Surgery formulae for finite type invariants of rational homology 3–spheres
Christine Lescop

To cite this version:

HAL Id: hal-00136177
https://hal.archives-ouvertes.fr/hal-00136177
Submitted on 12 Mar 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Surgery formulae for finite type invariants of rational homology 3-spheres

Christine Lescop
Institut Fourier, UJF Grenoble, CNRS

Prépublication de l’Institut Fourier n° 697 (2007)
http://www-fourier.ujf-grenoble.fr/prepublications.html

Abstract

We first present four graphic surgery formulae for the degree n part Z_n of the Kontsevich-Kuperberg-Thurston universal finite type invariant of rational homology spheres.

Each of these four formulae determines an alternate sum of the form

$$
\sum_{I \subset N} (-1)^{|I|} Z_n(M_I)
$$

where N is a finite set of disjoint operations to be performed on a rational homology sphere M, and M_I denotes the manifold resulting from the operations in I. The first formula treats the case when N is a set of $2n$ Lagrangian-preserving surgeries (a Lagrangian-preserving surgery replaces a rational homology handlebody by another such without changing the linking numbers of curves in its exterior). In the second formula, N is a set of n Dehn surgeries on the components of a boundary link. The third formula deals with the case of $3n$ surgeries on the components of an algebraically split link. The fourth formula is for $2n$ surgeries on the components of an algebraically split link in which all Milnor triple linking numbers vanish. In the case of homology spheres, these formulae can be seen as a refinement of the Garoufalidis-Goussarov-Polyak comparison of different filtrations of the rational vector space freely generated by oriented homology spheres (up to orientation-preserving homeomorphisms).

The presented formulae are then applied to the study of the variation of Z_n under a p/q-surgery on a knot K. This variation is a degree n polynomial in q/p when the class of q/p in \mathbb{Q}/\mathbb{Z} is fixed, and the coefficients of these polynomials are knot invariants, for which various topological properties or topological definitions are given.

Keywords: finite type invariants, 3-manifolds, Jacobi diagrams, clovers, Kontsevich-Kuperberg-Thurston configuration space invariant, claspers, Casson-Walker invariant, Goussarov-Habiro filtration, surgery formulae, Y-graphs

2000 Mathematics Subject Classification: 57M27 57N10 57M25 55R80
1 Introduction

In this article, we shall focus on the real finite type invariants of homology 3-spheres in the sense of Ohtsuki, Goussarov and Habiro, and on the topological properties of the surgery formulae that these invariants satisfy.

M. Kontsevich proposed a topological construction for an invariant Z of oriented rational homology 3-spheres using configuration space integrals. G. Kuperberg and D. Thurston proved that Z is a universal finite type invariant for homology 3-spheres, in the sense of Ohtsuki, Goussarov and Habiro. Like the LMO invariant, the Kontsevich-Kuperberg-Thurston invariant $Z = (Z_n)_{n \in \mathbb{N}}$ takes its values in a space of Jacobi diagrams $A = \prod_{n \in \mathbb{N}} A_n$, and any real degree n invariant ν of homology 3-spheres is obtained from the Kontsevich-Kuperberg-Thurston invariant $(Z_i)_{i \in \mathbb{N}}$ by a composition with a linear form that kills the Z_i, for $i > n$.

We shall first prove four formulae for Z_n, for $n \in \mathbb{N}$. Each of these four formulae will determine an alternate sum of the form

$$\sum_{i \in N} (-1)^i Z_n(M_i)$$

where N is a set of disjoint operations to be performed on M, and M_i denotes the manifold resulting of the operations in I. Our first formula, Theorem 3.1, will be a mere alternative statement of the main theorem of [A2], and will treat the case when N is a set of $2n$ Lagrangian-preserving surgeries (a Lagrangian-preserving surgery replaces a rational homology handlebody by another such without changing the linking numbers of curves in its exterior). In our second formula, Theorem 4.1, N will be a set of n rational surgeries on the components of a boundary link. Our third formula, Theorem 4.2 will deal with the case of $3n$ surgeries on the components of an algebraically split link. Our fourth formula, Theorem 4.3, will be for $2n$ surgeries on the components of an algebraically split link in which all Milnor triple linking numbers vanish.

In the case of integral homology spheres, these results can be seen as refinements of the Garoufalidis-Goussarov-Polyak comparison of the filtrations of the vector space generated by homology spheres, with respect to algebraically split links, boundary links or Lagrangian-preserving surgeries [GGP, AL].

