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Abstract. In this paper we propose a general definition of secrecy for
cryptographic protocols in the Dolev-Yao model. We give a sufficient con-
dition ensuring secrecy for protocols where rules have encryption depth
at most two, that is satisfied by almost all practical protocols. The only
allowed primitives in the class of protocols we consider are pairing and
encryption with atomic keys. Moreover, we describe an algorithm of prac-
tical interest which transforms a cryptographic protocol into a secure one
from the point of view of secrecy, without changing its original goal with
respect to secrecy of nonces and keys, provided the protocol satisfies some
conditions. These conditions are not very restrictive and are satisfied for
most practical protocols.
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1 Introduction

Cryptographic protocols are used to ensure secure communications between two
or more parties in a distributed system. Among the requirements that crypto-
graphic protocols must satisfy are the well-known authentication and secrecy or
confidentiality.

Security protocol design and verification is a very hard problem. Sources of
difficulty are numerous and of different types. The seminal paper for developing
a model was proposed by D. Dolev and A.C. Yao. [DY83]. In recent years a lot of
methods have been proposed for reasoning about cryptographic protocols. Some
of them are based on the trace model [Pau98,JG02] including models with an ex-
plicit state-transition system [CDL+99] or Horn clauses [Bla01,CCM01]. Another
type of model uses processes to represent cryptographic protocols [AG00,Sch97].

Concerning secrecy there are basically two approaches, the first one reduces
the secrecy property to a reachability problem, the second one defines secrecy in
terms of an observability equivalence.

Most of the papers are devoted to decidability and undecidability results
depending on various hypothesis related to the boundedness of nonces and ses-
sions, the used cryptographic primitives and so on. See for example [DLMS04]
for a review of these results. Surprisingly, there are very few results that give



some rules to apply in order to guarantee the secrecy property. This question has
already been answered in the case of cryptographic protocols using symmetric
keys in [Bea04], which gives a sufficient condition for solving this problem. Here
we consider a more general class of cryptographic protocols using both symmet-
ric and asymmetric keys. We give a new sufficient condition adapted to this type
of protocols and we describe an algorithm of practical interest. It transforms a
cryptographic protocol (satisfying a condition which is not very restrictive) into
a secure one from the point of view of secrecy, without changing its original goal
with respect to secrecy of nonces and keys.
In Section 2 we describe the model. Section 3 gives the sufficient condition for a
secure protocol w.r.t secrecy, Section 4 is devoted to the algorithm which trans-
forms a cryptographic protocol into a secure one w.r.t secrecy. The last section
concludes.
Related work As mentioned before, the security literature concentrates more
on the verification of cryptographic protocols comparing to the synthesis of cor-
rect protocols. In [AN96], some prudent principles for designing protocols are
given but do not guarantee the success. Several of these principles are present in
our definition of well composed protocol. A sufficient condition based on typing
is presented in [Aba99] but it concerns only symmetric keys and a binary view
of secrecy according to which the world is divided into system and attacker.
Our sufficient condition can be considered as a generalization of the sufficient
condition given in [Low95]. Indeed, the protocols which are considered in this
paper do not admit forwarding, which is an important restriction. At last, to our
knowledge, there is no paper which describes an algorithm which transforms a
protocol into a secure one w.r.t. secrecy and preserves its original goal.

2 The model

In this section we formalize the model we use and we specify the assumptions
we make about protocols commonly referred to as the “Dolev-Yao model”. Our
approach is largely inspired by [Low99]. The only primitives used are pairing
and encryption. We assume that pairing is associative, which corresponds to
practical protocols, so the algebra of terms is the quotient of a free algebra with
equations for associativity.

We are interested in the behavior of the protocol when the number of agents,
nonces and sessions is unbounded. Moreover the hypothesis on the power of
honest agents is as weak as possible. The knowledge of an agent is local, it does
not have a global memory of all its sessions. On the contrary the power of the
intruder is maximal.

2.1 Messages

Atomic values The set Value is a set of disjoint types Agent, Nonce, Key,
Cypher. Agent, Nonce, Key are sets of atomic values. Cypher is the set of



values obtained by encryption. The set Agent is the set of all agent identi-
ties. It is partitioned into two subsets, honest agents and intruders: Agent =
Honest ∪ Dishonest. W.l.o.g. one supposes that the set Dishonest contains a
unique intruder I. Agents variables, named A, B, ..., belong to the set AgVar.
Nonce is an infinite set of integers. Nonce variables named N, Na, Nb, ... , belong
to the set NVar.
The set Key is divided into two disjoint subsets ShKey and LKey.
- ShKey is the set of short term keys. Its elements correspond to symmetric keys
used only for the current session.
- LKey is the set of long term keys. It is a disjoint union of SymKey the set of
symmetric keys and AsymKey the set of asymmetric keys.
The set AsymKey is a disjoint union of two subsets PubKey (public keys) and
PrivKey (private keys).
Short term key variables named K, K′, ... belong to the set KVar.
Let A, B be two agent variables. We denote respectively by Kpriv(A), Kpub(A),
K(A, B), the long term private encryption key of A, the long term public encryp-
tion key of A, the long term symmetric key shared by agents A and B. Notice
that in this notation Kpriv(A), Kpub(A) are both encryption keys, and Kpub(A)
is NOT the inverse key of Kpriv(A) and vice-versa.

