Computing Canonical Representatives of Regular Differential Ideals

Abstract : In this paper, we give three theoretical and practical contributions for solving polynomial ODE or PDE systems. The first one is practical: an algorithm which improves the purely algebraic part of Rosenfeld-Gröbner. It is a variant of lextriangular but does not need any Gröbner basis computation. The second one is theoretical: a characterization of the output of Rosenfeld-Gröbner and a clarification of the relationship between algebraic and differential characteristic sets. The third one is theoretical as well as practical: an algorithm to compute canonical representatives of differential polynomials modulo regular differential ideals without any use of Gröbner bases.
Type de document :
Communication dans un congrès
International Symposium on Symbolic and Algebraic Computation, 2000, France. Association for Computing Machinery, pp.37-46, 2000, <10.1145/345542.345571>


https://hal.archives-ouvertes.fr/hal-00139177
Contributeur : François Boulier <>
Soumis le : vendredi 30 mars 2007 - 13:17:01
Dernière modification le : lundi 21 mars 2016 - 17:45:52
Document(s) archivé(s) le : vendredi 21 septembre 2012 - 13:36:17

Fichier

BL00.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Boulier, François Lemaire. Computing Canonical Representatives of Regular Differential Ideals. International Symposium on Symbolic and Algebraic Computation, 2000, France. Association for Computing Machinery, pp.37-46, 2000, <10.1145/345542.345571>. <hal-00139177>

Exporter

Partager

Métriques

Consultations de
la notice

160

Téléchargements du document

114