Finite Element Modeling of Cell Exposed To Harmonic and Transient Electric Fields
Ivan Meny, Noël Burais, François Buret, Laurent Nicolas

To cite this version:

HAL Id: hal-00136656
https://hal.archives-ouvertes.fr/hal-00136656v2
Submitted on 10 Apr 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Finite-Element Modeling of Cell Exposed to Harmonic and Transient Electric Fields

I. Meny\(^1\), N. Burais\(^2\), F. Buret\(^1\), and L. Nicolas\(^1\)

\(^1\)Centre de Genie Electrique de Lyon (CEGELY), Ecole Centrale de Lyon, 69134 Ecully, France
\(^2\)Centre de Genie Electrique de Lyon (CEGELY), Université Claude Bernard Lyon 1, 69622 Villeurbanne, France

The transmembrane potential (TMP) of a cell exposed to harmonic or transient electric fields is the main parameter for a successful permeabilization of a cell. Obviously, TMP can be computed with a finite-element method, but the high contrast between sizes and electromagnetic properties of the cytoplasm, the membrane, and the extra-cellular medium leads sometimes to inaccurate numerical results. Influences of membrane conductivity and frequency on the accuracy are studied. Optimization of transient waveforms is proposed for various shapes of cells.

\textbf{Index Terms—} Bioelectric phenomena, biological cells, electromagnetic field computing, finite-element method (FEM).

\section*{I. INTRODUCTION}

\textbf{E}LECTROPERMEABILIZATION is an effective method for achieving transmembrane transport of molecules which otherwise cannot cross cell membrane; it can be used, in particular, for gene transfection and electrochemical therapy [1]. Theory and experiments have shown that the extent of permeabilization depends on cell size [2], shape, orientation [3], [4], and interaction with surrounding cells [5]. However, the efficiency of electropermeabilization depends, above all, on effective tissue conductivity and on the parameters of applied electric pulses. Investigations of the role of the amplitude, number, duration, and shape of these pulses have been the subject of several experimental studies [6]–[9]. However, the role of pulse shape in electroporation has not yet been studied with a transient modeling at the cell level.

The induced transmembrane potential (TMP), which causes permeabilization, depends on the local electric field and not on the average applied field usually reported in experimental studies or predicted by tissue-level simulations. For spheroidal cells, the potential distribution can be obtained through analytical solutions of Laplace’s equation [4], [10], [11]. These analytic solutions have yet limited use in estimating TMP, as they can be obtained only for very simple shapes of cells. The application of numerical methods to cell problems provides the ability to model more complex and more actual geometries. Nevertheless, the very small thickness of the cell membrane and the high contrast between material properties make it difficult to obtain an accurate numerical modeling. The finite-element method (FEM) is well suited to model the geometry of actual cells and also permits the membrane to be modeled in detail without increasing the resolution over the entire problem space. Therefore, this method has been used in order to get an accurate insight of the electric field distribution inside cells with complex geometries [3], [12], [13], to make studies at the tissue scale [14], [15], or transient analyses with a wide variety of applied voltage waveforms [16].

In this paper, FEM is used to calculate the TMP in a single cell exposed to harmonic or transient electric fields induced by a voltage applied between two parallel plane electrodes. The influence of the membrane conductivity and the frequency on the accuracy is investigated. It must be noticed that most of the time this aspect is not taken into account by the authors who use commercial FEM packages. Next, the waveform of applied pulses is optimized by investigating the effects of the signal rising rate. The validity range of the analytical expressions is evaluated with FEM calculations. Finally, the slew-rate specifications recommended for the signal generators used in experiments are deduced.

\section*{II. ELECTROMAGNETIC MODEL OF A SINGLE CELL}

The studied structure (Fig. 1) is a single (spherical or elliptical) cell exposed to harmonic or transient electric fields induced by a voltage applied between two electrodes. TMP is calculated by solving the electro-quasi-static equation which is formulated under complex form for time-sinusoidal electric field

\begin{equation}
(\sigma + j\varepsilon \omega) \Delta V = 0
\end{equation}
The classical theory of TMP developed by Schwan [17] leads to a temporal description of this phenomenon as a first-order process. The expression of the TMP V_m as a function of the time during the rising edge of the signal is

$$V_m(t) = K \frac{dV}{dt} (t - \tau + e^{-\tau})$$

(3)

by assuming that TMP is measured along the cell axis.

