorem 9. Theorem 4, with the additional assumption that the immersion
® : Q — R? is one-to-one, is a consequence of Theorem 8.

Proof. Asin Theorem 4, let €2 be a simply-connected domain in R3, let © €
C3(9;R3) be an immersion, and let (e;;) € L%(€%;S?) be a symmetric matrix
field that satisfies the Saint Venant equations in curvilinear coordinates

lin .__ _
Rskij i= €gi|ljs T €sjljik — €kjllis — Esilljk = 0 (14)

in the distributional sense.
Since the mapping © is one-to-one, the inverse function theorem shows
that © is in fact a C3-diffeomorphism from  onto 2 := ©(Q). The set

) is an open subset of R3 by the invariance of domain theorem, and it
is also bounded, connected, simply-connected, with a Lipschitz-continuous
boundary. This means that the set Q) satisfies the assumptions of Theorem 8.
Let the vector fields g; and g/ and the Christoffel symbols Ffj be defined

as in Section 3 in terms of the immersion © and let ©® = (6},) denote the
inverse mapping of the mapping ® = (®y), i.e., & = O(z) implies z = O (%)
for all z € Q. It thus follow that

(0k0:)(2)(0;04)(z) = &} for all z € Q,
or equivalently, that
w'(z) - g;(x) = 5;- for all z € Q,

where w'(z) denotes the vector in R3 whose components are (8;0;)(z). This
implies that w'(x) = g'(x) for all z € Q, or equivalently, that

(0x6i) 0 © = [g']} in Q,

where [g'], denotes the k-th component of the vector field gt.
Let the matrix field (é,,) € L?(Q;S?) be defined by

Epg © © = [g'][g7]qeij in L*(R2)

and let
R = Dsqpr + Orplqs — Ospéqr — Orgéps in H ().
We wish to prove that Rlsiqu = 0in H~2(£2). Noting that
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and using the definition of the covariant derivative e;j; (see Section 3), we
first obtain the relations

(érépq) 0O = [gk]rak([gi]p[gj]qeij)
= [gk]r[gi]p[gj]qeijuk

in H=1(Q). Using next the definition of the second-order covariant deriva-
tives ek (see Section 3), we obtain the relations

(éwépq) 0O = [ge]saé([gk]r[gi}p[gj]qeij\lk)

= [g]s[g"],18"]p[8” €4 ke

in H=2(£2). Using these in the definition of Ri:

srpg» We finally obtain

Ri%, 0 © = [g'].[8"[8'1pl& 1y (erije + eqjin — exjjie — €eifjn)
lin

= [&1")[8"]p[8”]o RER:;

in H=2(Q2), which shows that RiZ =0 in H2(Q).

Since the assumptions of Theorem 8 are therefore satisfied, there exists a
field © = (9;) € H'(£;R3) such that
1,4 - .
éij = 5(81{}] + 83@1) n L2(Q)
Therefore, the vector field
v:=000
belongs to the space H'(2;R?) and satisfies the relations
(Op0 - Dyiy + Dy - Dpiiy) © ©
2
(Opiq + Dqtp) © ©
2

1
5(81’1) g+ 8- 8jv) = &@pﬁj@q

= [gi]"[g;]?
= [gi]"[g;]?(épg © ©) in LZ(Q)a

where [g;]P denotes the p-th component of the vector field g;. Then the
definition of the functions é,, shows that

1
5(6“) -gj +8i - 9v) = [gil[g;]"[g"]p[g lqere = €

in L?(2). This completes the proof. O

Remark. If © € C3(;R?) is an immersion, but not necessarily one-to-one,
then the inverse function theorem shows that the mapping © is locally one-
to-one, that is, for all x € Q, there exists an open ball B(xz,7,) with 7, > 0
such that the set Q, := QN B(x,r,) is simply-connected and the mapping
Olg, : Q, — R3 is one-to-one.
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Since the set ) is compact, there exists a finite covering of {2 with simply-
connected domains €2,, 1 < n < N, such that the mappings

©, :=0Olg : Q, - R?

are one-to-one.
Let (e;;) € L*(Q;S?) be a matrix field that satisfies the Saint Venant equa-
tions in curvilinear coordinates and let e% = e, - Then Theorem 9 shows

that, for all n € {1,2,..., N}, there exists a vector field v € H'(£,;R3)
such that

1 .
ef; = eij(v") = 5(61'1)" -gj +gi- 0;v") in L2(Q,;S?).
On the other hand, the uniqueness result furnished by Theorem 3 of
Ciarlet & C. Mardare [3] (see also the Remark at the end of Section 6)
shows that if two vector fields u,v € H(U;R3) satisfy €;j(u) = &;;(v) in a
connected open set U, then there exist vectors a,b € R3 such that

v(z) =u(x) + (a+bAO(z)) for almost all z € U.

If the open set € is connected, these two results allow to establish Theorem
4 as a consequence of Theorem 8 without assuming that the immersion
® : O — R? is one-to-one by following the proof of Theorem 7 from S.
Mardare [8]. O

Acknowledgements. The work described in this paper was substan-
tially supported by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China [Project No. 9041076, CityU
100105].

REFERENCES

[1] Adams, R.A.: Sobolev Spaces, Academic Press, New York, 1975.

[2] Ciarlet, P.G. and Ciarlet, P. Jr.: Another approach to linearized elasticity and a new
proof of Korn’s inequality, Math. Models Methods Appl. Sci. 15 (2005), 259-271.

[3] Ciarlet, P.G. and Mardare, C.: On rigid and infinitesimal rigid displacements in
three-dimensional elasticity, Mathematical Models and Methods in Applied Sciences
13 (2003), 1589-1598.

[4] Ciarlet, P.G. and Mardare, C.: Continuity of a deformation in H' as a function of
its Cauchy-Green tensor in L', J. of Nonlinear Science 14 (2004), 415-427.

[5] Ciarlet, P.G., Gratie, L., Mardare, C., and Shen, M.: Saint Venant equations on a
surface, to appear

[6] Grisvard P.: Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

[7] Necas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris,
1967.

[8] Mardare, S.: On Pfaff systems with L? coefficients and their applications in differen-
tial geometry, J. Math. Pures Appl. 84 (2005), 1659-1692.

[9] Mardare, S.: On isometric immersions of a Riemannian space with little regularity,
Analysis and Applications 2 (2004), 193-226.

[10] Mardare, S.: Sur quelques problémes de géométrie différentielle liés a la théorie de

l’élasticité, Doctoral Disertation, Université Paris 6, 2003.



20 P.G. CIARLET, C. MARDARE AND M. SHEN

PHILIPPE G. CIARLET, Department of Mathematics, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon, Hong Kong, E-mail address: mapgc@cityu.edu.hk

CRISTINEL MARDARE, Université Pierre et Marie Curie-Paris6, UMR, 7598 Laboratoire
Jacques-Louis Lions, Paris, F-75005 France, E-mail address: mardare@ann. jussieu.fr

MING SHEN, Department of Mathematics, City University of Hong Kong, 83 Tat Chee
Avenue, Kowloon, Hong Kong, E-mail address: geoffrey.shen@student.cityu.edu.hk