As it was proved by Garoufalidis in [Ga], a degree n finite type invariant ν of homology spheres satisfies a surgery formula that describes its variation under $1/r$-surgery on a knot K as

$$\nu(M(K;1/r)) - \nu(M) = \sum_{i=1}^{n} \nu^{(i)}(K \subset M) r^i$$

where $\nu^{(i)}$ is a finite type knot invariant in the Vassiliev sense for knots in S^3 as defined in [B-N].

Since all the real finite type invariants of homology 3-spheres can be obtained from the universal LMO invariant by composition with a linear form on the space of Jacobi diagrams [LMO, A3], and since the LMO invariant is defined using the Kontsevich integral and surgery presentations of manifolds, the knot invariants $\nu^{(i)}$ can be explicitly given in terms of the Kontsevich integral of surgery presentations of the knots. See also the Arhus construction [A1, A2, A3].

We seek for a better topological understanding of the invariants $\nu^{(i)}$, and we shall relate some of them to the topology of Seifert surfaces of the knots. For example, for any degree n invariant ν, we give a formula in terms of the entries of the Seifert matrix and the weight system of ν for the leading coefficient $\nu^{(n)}$ of the surgery polynomial. See Theorem 5.1. We shall also prove that $\nu^{(i)}$ is of degree less than $2n$ for any $i < n$. This specifies a result of Garoufalidis and Habegger who proved that $(\nu(M(K;1)) - \nu(M))$ is a degree $2n$ knot invariant with the same weight system as a degree $2n$ knot invariant induced by the Alexander polynomial, by using the LMO invariant [GH].

Some of the results proved in this article can be refined in the extensively studied case of the Casson-Walker invariant $\lambda = W_1 \circ Z_1$, where $W_1(\bigotimes) = 2$, that satisfies the well-known formula, for
a knot K in a homology sphere M,

$$\lambda(M(K;p/q)) - \lambda(M) = \frac{q}{p} \lambda'(K) + \lambda(L(p,-q))$$

where $\lambda'(K)$ is half the second derivative of the normalized Alexander polynomial of K evaluated at 1 and $L(p,-q)$ is the lens space obtained by p/q-surgery on the unknot. We shall prove some graphical formulae for $\lambda'(K)$ and for its variation under surgeries on disjoint algebraically unlinked knots in Propositions 6.1, 6.2, 6.3.

Next, we shall concentrate on the case of the degree 2 invariant $\lambda_2 = W_2 \circ Z_2$, where $W_2(\bigtriangledown) = 1$ and $W_2(\bigtriangledown \bigtriangledown) = 0$. The invariants λ and λ_2 generate the vector space of real-valued invariants of degree lower than 3 that are additive under connected sum. We shall prove that λ_2 satisfies the surgery formula

$$\lambda_2(M(K;p/q)) - \lambda_2(M) = \lambda''_2(K) \left(\frac{q}{p}\right)^2 + w_3(K) \frac{q}{p} + c(q/p) \lambda(K) + \lambda_2(L(p,-q))$$

for a knot K in a homology sphere M, where $c(q/p)$ only depends on q/p modulo \mathbb{Z}, λ''_2 is explicitly given in Theorem 5.1, and w_3 is a knot invariant, for which we shall prove various properties. These properties include a crossing change formula, Proposition 7.2, and a formula for genus one knots, Proposition 7.3. For knots in S^3, w_3 is the degree 3 knot invariant that changes sign under mirror image, and that maps the chord diagram with three diameters to (-1). In his thesis [Au], Emmanuel Auclair independently obtained a formula for w_3 in terms of topological invariants of curves of an arbitrary Seifert surface of K, that is fortunately equivalent to Proposition 7.3 in the genus one case.

The article is organized as follows. The main results are stated precisely without proofs from Section 3 to Section 7. The proofs occupy the following sections. Questions and expected generalizations of the proved results are mentioned at the end.

2 The Kontsevich-Kuperberg-Thurston universal finite type invariant Z

2.1 Jacobi diagrams

Here, a Jacobi diagram Γ is a trivalent graph Γ without simple loop like \bigcirc. The set of vertices of such a Γ will be denoted by $V(\Gamma)$, its set of edges will be denoted by $E(\Gamma)$. A half-edge e of Γ is an element of

$$H(\Gamma) = \left\{ (c = (v(c); e(c))|v(c) \in V(\Gamma); e(c) \in E(\Gamma); v(c) \in e(c)) \right\}.$$

An automorphism b of Γ such that for any $c, c' \in H(\Gamma)$,

$$v(c) = v(c') \Rightarrow v(b(c)) = v(b(c')) \text{ and } e(c) = e(c') \Rightarrow e(b(c)) = e(b(c')).$$

The number of automorphisms of Γ is denoted by $\sharp Aut(\Gamma)$. For example, $\sharp Aut(\bigcirc) = 12$. An orientation of a vertex of such a diagram Γ is a cyclic order of its three half-edges that meet at that vertex. A Jacobi diagram Γ is oriented if all its vertices are oriented (equipped with an orientation). The degree of such a diagram is half the number of its vertices.

