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Abstract. A set of methodologies and techniques for automatic de-
tection of bridges in pan-chromatic, high-resolution satellite images is
presented. These methods rely on (a) radiometric features and neural
networks to classify each pixel into several terrain types, and (b) fixed
rules to find bridges in this classification. They can be easily extended
to other kinds of geographical objects, and integrated with existing tech-
niques using geometric features. The proposed method has been tested
in a number of experiments.

1 Introduction

Automatically detecting geographical objects such as bridges, roundabouts or
road crossings on high-resolution satellite images is useful for keeping up to
date geographical databases, automatically locating the imaging satellite at low
cost and easily and quickly assessing the extent of damages in case of natural
disasters such as flooding or earthquakes. In addition, it may help in content-
based indexing of such satellite images.

A very limited number of articles exist in this particular direction. However,
a lot of work has been done on sub-problems, such as terrain classification, that
could be part of a geographical object detection system.

A system capable of detecting objects —such as chairs, cars, tables— which
are large with respect to the image they appear in is described in [12]. It uses
multiple cooperating, negotiating agents. No learning mechanism is used.

In [8], a system capable of extracting objects and regions such as roads, lakes
and fields from aerial images is presented. It uses a few agents or specialists
which are trained using a corpus-based learning mechanism.

Neural networks are used in [4] to classify pixels in LANDSAT images. [5]
uses spatial regularities to do an unsupervised terrain classification. This kind of
systems tend to give visually imperfect results: [2] proposes a rule-based system
to improve the results of these classifications, but uses data which is not available
to our system, such as terrain elevation.

* This author is also with Institut Géographique National; 2-4 av. Pasteur; 94165
Saint-Mandé cedex; France.



A previous approach [6] was developed at the SIP-CRIP5 center using only
geometric models of bridges and roundabouts. It turned out not to be totally
satisfying.

In contrast to [6], we wanted to incorporate radiometry —and in particular
texture— into the detection process, and to use learning methods so that the
system would be more adaptable.

2 System overview

We present a set of techniques and methodologies to automatically detect bridges
on small high-resolution pan-chromatic satellite images. These are real images,
provided by the French space agency (CNES), which feature bridges in differ-
ent positions, orientations and sizes, and of different kinds (road over water,
road over road, walkway over road, rail over water, ...). Modeling the “bridge”
concept turns out to be a very difficult task.

Bridges appear together with other complex objects in these images, such
as roundabouts, buildings, and road crossings. In addition, we not only want to
decide the presence or absence of a bridge in an image, but also to determine its
position, size and orientation.

These detection techniques rely on radiometric features and neural networks
to classify each pixel into several terrain types, and fixed rules to find bridges in
this classification.

We produced a hybrid system: a bottom-up part uses (mainly) texture anal-
ysis, neural networks and a voting mechanism to classify each image pixel into
terrain classes: water, road, green, ... A top-down part uses fixed rules to detect
bridges given that classification. To detect the bridges in an image (see figure 1):

1. a certain number of textural and geometric parameters are calculated for
each pixel in the image (Sect. 3);

2. for each pixel, the set of parameters corresponding to it are fed into a neural
network. This network tries to determine the kind of terrain the pixel belongs
to (Sect. 4). The response is noisy and imperfect; a post-processing phase
tries to improve it (Sect. 4.3);

3. a set of subroutines look for regions of a certain type and dimensions, ac-
cording to some manually-produced detection rules (Sect. 5).
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Fig. 1. processing steps



This article is structured as follows: first Sect. 3 describes the extraction of
radiometric and geometric features , terrain type analysis is presented on Sect. 4,
and detection rules on Sect. 5. Evaluation of the system’s performances can be
found on Sect. 6. In Sect. 7 we give some directions for future research. Some
conclusions close the main part of this article.

3 Low-Level Feature Extraction

In the first step of the detection process, we calculate a feature vector field for
the source image. Each feature vector describes the neighborhood of one pixel
using textural, radiometric and geometric attributes.

The original image, the original image with histogram equalization, and a
denoised version are included into the feature vector field. The feature vector
contains, in addition, the following parameters:

1. Intensity gradient (module and argument) calculated using Deriche’s method
for several values of . Using different values of « gives us an edge detection
at different levels of detail.