The dc gain K can be calculated by using the approximate expression of the TMP

$$V_m = \frac{3}{2} ER \quad E = \frac{V_{app}}{d} \quad K = \frac{3R}{2d}$$

(4)

where E is the strength of the electric field and V_{app} is the applied voltage between the two electrodes.

A more accurate analytical expression of the TMP [11] leads to the following equation:

$$K = \frac{3\varepsilon_0\sigma_0(\sigma_0(3R^2 - 3\varepsilon_0 + \varepsilon^2) + \sigma_m(3\varepsilon_0 - \varepsilon^2))}{2R^3(\sigma_m + 2\sigma_0) (\sigma_m + \varepsilon_0 + 2(\varepsilon_0 - e)^3(\sigma_m - \sigma_0)(\sigma_0 - \sigma_m))} \times \frac{R}{d}.$$

(5)

With the numerical values given in Table I, by taking $R = 10\ \mu m$ and $\sigma_0 = 0.12\ S/m$, we find $K = 0.3$ with (4) and $K = 0.298$ with (5). As the difference between these two results is very low, (4) will be used for analytical calculations.

The time constant τ of the membrane is given [18] by

$$\tau = \frac{R_0}{\varepsilon_0 + \sigma_0 + \sigma_m - \sigma_0 + \sigma_m}.$$

(6)

TMP values are calculated with FEM and with (3) by taking $R = 10\ \mu m$ and $\sigma_0 = 0.12\ S/m$ and $d/V/dt = 0\ V/\mu s$. Equivalent results are obtained. So, the first-order theory seems to be valid during the rising phase of the signal.

In order to investigate the influence of the slope dV/dt, we focus on the time t_s required to reach V_s. Experiments show that the time during which the amplitude of the applied pulse exceeds a certain critical value, has a major role in the efficiency of electropermeabilization [6]. It is assumed here that this critical value is linked with the reversible threshold V_r of permeabilization.

An analytical expression of t_s needs the reciprocal of the function $V_m(t)$ written in (3) to be determined. As V_m^{-1} cannot be directly calculated, (3) is simplified by noticing that t_s is much greater than τ in most of the cases, especially for the lowest values of dV/dt: in Table II, we show some values of t_s obtained with $R = 10\ \mu m$ and $\sigma_0 = 0.12\ S/m$, i.e., $\tau = 0.96\ \mu s$.

The exponential term in (3) may be neglected, and an expression of t_s as a function of V_s and dV/dt would be

$$t_s = \frac{V_s}{K \frac{dV}{dt}} + \tau.$$

(7)
negligible in (7) and becomes even predominant for high values of $\frac{dV}{dt}$. On the other hand, when R is much smaller than d (e.g., $R = 1 \mu m$ and $d = 50 \mu m$), t_s depends first of all on all on applied signal. So, the spherical-cell model makes it possible to establish analytical relations, from which we deduced (7).

B. FEM Study of TMP for Elliptical Cell

By using FEM, the TMP evolution for elliptic cells can be calculated, this shape being closer to reality. Fig. 4 shows values of t_s obtained with prolate (“cigar-shaped”), oblate (“disk-shaped”), and spherical cells.

For the spherical cell: $R = 10 \mu m$, for the prolate cell: $R_1 = 15 \mu m$ and $R_2 = 10 \mu m$, for the oblate cell: $R_1 = 10 \mu m$ and $R_2 = 15 \mu m$, R_3 and R_4 being, respectively, the radius along the axis of rotational symmetry and the radius perpendicular to this axis.

The evolution of t_s is the same with the three cell shapes: we can distinguish a sharp decrease and a very slow decrease area, the transition between these two zones takes place for the same values of $\frac{dV}{dt}$. The two areas can be delimited with the curve point where the derivative is equal to -1. By taking the spherical-cell as a reference and using (7), we find that this value of the derivative occurs for

$$\left(\frac{dV}{dt}\right)_t = \sqrt{\frac{V_c}{K}}.$$ (8)

C. Optimization of the Applied Signal

Pulses used for electropermeabilization can be very short, especially for eukaryote cells, on which single rectangular pulses of 100-μs duration are often applied.