Symbolic terms. Symbolic terms are constructed using pairing and encryp-
tion.
The pairing of terms X and Y is the term < X ,Y >, the encryption of term X
using the key K is {X}K, C is a set of constants.
The grammar used to generate symbolic terms is :
key ::= C | KV ar | Kpub(AgV ar) | Kpriv(AgV ar) | K(AgV ar, AgV ar)
symb term ::= NV ar | AgV ar | key |< symb term, symb term >| {symb term}key

The pairing is associative, or equivalently for each n we have a primitive for
n-pairing. We will consider only terms which are in a ”canonical form”. For
example the canonical form of terms < t1, < t2, t3 >> and << t1, t2 >, t3 >

is < t1, t2, t3 >, it means that < t1, < t2, t3 >> and < t1, t2, t3 > must be
considered as triples and not pairs.

The set of subterms of a term τ is denoted Sub(τ).

Concrete terms. Concrete terms are generated following the same grammar
as for symbolic terms, except that variables in NV ar, KV ar, AgV ar are replaced
by the values of the corresponding type.
Key ::= ShKey | Kpub(Agent) | Kpriv(Agent) | K(Agent, Agent)
conc term ::= Nonce | Agent | Key |< conc term, conc term >| {conc term}Key

Synthesis and Analysis. In this subsection, ’term’ means ’symbolic term’.
The synthesis procedure represents terms the agents can build. The analysis
procedure represents terms the agents can learn.



Let T be a set of terms and A be an agent variable. The set SynthA(T ) is
the least set of terms containing T and satisfying:

– τ1, ..., τp ∈ SynthA(T )⇒< τ1, ..., τp >∈ SynthA(T ) (An agent can compose
the terms he knows).

– ∀τ ∈ SynthA(T ), ∀B ∈ AgV ar

• {τ}K(A,B) ∈ SynthA(T ) (An agent can encrypt with a symmetric key
he shares with another agent)
• {τ}Kpriv(A) ∈ SynthA(T ) (An agent can encrypt with his own private

key).
• {τ}Kpub(B) ∈ SynthA(T ) (An agent can encrypt with the public key of

any agent).
– ∀τ ∈ SynthA(T ) and for all short term key variable K ∈ T , {τ}K ∈

SynthA(T ) (An agent can encrypt with all encrypting short term key he
knows).

Let A be an agent variable. Let T and T ′ be two sets of terms.
We have T AnalAT

′ if one of the following properties holds:

– < τ1, ..., τp >∈ T , p > 1 and T ′ = (T \ {< τ1, ..., τp >}) ∪ {τ1} ∪ ... ∪ {τp}
(An agent can decompose terms).

– {τ}K ∈ T , K ∈ T is a symmetric session key variable, and T ′ = (T \{τ}K)∪
{τ} (An agent can decrypt terms encrypted with a short term session key
he knows).

– {τ}K(A,B) ∈ T , B ∈ T and T ′ = (T \{τ}K(A,B))∪{τ} (An agent can decrypt
terms encrypted with a key shared with an agent he knows.)

– {τ}Kpub(A) ∈ T and T ′ = (T \{τ}Kpub(A))∪{τ} (An agent can decrypt terms
encrypted with his own public key).

– {τ}Kpriv(B) ∈ T , B ∈ T and T ′ = (T \ {τ}Kpriv(B)) ∪ {τ} (An agent can
decrypt terms encrypted with the private key of an agent he knows).

A set of terms T is told undecomposable if there does not exist any set of
term T ′ such that T AnalAT

′ (An agent cannot decompose any more term).
It is easy to prove that for any set of terms T , there exists a unique undecom-
posable set of terms T ′ such that T Anal∗AT

′. This set is denoted Anal∗A(T ).

For a term τ ∈ Anal∗A(T ) we define the number of steps necessary for A to
learn τ from T as the number of decryption operations that A must use before
obtaining τ , more precisely :

– A learns τ from T in 0 step iff some term < ..., τ, ... > is in T ( we admit
here a composition of a single element τ). (No decryption necessary).

– if A learns {< ..., τ, ... >}K from T in at most p steps and K is a short session
symmetric key learnt by A from T in at most q steps, then τ is learnt by A

from T in at most p + q + 1 steps.
– if A learns {< ..., τ, ... >}K(A,B) from T in at most p steps and B is learnt

by A from T in at most q steps, then τ is learnt by A from T in at most
p + q + 1 steps.



– if A learns {< ..., τ, ... >}Kpub(A) from T in at most p steps then τ is learnt
by A from T in at most p + 1 steps.

– if A learns {< ..., τ, ... >}Kpriv(B) from T in at most p steps and B is learnt
by A from T in at most q steps, then τ is learnt by A from T in at most
p + q + 1 steps.

For τ, τ ′ ∈ Anal∗A(T ) we define that A learns τ from T before τ ′ if A learns τ

in p steps, τ ′ in p′ steps and p < p′.
Now, given a concrete agent a, we can define in the same way a relation Anala on
finite sets of concrete terms as well as the other notions defined above, replacing
agents, and keys variables by values of the corresponding type.

Message ( Component, Protocol) -Template A component template is
either a variable or an encrypted term. A message template or t-message is
a tuple of the form (A, B, τ) where A and B are distinct variables of agents
representing respectively the sender and the receiver and τ is a term representing
the content of the message.
A concrete message is a tuple (a, b, m) where a and b are agent values and m is
a concrete term. It corresponds to the informal usual notation A→ B : m.
A protocol template or simply protocol is a sequence of message templates.
A role in a protocol template is an agent variable appearing in this protocol.
Given a protocol P with a set of roles R, a session template SesA for role A ∈ R
is the subsequence of message templates of P in which role A is sender or receiver.
Our running example will be the protocol TMN [TMN90] using asymmetric keys.
Brackets for pairing are omitted as usual.