Let $\mathcal{A}_n = \mathcal{A}_n(\emptyset)$ denote the real vector space generated by the degree n oriented Jacobi diagrams, quotiented out by the following relations AS and IHX:

$$\text{AS} : \bigtriangledown \bigtriangledown + \bigtriangleup \bigtriangleup = 0, \text{ and } \text{IHX} : \bigtriangledown \bigtriangledown + \bigtriangledown \bigtriangleup + \bigtriangleup \bigtriangledown = 0.$$
Each of these relations relate diagrams which can be represented by planar immersions that are identical outside the part of them represented in the pictures. Here, the orientation of vertices is induced by the counterclockwise order of the half-edges. For example, AS identifies the sum of two diagrams which only differ by the orientation at one vertex to zero. $A_0(\emptyset)$ is equal to \mathbb{R} generated by the empty diagram.

2.2 The Kontsevich-Kuperberg-Thurston universal finite type invariant Z

Let Λ be \mathbb{Z}, $\mathbb{Z}/2\mathbb{Z}$ or \mathbb{Q}. A Λ-sphere is a compact oriented 3-manifold M such that $H_k(M; \Lambda) = H_*(S^3; \Lambda)$. A Λ-sphere is also called a homology sphere while a rational homology sphere is a \mathbb{Q}-sphere. Following Witten, Axelrod, Singer, Kontsevich, Bott and Cattaneo, Greg Kuperberg and Dylan Thurston constructed invariants $Z_n = (Z_{KKT})_n$ of oriented \mathbb{Q}-spheres valued in $A_n(\emptyset)$ and they proved that their invariants have the following property \cite{KKT}. See also \cite{L3}.

Theorem 2.1 (Kuperberg-Thurston)\cite{KKT} An invariant ν of \mathbb{Z}-spheres valued in a real vector space X is of degree $\leq n$ if and only if there exist linear maps

$$
\phi_k(\nu) : A_k(\emptyset) \to X,
$$

for any $k \leq n$, such that

$$
\nu = \sum_{k=0}^{n} \phi_k(\nu) \circ Z_k.
$$

A real finite type invariant of \mathbb{Z}-spheres is a topological invariant of \mathbb{Z}-spheres valued in a real vector space X which is of degree less than some natural integer n. Theorem 2.1 can be used as a definition of degree $\leq n$ real-valued invariants of \mathbb{Z}-spheres.

A degree $\leq n$ invariant ν is of degree n if $\phi_n(\nu) \neq 0$. In this case, $\phi_n(\nu)$ is the weight system of ν and is denoted by W_ν.

Let $p^\circ : A_k(\emptyset) \to A_k(\emptyset)$ be the canonical linear projection of $A_k(\emptyset)$ onto its subspace $A_k^c(\emptyset)$ generated by the connected diagrams, such that p° maps the non-connected diagrams to 0 and the restriction of p° to $A_k^c(\emptyset)$ is of course the identity. Then $Z_k^c = p^\circ \circ Z_k$ is additive under connected sum. Furthermore any real-valued degree n invariant belongs to the algebra generated by the $(\phi_{k,i} \circ Z_k^c)_{k \leq n}$ for linear forms $\phi_{k,i}$ generating the dual of $A_k^c(\emptyset)$.

Remark 2.2 The above definition coincides with the Ohtsuki definition of real finite type invariants \cite{O1} and references therein for more discussions about the various concepts of finite-type invariants.

3 Lagrangian-preserving surgeries

Conventions: Unless otherwise mentioned, manifolds are compact and oriented. Boundaries are always oriented with the outward normal first convention. The normal bundle $N(V)$ of an oriented submanifold V in an oriented manifold M is oriented so that the tangent bundle T_xM of the ambient manifold M at some $x \in V$ is oriented as $T_xM = N_xV \oplus T_xV$. If V and W are two oriented transverse submanifolds of an oriented manifold M, their intersection is oriented so that the normal bundle of $T_{xV}(V \cap W)$ is the sum $N_xV \oplus N_xW$. If the two manifolds are of complementary dimensions, then the sign of an intersection point is $+1$ if the orientation of its normal bundle coincides with the orientation of the ambient space that is equivalent to say that $T_xM = T_xV \oplus T_xW$. Otherwise, the sign is -1.