2. Entropic structure: This parameter [1] gives the level of structuration on
the neighborhood of a pixel. It allows us to distinguish among homogeneous
areas, areas structured by man-made constructions, and unstructured areas
(see appendix A).

3. Shadow predicate: This parameter (adapted from [1]) indicates which pixels
belong to “shadow” areas. This is done by finding a “shadow threshold” from
the position of the first local minimum in the intensity histogram.

4. First-order texture parameters: The mean u, entropy, energy, variance o2,
skewness and kurtosis of that histogram, and a variation coefficient ¢, =
|o|/u, of the first-order intensity histograms.

5. Texture signal activity.

6. Local histograms.

7. Fourier transform texture parameters: The maximum, mean, root-mean-
square and variance, of the amplitude of the complex Fourier transform on
a square neighborhood of each pixel.

8. Gray-level difference texture parameters (see appendix A).

9. Region size and compactness. For four different sets of parameters, each
giving different levels of detail, we segment the original image into regions.
We use, as image parameters, the area and compactness of the region each
pixel belongs to.

4 Terrain Classification

After the feature vector field for an image has been calculated, we use a neural
network to try to determine which type of terrain each pixel belongs to. For this
particular application, we chose the following terrain types: water, vegetation,



building, railroad, road, bridge and roundabout.! Of course we do not expect to
detect bridges at this step, we just want to detect pixels that locally, look like
belonging to a bridge. Each feature vector for an image is fed to a neural network
in succession. This neural network has 8 outputs, one for each terrain type (there
are two classes for roundabout terrain). The network sets each output to a real
value in [0, 1], higher values meaning higher “confidence” that the pixel belongs
to that terrain type.

The Stuttgart Neural Network Simulator (SNNS) has been used to train
and run a 4-layer feed-forward neural network with 107 input neurons, 39 hid-
den neurons on the first hidden layer, 20 on the second, and 8 output neurons,
fully connected. The parameters of the RPROP learning algorithm (resilient
back-propagation) have been set to Ag = 0.2, Apax = 50 and no weight decay.
Neurons had logistic activation functions; weights and biases were randomly
initialized with a ¢/(—1, 1) uniform distribution, and training patterns were ran-
domly permuted. These parameters were determined empirically.

4.1 Training the Neural Network

A set of images containing bridges, roundabouts and counterexamples, provided
by CNES (the French space agency) has been manually labeled. For cross-
validation, we divided our images into three homogeneous groups, a, b and c.

Then training on three networks has been performed using two groups as
training sets and the remaining group as validation set (on one network we used
a and b for training, on another we used a and ¢, and on the last one we used
b and c as training data). After 200 training iterations, we obtained validation
error rates of 0.222, 0.212 and 0.223. Error rates are given in root-mean-square
error (RMSE) per output neuron (see appendix A). For the rest of this project,
we selected one of the three networks.

These error rates look large, but are acceptable because we do not need to
obtain a perfect detection at this step and because errors are distributed in a
way that makes the results satisfactory. See some examples in Fig. 2.

4.2 Multiple Resolutions

This system is able to work with images taken at different resolutions, if all
of them are present in the training set: The neural network module should be
capable of learning characteristic features for different resolutions without mod-
ification. We then scale the results of the neural network so that the following
phases operate on images all at the same resolution. Scaling must be done at
this point and not before, because images at different resolutions have different
texture characteristics.

! In the first stages of this project we also wanted to automatically detect roundabouts.
However, we were not supplied with enough training images for that.



Fig. 2. sample neural network output; top: source images, bottom: network output
(darker pixels represent stronger responses); from left to right, example of bridge, rail-
road, road, building and water output channels

4.3 Results Improvement and Voting Phase

The results of the neural network are noisy, fuzzy and full of holes and other
artifacts. To improve them,

1. each channel (corresponding to one terrain type) is smoothed by convolution
with a Gaussian mask, and then thresholded;

2. in a neighborhood of each pixel, we calculate a weighted histogram of terrain
types. We weight each pixel in the neighborhood based on its distance from
the base pixel and its terrain type. For each pixel, the terrain type with
higher histogram count wins the “voting”; finally

3. we further regularize the resulting regions by mathematical morphology
opening and closing operations, and by removing small regions.