Example 1. .
01−A→ S : B, {Ka}Kpub(S)

02− S → B : B, A

03−B → S : A, {Kb}Kpub(S)

04− S → A : B, {Kb}Ka

SesS is the entire protocol. SesA is the sequence:
A→ S : B, {Ka}Kpub(S)

S → A : B, {Kb}Ka

2.2 Realizable protocol template

An elementary question is whether a protocol is “realizable”, i.e. whether the
honest agents can execute it. This notion appears in [RS03] as ”well-formed”
protocol. We formalize this notion in our framework and give an algorithm which
checks whether a protocol is realizable or not. One can observe that as far as
we are aware of, most of the undecidability proofs [DLMS99,AC02a,AC02b] are
based on protocols which are not realizable, which is a weakness of these proofs.
Only in [CCM01] the undecidability proof relies on realizable protocols.
Let P be a protocol, and A be a role of this protocol. Consider the sequence of



t-messages of the session template SesA. The jth t-message of SesA is of form
(A, Bj , τj) or (Bj , A, τj) depending on A is sender or receiver of the message.
We define KnA,j as the knowledge of role A after execution of message number
j. That is to say as the set of terms known by A after the execution of the first
j t-messages of his session and that A can no more decompose.
This knowledge can be decomposed into two subsets:

– The basic knowledge of A at step j, BasKnA,j, which contains agent, nonce
and key variables.

– The cryptographic knowledge of A at step j, CrKnA,j , which contains the
encrypted terms known by A at step j and he cannot decrypt.

Notice that KnA,j contains only terms which are component templates.
From the definition of synthesis, we can define SynthA(KnA,j) as the set of
terms that A can build from his knowledge at step j.
Let us define by induction on j the set KnA,j and the fact that the j first
messages of SesA are realizable.
The initial knowledge of A, KnA,0 is fixed by the protocol.
We need to introduce the notion of new variables appearing in a t-message of
protocol P . Let (Ap, Bp, τp) be the pth t-message of P . The set of new variables
of this t-message denoted NewV arp is defined recursively:
NewV ar1 = Sub(τ1) ∩ (AgV ar ∪NV ar ∪KV ar).
NewV arp = Sub(τp)∩(AgV ar∪NV ar∪KV ar)\(NewV ar1∪ ...∪NewV arp−1)
for p> 1.
Let j > 0 and suppose that the first (j − 1) messages are realizable by A and
KnA,j−1 is defined, then:

– If in message number j, A is receiver, this message can be realized by A since
A is passive in this action.

– If message number j is of the form (A, Bj , τj), this message can be realized
by A if and only if: τj ∈ SynthA(KnA,j−1 ∪ NewV arpj

) where pj is the
index of the message (A, Bj , τj) in P .

In both cases, we have : KnA,j = {Bj} ∪Anal∗A({τj} ∪KnA,j−1).
A session template SesA is realizable if all its t-messages in this session are re-
alizable by role A.
A protocol is realizable if all the session templates of all roles of the protocol are
realizable. Clearly, the above procedure is effective so one can decide whether a
protocol is realizable.
For example on the TMN protocol with public key of the server, the evolution
of the knowledge for each role is :

By now, we will consider only realizable protocols.

2.3 States. Transitions

We formulate now the semantics of a protocol as an infinite transition system
where a state contains the set of current partial sessions of agents (it is actually



A B S

Initial S,Kpub(S) S,Kpub(S)

Step 1 B,Ka A, B,Ka

Step 2 A

Step 3 Kb Kb

Step 4 Kb

a multiset because the same agent may have several “identical” partial sessions
at the same time) and a transition corresponds to a send or a receive event. As in
[Low95] we assume that every message is intercepted by the intruder, so w.l.o.g.
one consider that every sent message is sent to the intruder, and every received
message is received from the intruder, so we have two types of events the send
and receive ones.

States A valuation v of a set of component template T is a function that
associates to each term τ ∈ T a concrete term τ̄ = v(τ), the value of which is
in V alue (i.e. to each component template is associated its value). We consider
here constants as variables for which the valuation is fixed.
Let (τj)j=1,...,k be the list of contents of the t-messages of the session of a role A

for a protocol P . Let vj be a valuation for KnA,j. We denote τj [vj ] the concrete
term we obtain when substituting in term τj to each maximal subterm τ ′ which
is in KnA,j the value vj(τ

′). One can remark that τj is built in a unique way
from its maximal subterms which are in KnA,j.
A partial session (or simply session) σ is determined by its length l, a role A

and a valuation vl(A) for the knowledge KnA,l. The role of session σ will be
denoted Rσ. The role A, the length l and the valuation vl permit to define the
list of the l first messages received by the agent playing this role in this session.
It is the list of concrete messages (τj [v])j=1,...,p≤k, where (τj)j=1,...,k is the list
of the t-messages of the session of role A.
A state is a multiset of partial sessions like in [CDL+99].

Transitions The formalization of the evolution of the state of the system via
receive or send events is the most delicate part of the modeling. An admissible
state is a state reachable from the initial state using transitions labeled by the
following events:

– send event : tuple (a,−→, (a, b, m)) where a, b are agents and (a, b, m) is a
concrete message. It corresponds to the event ”agent a sends (intentionally
to agent b) the message m and this message is received by the intruder”.

– receive event : tuple (a,←−, (a, b, m)) where a, b are agents and (a, b, m) is a
concrete message. It corresponds to the event ”The intruder sends to agent
b a message m and agent b believes that this message has been sent by agent
a”.