5
If V and W are compact and if V and W are of complementary dimensions in M, their algebraic intersection is the sum of the signs of the intersection points, it is denoted by $(V, W)_M$.

Recall that the linking number $lk(J, K)$ of two disjoint knots J and K in a rational homology sphere M is the algebraic intersection of J with a surface Σ_K bounded by K if K is null-homologous, that $lk(J, J)$ is linear on $H_1(M \setminus J)$, and that $lk(J, K) = lk(K, J)$.

The Milnor triple linking number $\mu(K_1, K_2, K_3)$ of three null-homologous knots K_1, K_2, K_3 that do not link each other algebraically in a rational homology sphere M may be defined, as the algebraic intersection of three Seifert surfaces $\Sigma_2, \Sigma_1, \Sigma_3$ of these knots in the complement of the other ones.

$$\mu(K_1, K_2, K_3) = -\langle \Sigma_1, \Sigma_2, \Sigma_3 \rangle = -\langle \Sigma_1 \cap \Sigma_2, \Sigma_3 \rangle = -lk(K_3, \Sigma_1 \cap \Sigma_2).$$

We now describe part of the behaviour of the Z_n under the Lagrangian surgeries defined below. A genus g \mathbb{Q}-handlebody is an (oriented, compact) 3-manifold A with the same homology with rational coefficients as the standard (solid) handlebody H_g.

$$H_g = \begin{array}{c}
\includegraphics[width=0.5\textwidth]{handelbody.png}
\end{array}$$

Note that the boundary of such a \mathbb{Q}-handlebody A is homeomorphic to the boundary $(\partial H_g = \Sigma_g)$ of H_g.

For a \mathbb{Q}-handlebody A, \mathcal{L}_A denotes the kernel of the map induced by the inclusion:

$$H_1(\partial A; \mathbb{Q}) \longrightarrow H_1(A; \mathbb{Q}).$$

It is a Lagrangian of $(H_1(\partial A; \mathbb{Q}), \langle , \rangle_{\partial A})$, we call it the Lagrangian of A. A Lagrangian-preserving surgery or LP-surgery (A, A') is the replacement of a \mathbb{Q}-handlebody A embedded in a 3-manifold by another such A' with identical (identified via a homeomorphism) boundary and Lagrangian.

There is a canonical isomorphism

$$\partial_{\text{MV}}: H_2(A \cup_{\partial A} - A'; \mathbb{Q}) \rightarrow \mathcal{L}_A$$

that maps the class of a closed surface in the closed 3-manifold $(A \cup_{\partial A} - A')$ to the boundary of its intersection with A. This isomorphism carries the algebraic triple intersection of surfaces to a trilinear antisymmetric form $\mathcal{I}_{AA'}$ on \mathcal{L}_A.

$$\mathcal{I}_{AA'}(a_i, a_j, a_k) = \langle \partial_{\text{MV}}^{-1}(a_i), \partial_{\text{MV}}^{-1}(a_j), \partial_{\text{MV}}^{-1}(a_k) \rangle_{A \cup - A'}$$

Let (a_1, a_2, \ldots, a_g) be a basis of \mathcal{L}_A, and let z_1, \ldots, z_g be homology classes of ∂A, such that (z_1, \ldots, z_g) is dual to (a_1, a_2, \ldots, a_g) with respect to $\langle , \rangle_{\partial A}$ $(\langle a_i, z_j \rangle_{\partial A} = \delta_{ij})$. Note that (z_1, \ldots, z_g) is a basis of $H_1(A; \mathbb{Q})$. Represent $\mathcal{I}_{AA'}$ by the following combination $T(\mathcal{I}_{AA'})$ of tripods whose three univalent vertices form an ordered set:

$$T(\mathcal{I}_{AA'}) = \sum_{\{i,j,k\} \in \{1,2,\ldots, g_A\}; i < j < k} \mathcal{I}_{AA'}(a_i, a_j, a_k) \begin{array}{c}
\begin{array}{c}
z_k \\
z_j
\end{array}
\end{array}$$

When G is a graph with $2n$ trivalent vertices and with univalent vertices decorated by disjoint curves of M, define its contraction $(\langle G \rangle)_n$ as the sum that runs over all the ways p of gluing the univalent vertices two by two in order to produce a vertex-oriented Jacobi diagram G_p

$$(\langle G \rangle)_n = \sum_p \ell(G_p)[G_p]$$
where ℓ(Gp) is the product over the pairs of glued univalent vertices, with respect to the pairing p, of the linking numbers of the corresponding curves. The contraction ⟨⟨⟩⟩ is linearly extended to linear combination of graphs, and the disjoint union of combinations of graphs is bilinear.

