Computing representations for radicals of finitely generated differential ideals

Abstract : This paper deals with systems of polynomial differential equations, ordinary or with partial derivatives. The embedding theory is the differential algebra of Ritt and Kolchin. We describe an algorithm, named Rosenfeld-Gröbner, which computes a representation for the radical P of the differential ideal generated by any such system S. The computed representation constitutes a normal simplifier for the equivalence relation modulo P (it permits to test membership in P). It permits also to compute Taylor expansions of solutions of S. The algorithm is implemented within a package in MAPLE V.
Type de document :
Pré-publication, Document de travail
technical report IT306 of the LIFL. 1999
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00139061
Contributeur : François Boulier <>
Soumis le : jeudi 29 mars 2007 - 10:21:06
Dernière modification le : lundi 29 mai 2017 - 14:26:04
Document(s) archivé(s) le : mardi 6 avril 2010 - 23:14:30

Fichier

blop97.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00139061, version 1

Citation

François Boulier, Daniel Lazard, François Ollivier, Michel Petitot. Computing representations for radicals of finitely generated differential ideals. technical report IT306 of the LIFL. 1999. 〈hal-00139061〉

Partager

Métriques

Consultations de la notice

574

Téléchargements de fichiers

107