5 Rule-Based Detection

The final step towards bridge detection, once we have a good classification of
pixels into terrain types as given by the neural network and the vote procedure,
is to apply a certain number of “detection rules” to that terrain classification.

These manually-produced rules match particular combinations of regions of a
certain type and geometry, returning a possible bridge location, dimensions and
orientation. We give here an informal description of some of them. Expressions
such as “large” or “near” are in fact translated into hard thresholds, but this
would be a good place to put fuzzy logic in. See [10] for the formal definition of
these rules and for the specific threshold values.

1. Two large regions of water or rail terrain (same type for both regions) are
separated by a narrow and long strip. This strip is a bridge.
2. One large and narrow region of bridge terrain is a bridge.



3. There is a narrow and long region of bridge or road terrain separating two
large regions of water or rail terrain (same type for both regions). This strip
is a bridge.

4. Two regions of road terrain, long and narrow, are separated by less than
a certain distance. Additionally, they are aligned. There is a bridge at the
middle of the separation between the two regions.

5. We apply rule (4) not to road terrain, but to the terrain channel resulting
of taking all road and bridge terrain and removing any water, vegetation or
rail intersecting it.

6. One long and narrow region of road or bridge terrain intersects a very narrow
strip of road or bridge terrain —both regions of different type. Both regions
are roughly orthogonal. Then there is a bridge at the intersection.

See Fig. 3 for some examples.
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Fig. 3. detection rules; top: input to the detection rules (black=bridge, gray=green,
vertical=railroad, horizontal=road, crosses=water), bottom: corresponding source im-
ages and detected bridges; these bridges are detected by (from left to right) rule 1, rule
2, rules 1 and 3, rule 4, rules 4 and 5

6 Evaluation

Evaluation is performed on a set of small (100 x 100 and 200 x 200 pixels),
gray-level, high-resolution satellite images (Ikonos-2 images at 1m? or 16 m?
per pixel) containing bridges, roundabouts and counterexamples (objects that
look like bridges or roundabouts, but are not). The complete system using these
techniques processes input images at one to two minutes per image on a 900 MHz
Pentium III computer.

Performance of the whole system has been evaluated by running the detection

process for each image in our database.



Table 1 gives the number of images with scores of correct detections (real
bridges that the system detects) and false alarms for a typical set of parameters.

A large part (43%) of our images were of low quality (fuzzy images, images
where not even a human observer could decide on the presence of a bridge,
bad lightning or sensor saturation) or of significantly lower resolution than the
others (see Fig. 4). Bad classification by the neural network module caused 29%
of the errors. Low image quality caused 41% of the errors. Because of the strong
effect of abnormally low image quality on the system’s performances, we also
give results taking into account only good-quality images.

Fig. 4. Low quality images

Table 1. system evaluation with the final image set

whole set  good quality

total images 254 146
images with bridges 99 41
correct bridge detection (over img. with bridges) 21% 41.5%
false bridge detection (over all images) 71% 5.5%

The system correctly processes 70.5% of all images. It correctly processes 21%
of images containing bridges, and 85% of images containing false bridges (objects
resembling bridges). This performance is satisfactory given the experimental
nature of this system and the difficulty to model such a complex concept as
bridge. Besides, all validation test have been made on real images, often of very
poor quality.

The system is clearly biased towards under-detection. If this is not the desired
behavior, we can change that by modifying the weights in the vote process and
the thresholds in the detection rules.



7 Suggestions for Future Research

We present in this section some suggestions for future research on the area of
this project.

7.1 Automatic Rule Construction

A technically more interesting approach to the top-down detection part would be
to use, there too, learning methods instead of fixed, human-programmed rules.

We tried to use mobile, situated agents endowed with a learning mechanism.
This novel approach (we could not find references on similar work; but see [3]
for a system using non-mobile, non-situated multi-agent systems) is inspired by
reinforcement learning methods used in the Animat Approach to robotics [7,
and others]. Robots move and act in their environment, of which they have a
partial knowledge given by their sensors. Their actions have an effect on the en-
vironment, which in turn produces reward or punishment stimuli for the robots.