A k–component Lagrangian-preserving surgery datum in a rational homology sphere M is a datum (M; (Ai, A′i)i∈{1,...,k}) of k disjoint Q–handlebodies Ai, for i ∈ {1,...,k}, in M, and k associated LP-surgeries (Ai, A′i).

Theorem 3.1 Let

\[(M; (A_i, A'_i)_{i \in \{1, \ldots, 2n\}})\]

be a 2n–component Lagrangian-preserving surgery datum in a rational homology sphere M. For I ⊂ {1, ..., 2n}, let Mi denote the manifold obtained from M by replacing Ai by A′i for all i ∈ I. Then

\[\sum_{I \subset \{1, \ldots, 2n\}} (-1)^{2I}Z_n(M_I) = \langle \bigcup_{i \in \{1, \ldots, 2n\}} T(I_{A_i, A'_i}) \rangle_n.\]

We shall prove that this formula is equivalent to the formula of [4] in Section 8.

Let F0 be the rational vector space freely generated by the oriented Q-spheres viewed up to oriented homeomorphisms. For a k–component Lagrangian-preserving surgery datum (M; (Ai, A′i)i∈{1,...,k}) in a rational homology sphere M, define

\[[M; (A_i, A'_i)_{i \in \{1, \ldots, k\}}] = \sum_{I \subset \{1, \ldots, k\}} (-1)^{2I}M_I \in F_0\]

and define Fk as the subspace of F0 generated by elements of F0 of the above form. Then, it easily follows from the above theorem that Zn(F2n+1) = 0 where Zn is linearly extended to F0. For two elements x and y of F0, we write x ∼ y to say that x − y ∈ F2n+1. Thus, if x ∼ y, then Zn(x) = Zn(y).

The intersection of this filtration with the rational vector space freely generated by the oriented Z-spheres is the Goussarov-Habiro filtration. (The inclusion of the Goussarov-Habiro filtration (FkGH)k in the intersection is obvious, the other one comes from the fact that FkGH is the intersection of the kernels of the Z for 2i < k because of the universality of Z.)

4 Surgeries on algebraically split links

Let L(p, q) be the lens space obtained from S3 by p/q-surgery on a trivial knot. (The standard conventions for surgery coefficients are recalled in the beginning of Section 8.) When L = (K; p/q) ∈ N is a given link whose components are equipped with surgery coefficients in a rational homology sphere M, for I ⊂ N, let

\[M_I = M(K; p_i/q_i)_{i \in I} \# L(p, q)_{j \notin I}\]

denote the connected sum of the manifold M(K; p/q) ∈ N obtained by surgery on (K; p/q) ∈ I and the lens spaces L(p, q) for j ∉ I.

Set

\[[M; (K_i; p_i/q_i)_{i \in N}] = \sum_{I \subset N} (-1)^{2I}M_I.\]

Note that the connected sums with lens spaces are trivial when the p are 1.

The invariant Zn is linearly extended to F0. By the additivity of the connected part Zn of Zn under connected sum, if N has more than one element,

\[Z_n^c([M; (K_i; p_i/q_i)_{i \in N}]) = Z_n^c\left(\sum_{I \subset N} (-1)^{2I}M(K_i; p_i/q_i)_{i \in I}\right)\]
and the connected sums with lens spaces do not appear in this case either.

In Section 5, we shall see how Theorem 3.1 easily implies the following surgery formula on n-component boundary links.

Theorem 4.1 Let n and r be elements of \mathbb{N}. Consider a link (K_1, K_2, \ldots, K_r) where all the K_i bound disjoint oriented surfaces Σ_i. Let $\frac{p_i}{q_i}$ be a surgery coefficient for K_i, and let $(x_j^1, y_j^1)_{j=1,\ldots,g(\Sigma^i)}$ be a symplectic basis for the Seifert surface Σ^i. Define

$$I(\Sigma^i) = \sum_{(j,k) \in \{1,2,\ldots,g(\Sigma^i)\}^2} x_j^1 y_j^1 (y_k^1)^+(x_k^1)^+.$$

Then

$$Z_n \left([M; (K_i; p_i/q_i)_{i \in \{1,\ldots,r\}}] \right) = 0$$

$$= \frac{1}{2^r} \langle \bigcup_{i=1}^{\lfloor \frac{r}{2} \rfloor} \left\{ \left(\begin{array}{c} -\frac{p_i}{q_i} \\ I(\Sigma_i) \end{array} \right) \right\} \rangle$$

if $r > n$.