The knowledge of the intruder denoted IntrKn, is the set of values known by the
intruder and that he cannot decompose more. It will be described more precisely



below.
• Send transitions
We have a transition from state S to state S′ labeled by the send event

(a,→, (a, b, m)), denoted by S
(a,→,(a,b,m))
−→ S′ if the following conditions are sat-

isfied:

1. a, b ∈ Agent.
2. There exists in S a partial session σ = (A, vl) of length l for which the next

message is a send event or agent a starts a partial session for a role A in
which the first message of SesA is a message sent by A.

3. (a, b, m) = τl+1[vl+1] where vl+1 is a valuation defined as follows:
(a) (vl+1 | BasKnRσ,l) = (vl | BasKnRσ,l)
(b) vl+1 | (BasKnRσ,l+1 \BasKnRσ,l) must satisfy the rules

– The values are of the correct type, i.e. values for nonces, agents
and short term keys belong to the respective sets respectively Nonce,
Agent, Key.
– The valuation is injective on the set of nonces and the set of keys,
and values are ”fresh”, i.e., if X is a variable for a nonce (resp. a
key) belonging to BasKnRσ,l+1 \BasKnRσ,l, then vl+1(X) is not in
the set of valuations of nonce variables (resp. key variables) for all
the partial sessions of state S.
– CrKnRσ ,l+1 = CrKnRσ ,l and for coherence (vl+1 | CrKnRσ ,l+1) =
(vl | CrKnRσ,l+1).

4. S′ is the state we obtain when replacing one exemplary of session σ =
(l, A, vl) by σ′ = (l +1, A, vl+1). (It corresponds to increasing the list of con-
crete messages of the partial session σ with the concrete message (a, b, m)).

The knowledge of the intruder I at state S′ is :
IntrKnS′ = Anal∗I(IntrKnS ∪ {(a, b, m)})

• Receive transitions
We consider here only the receive events where the message is accepted by the
receiver.
We have a transition from state S to state S′ labeled by the receive event

(a,← , (a, b, m)), denoted by S
(a,←,(b,a,m))
−→ S′ if the following conditions are

satisfied:

1. a, b ∈ Agent.
2. There exists in S a partial session σ = (l, A, vl) for which the next message

is a receive event, or (case l = 0) agent a starts a partial session for a role A

in which the first message of SesA is a message received by A.
3. (b, a, m) = τl+1[vl+1] where vl+1 is a valuation defined as follows:

(a) vl+1 | BasKnRσ,l = vl | BasKnRσ,l

(b) vl+1 | (BasKnRσ,l+1 \BasKnRσ,l) must satisfy the rules
– values belong to the set SynthI(S) defined above.
– values of agent variables belong to Agent.

(c) vl+1 | (CrKnRσ ,l+1 ∩ CrKnRσ ,l) = vl | (CrKnRσ ,l+1 ∩CrKnRσ ,l).



(d) vl+1 | (CrKnRσ ,l+1 \ CrKnRσ ,l) has values in SynthI(S).
4. S′ is the state we obtain when replacing an exemplary of partial session σ

with σ′ = (l + 1, A, vl+1). (It corresponds to increasing the list of concrete
messages of the partial session σ with the concrete message (b, a, m).

The knowledge of the intruder I at state S′ is :
IntrKnS′ = Anal∗I(IntrKnS ∪ {m})

The set SynthI(S) is the set of concrete terms that the intruder can build at
state S. It is the least set containing IntrKnS and satisfying:

– τ1, ..., τp ∈ SynthI(S)⇒< τ1, ..., τp >∈ SynthI(S).
– Agent ⊂ SynthI(S).
– For every agent a, the long term key K(a, I) is in SynthI(S).
– For every agent a, the long term key Kpub(a) is in SynthI(S).
– For every term τ ∈ SynthI(S) and for every key K ∈ (IntrKnS ∩ Key),
{τ}K ∈ SynthI(S).

A trace of a protocol is a sequence S0
e1−→ S1

e2−→ ...Sn−1
en−→ Sn where S0 is

the initial state and each Si−1
ei−→ Si is a transition.

The initial knowledge of the intruder IntrKnS0 is given by the protocol.

Remark. One can notice that the rules applied by an honest agent in order to
accept a message correspond to a very weak control of the message. The agent
makes only equality tests, it has no possibility to control for example the depth
of encryption, the correct type of values and so on.

2.4 Secrecy

In the literature, generally the definitions of secrecy are very dependent on the
chosen model and restrictive, i.e. sufficient for the hypothesis made by the au-
thors but not applicable in a more general context. The definition we give here
seems very general, at least as far as the concern is the secrecy of values and not
of properties.

Definition 1. The secret of a variable X for a nonce or a short term key can be
broken from the point of view of A if there exists a reachable state S containing
a partial session σ of length l for role A with valuation vl for KnA,l such that

1. BasKnA,l contains X and the set R of roles of the protocol
2. I does not belong to the valuation vl(R) (I does not participate to the partial

session σ from the point of view of A)
3. vl(X) ∈ IntrKnS.