We programmed software agents that could move on an artificial environ-
ment which was in fact the feature vector field described in Sect. 3. Agents are
“located” on pixels on the image. Their “sensors” perceive the feature vector at
that position only. Agents may move or classify the current pixel. During learn-
ing, the environment reacts to a classification decision by rewarding or punishing
the agent, depending on its correctness and other criteria, such as coverage or
speed.

As a proof-of-concept experiment, we gave these agents the task of improving
the results of the neural networks, given these results and the feature vector field
for an image. However, the experiments were a failure. Analysis of the system’s
output suggests that there may be problems in the fitness function used in the
genetic programming-based learning mechanism.

We believe there is still plenty of room for further research into this direction.
Automatic rule construction using data mining techniques, such as decision trees,
should also be explored.

7.2 Integration with Geometry-Based System

Related work at the SIP-CRIP5 laboratory [6] was made about using geometric
features and models to detect bridges and roundabouts in satellite images, with
some success. Both systems can be combined by using the output of [6] could be
used as an additional channel to the feature vector field of this system. In that
way, our terrain classification would be based not only on radiometry attributes,
but also on higher-level geometric properties.

7.3 Larger-Scale Descriptors

This system relies on image descriptors calculated on small neighborhoods of
each pixel. We found that it was difficult, even for a human, to detect bridges



and roundabouts using local information only, as our system was requested to
do. Combining the system with larger-scale detectors such as detectors for road
networks [9] may help. The output of such detectors can be used as an additional
component of the feature vector field.

8 Conclusion

Our initial goal was to develop a set of techniques and methods to automati-
cally detect bridges in high-resolution satellite images. We have presented several
such techniques: terrain classification by neural networks operating on textural
parameters, learning mobile agents, and static detection rules. We have imple-
mented and integrated them in a running system which can easily cooperate
with other approaches such as a geometry-based approach [6]. We have evalu-
ated its performance, with satisfactory results. We believe that our techniques
are easily generalizable to other kinds of objects; however we have not conducted
experiments to show it.

We have shown that using texture information to classify terrain areas, and
combining the resulting regions using geometrical properties, is enough to detect
some kinds of bridges. We have experimented, unsuccessfully, with learning mo-
bile agents as a tool for object detection and image enhancement, and we have
pointed to future experiments to be done on that area.
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A Some Definitions

Entropic Structure. Let G be the gradient vector field of the image, in our
case calculated using Deriche’s method with a = 0.65, r a neighborhood radius
and t1,t> two thresholds. Let D be the domain of G. For a pixel p, we find
Np :={z: 2z € D,||lz —p|| <rn|G)|| > t}. If card N, < t9, p is deemed
to belong to a homogeneous area. Otherwise, its entropic structuration is the
entropy of the histogram h,(i) (see [1]). We used r = 8, t; = 4000 and ¢, = 25.

Gray-Level Difference Texture Parameters. For each pixel p we take a
square neighborhood N (of size 15 x 15 in our case) centered on p. For each one
of the eight offset vectors {v;; = (4,7) : 4,5 € {0,1,2},i+ j > 0}, we select the
pairs of pixels in NV separated by v;;, Si; = {(a,b) : @ € N,b € N,a+v;; = b}, and
calculate, for each such set of pairs of pixels, the histogram h;; of the differences
between the intensity value at a and at b. For each h;; we compute the mean,
energy (also called second angular moment in this context), entropy, variance,
skewness, kurtosis, contrast, and inverse differential moment (see [11]).

RMSE for Neural Networks. This error metric is computed as follows: for a
validation set of N samples, and a network of K output neurons, let R(n, k) be
the output of the k-th output neuron on the n-th input pattern, and let D(n, k)
be the desired output in the same conditions. Then,

N K
RMSE? = —— 3" " ||R(n, k) — D(n, k)| (1)
" NK ’ ’ ’
n=1 k=1

Since neurons have an output in [0, 1], the minimum RMSE is 0 (perfect learn-
ing), and the theoretically worst RMSE is 1.