Definition 4.2 A link L in a 3-manifold is said to be *algebraically split* if any component of L is null-homologous in the exterior of the other ones (i.e. if any component of L bounds a surface in the complement of the other components of L).

An edge-labelled Jacobi diagram is a Jacobi diagram Γ equipped with a bijection from $E(\Gamma)$ to $\{1,2,3,\ldots,3n\}$ for some integer n. Let $D_{e,n}$ be the set of unoriented edge-labelled Jacobi diagrams of degree n. Let $L = (K_i)_{i \in \{1,2,3,\ldots,3n\}}$ be a 3n-component algebraically split link. Let $\Gamma \in D_{e,n}$, orient Γ. To any vertex of Γ, whose incoming edges are labeled by i,j,k to θ does not depend on the orientation of Γ. Let $\theta(\Gamma)$ be the number of components of Γ homeomorphic to \square.

Theorem 4.3 Let n and r be elements of \mathbb{N}. Let $L = (K_i; p_i/q_i)_{i \in \{1,2,3,\ldots,r\}}$ be a (rationally) framed r-component algebraically split link in a rational homology sphere M. Then with the notation above,

$$Z_n \left([M; (K_i; p_i/q_i)_{i \in \{1,\ldots,r\}}] \right) = 0$$

$$= \prod_{i=1}^{\lfloor \frac{r}{2} \rfloor} \frac{2^n}{p_i} \sum_{\Gamma \in D_{e,n}} \frac{\mu(\Gamma)}{2^n} \mu(\Sigma^i)$$

if $r > 3n$.

A 2/3-labelled Jacobi diagram is a degree n Jacobi diagram Γ equipped with an injection ι from $\{1,2,3,\ldots,2n\}$ to $E(\Gamma)$ such that at each vertex two edges of the image of ι meet one edge outside the image of ι. Let $D_{2/3,n}$ be the set of unoriented 2/3-labelled Jacobi diagrams of degree n. Let $(F_i)_{i=1,\ldots,2n}$ be a collection of transverse surfaces that meet pairwise only inside their respective interiors, such that $\langle F_i, F_j, F_k \rangle = 0$ for any $\{i,j,k\} \subset \{1,2,3,\ldots,2n\}$. Let $\Gamma \in D_{2/3,n}$, orient Γ. For a vertex of Γ, whose half-edges belong to edges labelled by (i,j), nothing, with respect to the cyclic order induced by the orientation, assign the intersection curve $F_i \cap F_j$ to the unlabelled half-edge. To any unlabelled edge e that is now equipped with intersection curves $F_i \cap F_j$ and $F_k \cap F_l$ associate the linking number $\ell((F_i)_{i=1,\ldots,2n}; \Gamma; e)$ of $F_i \cap F_j$ and $F_k^+ \cap F_l^+$, where F_k^+ and F_l^+ are parallel copies of F_k and F_l.

Note that there is no need to push the intersection curves by using parallels if F_i, F_j, F_k and F_l are distinct, to define this linking number. If $\{i,j\} = \{k,l\}$, this linking number is the self-linking of the intersection curve that is framed by the surface, up to sign. Now, note that $lk(F_i \cap F_j, F_i^+ \cap F_j^+) =lk(F_i \cap F_j, F_i^+ \cap F_j)$ and that

$$lk(F_i^+ \cap F_j, F_i \cap F_j) - lk(F_i \cap F_j, F_i^+ \cap F_j) = \pm (F_i, F_j, F_k).$$

8
Therefore if the cardinality of \(\{i,j\} \cap \{k,\ell\} \) is 1, the linking number \(\ell((F_i)_{i=1,\ldots,2n}; \Gamma; e) \) is well-defined, too. Define \(\ell((F_i)_{i=1,\ldots,2n}; \Gamma) \) as the product over all the unlabelled edges of \(\Gamma \) of the \(\ell((F_i)_{i=1,\ldots,2n}; \Gamma; e) \).

Note that \(\ell((F_i)_{i=1,\ldots,2n}; \Gamma)\{\Gamma\} \) is independent of the orientation of \(\Gamma \). Let \(\sharp \text{Aut}_{2/3}(\Gamma) \) be the number of automorphisms of \(\Gamma \) that preserve its 2/3-labelling.