As one can observe, the notion of secrecy implies two parameters: a variable
for which the secret is broken and a role which can claim the fact. We have to
justify points 1 and 2. Why should the set R be in BasKnA,l? Because as far as
the agent involved in the partial session σ does not know all its partners in this
session, it cannot claim whether it is correct that the agent I knows the value



vl(X). Indeed, if I participates in an honest way to the session it is normal that
vl(X) ∈ IntrKnS . For the same reason the condition that I does not belong to
the valuation vl(R) is required. An unsolved question is how to define secrecy
in the case when the set of roles does not belong to the knowledge of each role
at the end of its partial session.
There is a well-known attack [LR97] on the protocol TMN of Example 1. An
intruder IA acts as if it was A:
01− Ia → S :< b, {Ki}Kpub(S) >

02− S → b :< a, b >

03− b→ S :< a, {Kb}Kpub(S) >

04− S → Ia :< B, {Kb}Ki
>

In this attack, the secret is broken for the variable Kb from the point of view of
B because the trace given here reaches a state containing a partial session for
role B satisfying the above three conditions.

Given a protocol, the variables which can be learnt by an external observer
of the protocol are called revealed variables. The others (those which remain
unaccessible to this observer) are called unrevealed variables.
More precisely, given a protocol P = (Ai, Bi, Mi)i=1,...,k, a variable X for a nonce
or a key is revealed in P if X ∈ Anal∗C({M1, ..., Mk}) for some C not being a
role of P . The set of revealed variables of a protocol is clearly computable. In an
obvious way, the secret can be broken for every revealed variable from the point
of view of every role. Thus, the interesting question is “can the secret be broken
for an unrevealed variable”. The next section answers to this question by giving
a sufficient condition which guarantees that the protocol preserves the secrecy
of unrevealed variables for nonces and short term key variables.

3 A sufficient condition for secrecy

3.1 Well-Composed Protocol

A signature of a protocol is constituted by a nonce variable which is called the
session nonce and a fixed list of the agent roles < n, A1, ..., Ap >.

Definition 2. A protocol is well composed if :

1. Encryption is of depth at most two.
2. Private long term asymmetric and long term symmetric keys are never trans-

mitted.
3. There exists a signature S such that

- the content of every t-message is a term of the form : < S, {S, m}Kpriv(A) >

where A is the sender of the message,
- every subterm of the protocol which is an encrypted term has the form
{< S, ... >}K (it contains the signature on the left inside the encryption).

4. Two different encrypted terms which are encrypted by the same type of keys
(public, private, ...) must have a different number of elements. More pre-
cisely, if {< τ1, ...τk >}K and {< τ ′1, ..., τ

′
k′ >}K′ are two different subterms

of a protocol P and K,K′ are of the same type, then K 6= K′.



Let us comment the four given conditions. Condition (4) helps to prevent the
intruder from passing off a term {τ}K as a term {τ ′}K′ while these terms are in-
tended to be distinct terms in the specification. Another way to obtain the same
effect would be to use tagging as it is done in several papers [BP03,HLS00,RS03].
In these papers, tagging is used to prove decidability of secrecy for tagged pro-
tocols, but it is not a sufficient condition for secrecy. Condition (3) is reasonable
and permits to know at each moment who is supposed to be implied in the ses-
sion. An attack on TMN protocol is due to the fact that this condition is not
satisfied. Condition (2) is always recommended [AN96]. At last, condition (1) is
not essential here. We are convinced that this hypothesis could be relaxed, but
it would make the proof more complicated.
The TMN protocol is not well composed. Here is a modified version which is
well composed:
01−A→ S : S, {S, B, {S, Ka}Kpub(S)}Kpriv(A)

02− S → B : S, {S, B, A}Kpriv(S)

03−B → S : S, {S, A, {S, Kb}Kpub(S)}Kpriv(B)

04− S → A : S, {S, B, {S, Kb}Ka
}Kpriv(S)

The attack presented in the previous section fails in this new version because
the intruder cannot impersonate A at the first step of the attack.

Theorem 1. A well composed protocol preserves the secrecy of unrevealed vari-
ables for nonces and short term key variables.

Before giving the proof of this theorem let us recall the sufficient condition
given in [Bea04] to preserve secrecy in case of symmetric encryption, and show
with a counter example that this condition is not enough for protocols involving
asymmetric encryption. This sufficient condition was:

1. Encryption is of depth one.
2. Long term keys are never transmitted.
3. There exists a signature S such that every subterm of the protocol which is

an encrypted term has the form {< S, ... >}K (it contains the signature on
the left inside the encryption).

Here is a variant of TMN protocol which satisfies this condition.
Let S =< N, A, B > where N is a nonce.

01−A→ S : S, B, {S, Ka}Kpub(S)

02− S → B : S, B, A

03−B → S : S, A, {S, Kb}Kpub(S)

04− S → A : S, B, {S, Kb}Ka
.

Clearly, an attack similar to the one given before can be repeated.
The next proposition expresses the fact that a well composed protocol guaran-
tees some authenticity: if an agent a receives in a partial session where it plays
role A a message m from another agent b and a thinks that b plays role B and
that m corresponds to the message number i of the protocol, indeed b has sent
this message for this purpose.



Proposition 1. Let r be a trace of a well composed protocol. If r contains a

transition S
(a,←,(b,a,τ))
−→ S′ where S contains a partial session σ of length l be-

longing to an agent a for the role A, and σ is replaced in S′ by a partial session
σ′ of length l + 1 where b has role B, then there is a previous transition in r

of the form S1
(b,→,(b,a,τ))
−→ S′1 where S contains a partial session σ1 of length l1

belonging to agent b for the role B and σ1 is replaced in S′1 by a partial session σ′1
of length l1 + 1 where the message number l + 1 of role A is exactly the message
number l1 + 1 of role B.