On the one hand, it seems necessary in this case to use pulse generators able to deliver signals with slopes greater than $(\frac{dV}{dt})_t$, otherwise the TMP would remain below the reversible threshold during a time t_s which is not negligible in comparison with the total pulse duration. Moreover, this time t_s would not be precisely controlled; it depends particularly on the gain K and the threshold value V_s, which are generally imprecisely known and present heterogeneous values. Then, for low values of $\frac{dV}{dt}$, t_s could be very different from a cell to another; the effective duration of the applied pulses being unknown, the experiments would not be fully repeatable. On the other hand, generator pulses with slew-rates much greater than $(\frac{dV}{dt})_t$ seem unnecessary, at least for high values of

<table>
<thead>
<tr>
<th>$\frac{dV}{dt}$ (V/μs)</th>
<th>t_s (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.73</td>
</tr>
<tr>
<td>3</td>
<td>1.1</td>
</tr>
<tr>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>0.5</td>
<td>3.6</td>
</tr>
<tr>
<td>0.2</td>
<td>7.7</td>
</tr>
<tr>
<td>0.06</td>
<td>23.6</td>
</tr>
<tr>
<td>0.03</td>
<td>46</td>
</tr>
<tr>
<td>0.01</td>
<td>138</td>
</tr>
</tbody>
</table>

TABLE II

VALUES OF t_s FOR $\tau = 0.96 \mu s$

In Fig. 3, values of t_s given by FEM calculations are compared with analytical values given by (7) for $R = 10 \mu m$ (order of magnitude of eukaryote cells sizes). Others calculations are performed for $R = 1 \mu m$ (prokaryote cells), but the FEM and analytical curves are quite similar. Different values of τ are obtained by varying the extracellular medium conductivity; for $R = 1 \mu m$ and $R = 10 \mu m$, τ is, respectively, equal to: 0.82 μs and 7.9 μs for $\sigma_o = 10^{-2}$ S/m, 0.096 μs, and 0.06 μs for $\sigma_o = 0.12$ S/m, 0.037 μs, and 0.37 μs for $\sigma_o = 1.2$ S/m.

The accuracy of the analytical expression of t_s improves when the slope $\frac{dV}{dt}$ and τ present low values. For $R = 10 \mu m$, it can be noticed that for a given value of $\frac{dV}{dt}$, values of t_s change with σ_o, when t_s remains almost unchanged whatever σ_o. May be, when the distance between electrodes is in the same order of magnitude as the cell radius (e.g., $R = 10 \mu m$ and $d = 50 \mu m$), t_s is influenced by the cytoplasm and the extracellular medium conductivities: τ is not
Fig. 5. $(dV/dt)_m$ versus distance between electrodes.

K: the gain achieved on t_a with very high dV/dt is minor in comparison with the total pulse duration.

The threshold V_a being estimated less than 1 V, (8) is upper-bounded by

$$(dV/dt)_m = \sqrt{\frac{1}{K}} = \sqrt{\frac{2I}{3R}}.$$ \hspace{1cm} (9)

This value would then be the minimum acceptable slope for the applied signal. However, the distance between electrodes is often in the order of one millimeter in experiments. Low values of K can then be reached and t_a becomes significant in comparison with the total pulse duration, even if a dV/dt is greater than $(dV/dt)_m$. Considering a pulse of 100 μs duration, if we want t_a to remain less than 10 μs, for example, the minimum slope for $K < 0.01$ has to be

$$(dV/dt)_{m K<0.01} = \frac{(0.1) V}{1 \mu s} = \frac{(0.2) d}{3R}.$$ \hspace{1cm} (10)

Fig. 5 shows values of $(dV/dt)_m$ in case of spherical cells with a radius $R = 1 \mu m$ and $R = 10 \mu m$, for a distance d between electrodes included in $[50 \mu m; 2 mm]$. It can be seen that high values of slew-rate can be required for $R = 1 \mu m$. In this case, special generators or reduction of the distance between electrodes may be necessary.

V. CONCLUSION

Electro-quasi-static formulation and FEM resolution can be used to calculate harmonic and transient TMP, but because of the very low thickness of membrane, particular attention must be paid to the mesh structure. FEM and analytical calculations of TMP have been performed for spherical cells in order to obtain optimization parameters of signal (threshold time t_a and slope dV/dt). For elliptical cells, FEM studies show that the results are similar, and the same analytical expressions can also be used to optimize the applied signal. Next, works will be devoted to FEM study of inhomogenous cytoplasm in cell, to membrane modeling by “shell element” and optimization of other waveforms.

REFERENCES

Manuscript received April 21, 2006 (e-mail: burais@cegely.univ-lyon1.fr).