Theorem 4.4 Let \(n \) and \(r \) be elements of \(\mathbb{N} \). Let \(L = (K_i; p_i/q_i)_{i \in \{1,2,3,\ldots,r\}} \) be a framed \(r \)-component algebraically split link in a rational homology sphere \(M \) such that for any \(\{i,j\} \subset \{1,2,3,\ldots,r\} \), \(\mu(K_i, K_j, K_k) = 0 \).

Let \((F_i)_{i \in \{1,2,3,\ldots,r\}} \) be a collection of transverse Seifert surfaces for the \(K_i \) where \(F_i \) does not meet the \(K_j \) for \(i \neq j \).

Then with the notation above

\[
Z_n \left(\left[M; (K_i; p_i/q_i)_{i \in \{1,\ldots,r\}} \right] \right) = 0 = \prod_{r=1}^{2n} \frac{q_i}{p_i} \sum_{\Gamma \in \mathcal{D}_{2/3,n}} \frac{\ell((F_i)_{i=1,\ldots,2n}; \Gamma)}{\sharp \text{Aut}_{2/3}(\Gamma)} \{\Gamma\} \quad \text{if } r > 2n
\]

\[
= \left(\prod_{r=1}^{2n} \frac{q_i}{p_i} \sum_{\Gamma \in \mathcal{D}_{2/3,n}} \frac{\ell((F_i)_{i=1,\ldots,2n}; \Gamma)}{\sharp \text{Aut}_{2/3}(\Gamma)} \{\Gamma\} \right) \quad \text{if } r = 2n
\]

where the sum runs over all 2/3-labelled unoriented Jacobi diagrams \(\Gamma \).

When \(M \) is a Z-sphere, when the \(p_i \) are equal to 1, and when \(r \) is greater or equal, than \(n \) for **Theorem 4.1**, than \(2n \) for **Theorem 4.4**, and than \(3n \) for **Theorem 4.3**, the left-hand sides of the equalities of these theorems are in \(\mathcal{F}_{2n}^{\mathcal{L}M} \). Since the degree \(n \) part of the LMO invariant coincides with \(Z_n \) on \(\mathcal{F}_{2n}^{\mathcal{L}M} \), these three theorems hold for the LMO invariant as well, in these cases.

Theorems 4.3 and 4.4 will be proved in Section 11. Their proofs will rely on some clasper calculus performed in Section 10 that will also lead to the following proposition.

Proposition 4.5 Let \(L = (K_i)_{i \in \{1,2,3,\ldots,r\}} \) be an \(r \)-component algebraically split link in a rational homology sphere \(M \). Then there exist transverse Seifert surfaces \(\Sigma_i \) in \(M \setminus (\cup_{j \neq i} K_j) \) for each component \(K_i \) of \(L \) such that, for any triple \((K_i, K_j, K_k)\) of components of \(L \), the geometric triple intersection of the surfaces \(\Sigma_i, \Sigma_j \) and \(\Sigma_k \) is made of \(|\mu(K_i, K_j, K_k)| \) points.

Section 11 also contains an equivalent definition of the Matveev Borromean surgery (or surgery on a Y-graph), see Proposition 10.1.

5 **On the polynomial form of the knot surgery formula**

Recall that for any rational homology sphere \(M, Z_0(M) = 1 \). **Theorem 1.1** implies that for any knot \(K \) that bounds a surface \(F \) in a rational homology sphere \(M \) and for any two coprime integers \(p \) and \(q \) such that \(p \neq 0 \),

\[
Z_1(M; (K; \frac{p}{q})) = Z_1(M) = \frac{1}{2} \left((\sharp(I(F)) \frac{q}{p} + Z_1(L(p, -q)) \right).
\]

We shall see in Section 12 that **Theorem 4.1** also easily implies the following theorem. The first part of this theorem is essentially **[Ga], Prop. 4.1**.

Theorem 5.1 Let \(p \) and \(q \) be coprime integers such that \(p \neq 0 \). Let \(n \in \mathbb{N}, n \geq 1 \). Let \(K \) be a knot that bounds a Seifert surface \(F \) in a rational homology sphere \(M \). Let \(F_i \) be parallel copies of \(F \) for \(i \in \{1, \ldots, n\} \), and let \(L_i \) denote the framed link made of the boundary components of \(\cup_{j=1}^n F_j \), where each component is framed by 1.