Proof. If a accepts the message, it means that the message is of the right form,
namely : (b, a, τ) with τ =< s1, {s1, τ

′}Kpriv(b) >.
Actually τ must be encrypted by Kpriv(b) since it is supposed to have been sent
by b. Moreover, a controls that the signature located in the first elements of τ is
the same as the signature contained at the beginning of the encrypted element.
As a consequence, b is the agent who encrypted τ . Due to the last condition of
the definition of a well composed protocol, a also controls that the number of
elements in τ corresponds to the number of elements awaited by a in this session,
so necessarily, b built τ to send a message number l + 1 for the role A, and this
role is played by a because a has in the signature the place corresponding to role
A.

We now translate in an equivalent form the property of secrecy for a well com-
posed protocol. Let r be a run with a length l, X be an unrevealed variable for
a nonce or a short key, x be a value, T be a time less than or equal to l, and t

be a positive integer. The tuple (r, X, x, T, t) satisfies P1 (resp. P2) iff:

– P1: in r at some time T ′ < T , in one of its partial sessions whose signature
does not contain I, an honest agent a generates the value x to assign to the
unrevealed variable X and at time T , I learns the value x in t steps.

– P2: in r, in one of its partial sessions whose signature does not contain I, an
honest agent a learns the value x of the unrevealed variable X at time T in
t steps and at the end of the run r the value x belongs to the knowledge of
I, i.e. x ∈ IntrKnl. Moreover, there is no tuple of the form (r, X ′, x, T ′, t′)
satisfying P1, in other words x is not a value generated by an honest agent
to assign to an unrevealed variable.

Lemma 1. A well composed protocol preserves the secrecy of unrevealed vari-
ables for nonces and short term key variables from the point of view of every
role iff there does not exist an unrevealed variable X for a nonce or a short term
key, a value x, a run r with length l, a time T ≤ l and a positive integer t such
that the tuple (r, X, x, T, t) satisfies P1 ∨ P2.

Proof. Firstly assume that there exists an unrevealed variable X for a nonce or
a short term key, a value x, a run r with length l, a time T ≤ l and a positive
integer t such that the tuple (r, X, x, T, t) satisfies P1 ∨ P2.

If (r, X, x, T, t) satisfies P1 then in r at some time T ′ < T , in some partial
session σ for a role A, with a signature that does not contain I, an honest agent



a generates the value x to assign to the unrevealed variable X and at time T ,in
some state S, I learns the value x in t steps. Clearly the secret of variable X can
be broken from the point of view of role A. Actually in state S, the extension of
partial session σ has a length l and a valuation vl for KnA,l such that BasKnA,l

contains X and the set R of roles of the protocol, I does not belong to the
valuation vl(R) and vl(X) ∈ IntrKnS .

If (r, X, x, T, t) satisfies P2, in the same way let A be the role played by a in
its partial session. The secret of variable X is broken from the point of view of
role A. The “if” part of the Lemma is proved.

Secondly assume that in a well composed protocol, the secret of a variable X

can be broken from the point of view of a role A. It means there exists a reachable
state S containing a partial session σ of length l′ for role A with valuation vl′ for
KnA,l′ such that BasKnA,l′ contains X and the set R of roles of the protocol,
I does not belong to the valuation vl′(R) and vl′(X) ∈ IntrKnS . Let r be a
run from the initial state of the protocol to state S, let l be its length and let
x = vl′(X). Since BasKnA,l′ contains X it means that at some moment in the
partial session σ the agent a = vl′(A) either generates the value x to assign to
the variable X (first case) or a learns it (second case).

In the first case, let T ′ be the moment when a generates the value x. Since
vl′(X) ∈ IntrKnS , there is a time T > T ′ when the intruder learns x in t steps,
more precisely, if Si denotes the i-th state of run r, there is a state ST such that
x ∈ IntrKnST

and x 6∈ IntrKnST−1 . In this first case the tuple (r, X, x, T, t)
satisfies P1.

In the second case, in the partial session σ, a has not generated x (may be
a has generated x in another session) and a has learnt the value x of X at time
T ≤ l in t steps. If there exists a tuple (r, X ′, x, T ′′, t′) satisfying P1, we are
done. If not, then the tuple (r, X, x, T, t) satisfies P2. The “only if” part of the
Lemma is proved.

Well composed protocols have an invariant property which is stated below
not very formally:

Lemma 2. If in a trace r, at time T1, an honest agent a generates a value x

to substitute to an unrevealed variable X in a message m that he sends with a
signature S not including I, then, as long as I does not learn x, x has only
occurrences in encrypted components τ = {S, . . . , x, . . .}K where the term τ has
been encrypted by an honest agent belonging to S and put by this same agent in
a message m′ in which the place where is x inside τ is the place of X.

Proof. The property is true at t1. Let t > t1 and assume I does not know x at t. If
x is in an encrypted component, this one has been encrypted by an honest agent
b, in some session otherwise, I knows x. The value x is by recurrence hypothesis
for b the value of an unrevealed variable X , and then in the component encrypted
by b to send in a message m′, x is in place of X .

Proposition 2. In a well composed protocol, there does not exist any tuple sat-
isfying P1 ∨ P2.



