Polynomilal Poisson algebras with regular structure of symplectic leaves

Abstract : We study polynomial Poisson algebras with some regularity conditions. Linear (Lie-Berezin-Kirillov) structures on dual spaces of semi-simple Lie algebras, quadratic Sklyanin elliptic algebras of \cite{FO1},\cite{FO2} as well as polynomial algebras recently described by Bondal-Dubrovin-Ugaglia (\cite{Bondal},\cite{Ug}) belong to this class. We establish some simple determinantal relations between the brackets and Casimirs in this algebras. These relations imply in particular that for Sklyanin elliptic algebras the sum of Casimir degrees coincides with the dimension of the algebra. We are discussing some interesting examples of these algebras and in particular we show that some of them arise naturally in Hamiltonian integrable systems. Among these examples is a new class of two-body integrable systems admitting an elliptic dependence both on coordinates and momenta.
Type de document :
Article dans une revue
Theoretical and Mathematical Physics, Consultants bureau, 2002, 133, pp.1321-1337
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00137208
Contributeur : Import Arxiv <>
Soumis le : dimanche 18 mars 2007 - 10:17:32
Dernière modification le : vendredi 2 mars 2018 - 14:26:03

Lien texte intégral

Identifiants

Collections

Citation

A. Odesskii, V. Rubtsov. Polynomilal Poisson algebras with regular structure of symplectic leaves. Theoretical and Mathematical Physics, Consultants bureau, 2002, 133, pp.1321-1337. 〈hal-00137208〉

Partager

Métriques

Consultations de la notice

83