Proof. Suppose there exist tuples (r, X, x, T, t) for which P1∨P2 holds. Consider
the total strict order relation: (r, X, x, T, t) < (r′, X ′, x′, T ′, t′) iff T < T ′ or
(T = T ′ and t < t′) and take a minimal tuple (r, X, x, T, t) satisfying P1 ∨ P2.
Let us examine the two cases :

– The tuple (r, X, x, T, t) satisfies P1.
Let S be the signature not including I of the partial session in which at
time T1 < T , the honest agent a generates the value x to substitute to the
unrevealed variable X in a message m. Let τ be the concrete term from
which I learns x at time T in t steps. We consider here the term of the very
last operation of decryption made by I to learn x. This term τ has a value of
type Cypher and it is of the form {..., x, ...}K. This term has not been built
by I in r before, otherwise I would have known x before, and (r, X, x, T, t)
would not be minimal. So it has been built by an honest agent d, and for this
reason, due to Lemma 2, it has been built by an honest agent d belonging
to S and put by this same agent in a message m′ in which the place where
is x inside τ is the place of X . Thus the term τ is of the form {S, ..., x, ...}K,
because the places of the unrevealed variable X cannot be the places of the
components of S. There are 3 cases for K :
1. K is a long term symmetric key
2. K is a public long term key
3. K is a short term symmetric key.

Actually, K cannot be a private key, because this private key should be
Kpriv(d) and the component would not be in a unrevealed position. Let’s
go through each of the three cases :
1. Since d has built the term τ , and since the signature inside τ does not

contain I, K is equal to some K(c, d) where c is a honest agent. So I
cannot decrypt τ . This first case is not possible.

2. The key K cannot be the public key of I, because I is not in the signature
S. So I cannot decrypt τ . This second case is also impossible.

3. In the partial session s where d builds the term τ at time T ′ < T , either
d knows K or he generates it. In both cases in the message m′ sent by d

which contains τ , K is in place of an unrevealed variable Y , otherwise,
x itself would be in an unrevealed place. Thus the secret is broken from
the point of view of the role played by d in this partial session s and for
the variable Y in the place of K in the term τ inside the message m′.
As for K there are two possibilities. Either d has generated it or he has
learnt it at time at most T ′ in in this session s. In the first case, there
is a tuple (r, Y,K, T ”, t′) which satisfies P1 with T ” < T . In the second
case there is a tuple (r, Y,K, T ”, t′) which satisfies P2 with T ” < T . It
contradicts the minimality of (r, X, x, T, t).

– The tuple (r, X, x, T, t) satisfies P2.
At time T , in t steps an honest agent a in a partial session s whose signature
S does not contain I learns the value x. Let τ be the last encrypted concrete
term from which a learns x. This term τ was contained in a message m1

received by a at time T or before and x in this message m1 is in place



of an unrevealed variable X . This message which has been accepted by a

has the form < S, {S, ..., τ, ...}Kpriv(a1) > where a1 ∈ S or < S, τ >. Here
we use the fact that the protocol has an encryption depth at most two. If
m1 was equal to < S, τ >, then we would have τ = {.., x, .}Kpriv(c), and
x would be in place of a revealed variable. So the message has the form <

S, {S, ..., τ, ...}Kpriv(a1)
>. Moreover the term τ has the form {..., x, ...}K. Let

us observe that, the number of components of < S, {S, ..., τ, ...}Kpriv(a1)
>

permits to the agent a to identify the index i of the message. For the same
reason since the term {S, ..., τ, ...}Kpriv(a1) has been built by a1 in some
partial session s1, a1 has built this term in order to send the message m1,
and the value of τ in the partial session s1 of a1 and in the partial session s

of a are associated to the same symbolic term of the protocol. Let us come
back to τ = {..., x, ...}K.
If the agent a1 in the partial session s1 builds the term τ by encryption
with K before sending the message m1, it means that in this session s1 at
this moment, x is known by a1. So in this session s1, x is learnt by a1 at
a time T ′ < T in t′ steps. Indeed, x is not generated by a1 at least in
this session because for a1, in this session, x is the value of X which is
unrevealed, which would contradict the fact that (r, X, x, T, t) satisfies P2.
Thus replacing a by a1 we get a tuple (r, X, x, T ′, t′) satisfying P2 which
contradicts the minimality of (r, X, x, T, t). So the agent a1 in the partial
session s1 does not build the term τ by encryption with K before sending
the message m1. It means that this term τ has been obtained from a previous
message m2 that the agent a1 received in its partial session s1. Thus we can
iterate our reasoning for a1 instead of a, but only a finite number of times
because the run r is finite. Thus we get in any case a contradiction.

So we’ve proved that there cannot exist any tuple satisfying P1 ∨ P2, which by
induction, proves Proposition 2.

Theorem 1 is a direct consequence of Lemma 1 and Proposition 2.

A well composed version of TMN protocol would be:

Example 2. .
01−A→ S : S, {S, B, {S, Ka}Kpub(S)}Kpriv(A)

02− S → B : S, {S, B2, A}Kpriv(S)

03−B → S : S, {S, B2, A, {S, B, Kb}Kpub(S)}Kpriv(B)

04− S → A : S, {S, B5, {S, Kb}Ka
}Kpriv(S)

(Bn means a sequence of n B)

The previous attack fails at the first step because the intruder cannot imperson-
ate the agent a for role A in the first message of the protocol. There are other
attacks on this protocol which use the algebraic properties of the XOR algorithm
used for encryption, but it is out of the scope of our framework.

Remark. As noticed by M. Abadi in [Aba99], authenticity is dual to secrecy
in the sense that authenticity concerns the source of the messages while secrecy



concerns their destination. Nevertheless, it seems that it is hard to ensure se-
crecy without some phase of authentication. If we look at attacks that breach the
secrecy without using specific algebraic properties of the encryption algorithms,
very often the intruder exploits some weakness of the protocol with respect to
authentication.

4 An algorithm for securing protocols

In this section we describe a very simple algorithmA which transforms a protocol
P into a protocol P ′ = A(P ) which is secure w.r.t. secrecy and such that P ′

preserves the ”intended goal” of P for a large class C of protocols. Surely, we
have to define what means ”to preserve the intended goal”. We first describe
the class C, secondly we give the algorithm A which can be applied to every
protocol in the class C, then we define an equivalence relation over the set of
protocols in C. Finally we prove that for every protocol P in C the protocol
A(P ) is equivalent to P and is well composed, so, A(P ) is secure w.r.t. secrecy.

4.1 The class C and the algorithm A

Definition 3. A protocol is in C if it satisfies the following conditions:

– Encryption is of depth at most two.
– If in a template message (A, B, τ) there is a subterm of τ with an encryption

depth equal to two, then τ ′ = {τ ′′}Kpriv(A).
– Private long term asymmetric and long term symmetric keys are never trans-

mitted.

A lot of protocols belong to the class C : ISO/IEC 11770-3 Key Transport Mech-
anisms (1,2,3,4,5,6), Helsinki Protocol, TMN with public key protocol, Blake-
Wilson-Menezes Secure Key Transport Protocol, Needham-Schroeder Public Key
Protocol X.509 one-pass, two-pass, three-pass authentication, . . .
The algorithm A is the following :

1. Introduce a new variable N for a session nonce, and define a signature S =<

N, R1, R2, ..., Rk > where R1, R2, ..., Rk are the roles of the protocol P .
2. Transform the content m of each template message (A, B, m) according to

the type of m :
* If m is a tuple of n elements (n ≥ 1) and none of them is encrypted by

Kpriv(A), replace m with {m}Kpriv(A).
* If m =< τ1, ..., τn > (n ≥ 1) and at least one of the τi is encrypted by

Kpriv(A), replace m with {m′}Kpriv(A) where m′ is the term we get,
replacing each term τi = {τ ′i}Kpriv(A) with τ ′i . In other terms, the en-
cryption with Kpriv(A) is done over the tuple instead of some of its
elements.

3. Replace in each template message, each subterm of the form {τ}K by the
subterm {< S, τ >}K . Notice that, by associativity we have < S, τ >=<

N, R1, R2, ..., Rk, τ >



4. Replace each content m with < S, m >.
5. If several terms of the protocol encrypted by the same type of key namely

long term public type, long term private type, long term symmetric type or
short term symmetric type have the same number of elements, add inside
the term, after the signature, occurrences of the last role in order to get
different numbers of elements for all the encrypted terms of the same type.

The well composed protocol of Example 2 is obtained applying this algorithm
to Example 1.
We now prove that the protocol P ′ one obtains applying the algorithm A to
a protocol P ∈ C is in some sense equivalent to P , i.e. the new knowledge of
each role is essentially the same as before, at least from the point of view of the
nonces and the session keys appearing in the protocol P .

Definition 4. Let P be a protocol in the class C and P ′ = A(P ). The pro-
tocol P ′ is said weakly equivalent to P if for each role Ri for each step j,
BasKnRi,j(P

′) = BasKnRi,j(P ) ∪ {R1, ..., Rn} ∪ {n} and CrKnRi,j(P
′) =

σ(CrKnRi,j(P )) where the σ({τ}k) = {< S, τ >}k for every term τ . (Notice
that terms of CrKnRi,j have an encryption depth equal to 1 for protocols in the
class C).

In other terms, at every step, the basic knowledge is only increased by the set
of roles and the nonce which is added, and the encrypted knowledge is the same
except that the signature in inserted in the encrypted term.

Theorem 2. Let P be a protocol in the class C and P ′ = A(P ). The protocol
P ′ is weakly equivalent to P and is well composed.

Proof. Recall that for every role A, KnA,j(P ) = {Bj}∪Anal∗A({τj}∪KnA,j−1)
for role A if the j-th template message of his partial session is (A, Bj , τj) or
(Bj , A, τj).

Let (A, Bj , < S, {S, τ ′j}Kpriv(A) >) resp. (Bj , A, < S, {S, τ ′j}Kpriv(Bj) >) be
the corresponding message in P ′. We have

KnA,j(P
′) = {Bj} ∪Anal∗A(< S, {S, τ ′j}Kpriv(A) >) ∪KnA,j−1(P

′),
where τ ′ is obtained from τ essentially by adding the signature in every

encrypted term. So by induction on j,
KnA,j(P

′) = BasKnA,j(P ) ∪ {R1, ..., Rn} ∪ {N} ∪ σ(CrKnA,j(P ))
where S =< N, R1, ..., Rn >.

Remark The condition concerning the number of elements inside encrypted
terms of the same type can be obtained more simply by adding different integers
inside the encrypted terms which permit to identify them. Proceeding in this
way, the messages will be shorter.

5 Conclusion

We have given a simple sufficient condition to guarantee the secrecy for crypto-
graphic protocols which use pairing and symmetric and/or asymmetric encryp-
tion. Secrecy is ensured for an unbounded number of agents, nonces, sessions,



without assuming any typing of terms. Moreover, for a large class of protocols we
provide an algorithm which transforms a protocol into a secure one w.r.t. secrecy
and preserves the ”intended goal” of the original protocol. To our knowledge it
is the first result of this type.
We have limited our work to protocols of depth at most two, which is rea-
sonable from a practical point of view. It seems that we could get rid of this
restriction easily, but the proof would be more technical. A drawback of our
sufficient condition is that the systematic signature of messages with the private
key of the sender increases the size of the message. It would be better to replace
< S, {S, m}Kpriv(A) > with < S, m, {H(S, m)}Kpriv(A) > where H is a hash
function. We propose to extend our study with more primitives, in particular
with hash functions.
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