Then

\[
Z_n(M; (K; \frac{p}{q + rp})) = Z_n(M) = \sum_{i=0}^{n} Y_{n,q/p}^{(i)}(K < M)(r + \frac{q}{p})^i
\]

for any \(r \in \mathbb{Z} \) where the coefficients \(Y_{n,q/p}^{(i)}(K) \) satisfy the following properties.
\[
Y^{(n)}_{n,q/p}(K) = \frac{(-1)^n}{n!} Z_n([M; L_0]) = \frac{1}{n!2^n} \left(\bigcup_{i \in \{1, \ldots, n\}} I(F^i) \right),
\]

- if \(n \geq 2, \)
 \[
 Y^{(n-1)}_{n,q/p}(K) = \left(\frac{n}{n-1} \right)^{n-1} \left(\left(\frac{n-1}{2} + \frac{q}{p} \right) Z_n([M; L_0]) + Z_n \left(\left[M(K; \frac{p}{q}; L_{n-1}) \right] \right) \right),
 \]

- if \(n \geq 2, \)
 \(p^\ell (Y^{(n-1)}_{n,q/p}) = Y^{(n-1)}_{n,q/p} \) does not depend on \(p \) and \(q, \)

- if \(i \leq n-1, \)
 \(Y^{(i)}_{n,q/p} \) only depends on \(\frac{q}{p} \) mod \(\mathbb{Z}, \)

- if \(U \) bounds a disk in \(M, \)
 then \(Y^{(0)}_{n,q/p}(U \subset M) = 0 \) if \(i > 0 \) and
 \[
 Y^{(0)}_{n,q/p}(U \subset M) = Z_n(M \sharp L(p, -q)) - Z_n(M),
 \]

- \(Y^{(0)}_{n,0}(K \subset M) = 0, \)

- \(Y^{(i)}_{n,q/p}(K \subset M) = (-1)^{i+n} Y^{(i)}_{n,-q/p}(K \subset -M). \)

A singular knot is an immersion of \(S^1 \) in a 3-manifold whose only multiple points are transverse double points like \(X. \)

Such a double point can be removed in a positive way \(X \) or in a negative way \(\bar{X}. \)

Let \(K^s \) be a singular primitive knot in a rational homology sphere with \(k \) double points. Fix a bijection from \(\{1, \ldots, k\} \) to its set of double points. For \(I \subset \{1, \ldots, k\}, \) let \(K_I \) be the desingularisation of \(K^s \) such that the singular points in the image of \(I \) have been removed in a negative way, and the singular points outside the image of \(I \) have become positive. If \(y \) is a knot invariant valued in an abelian group, set

\[
y(K^s) = \sum_{I \subset \{1, \ldots, k\}} (-1)^{|I|} y(K_I).
\]

Remark 5.2 It may happen that we do not know whether \(Z_n(M(K_I; \frac{p}{q+p}) \) is polynomial in \(r \) for a given \(I, \) but that we know that

\[
\sum_{I \subset \{1, \ldots, k\}} (-1)^{|I|} Z_n(M(K_I; \frac{p}{q+p})
\]

is. Then the definition of \(Y^{(i)}_{n,q/p}(K^s) \) extends in an obvious way.

Proposition 5.3 For any singular knot \(K^s \) in a rational homology sphere with \(k \) double points, for any integers \(n, i, q \) and \(p, \) with \(0 \leq i \leq n, \)

- \(Y^{(i)}_{n,q/p}(K^s) = 0 \) if \(k > 2n, \)
- \(Y^{(i)}_{n,q/p}(K^s) = 0 \) if \(k > 2n - 1 \) and if \(i < n. \)

In other words, \(Y^{(i)}_{n,q/p} \) is a knot invariant of degree at most \(2n \) with respect to the crossing changes, and if \(i < n, \) \(Y^{(i)}_{n,q/p} \) is a knot invariant of degree at most \(2n - 1 \) with respect to the crossing changes.
Two disjoint pairs of points in S^1 are said to be \textit{unlinked} if they bound disjoint intervals in S^1. Otherwise, they are said to be \textit{linked}. Two double points of a singular knot are said to be \textit{linked} if their preimages are linked.

Associate a symmetric linking matrix $[\ell_{ij}(K^s)]_{i,j\in\{1,2,...,k\}}$ to a singular knot K^s with k pairwise unlinked double points numbered from 1 to k in the following way. Each double point i can be \textit{smoothed} to transform the knot into two oriented singular knots K^s_i and K^s_i.

$$K^s_i \simeq K^s_i$$

Set

$\ell_{ii}(K^s) = \text{lk}(K^s_i, K^s_i)$.

If i and j label two unlinked double points, let $K^{s,ij}_i$ be the curve among K^s_i and K^s_i that does not contain the double point labeled by j, then $\ell_{ij}(K^s) = \text{lk}(K^{s,ij}_i, K^s_j)$ if $i \neq j$.

Proposition 5.4 For any singular knot K^s in a rational homology sphere with k pairwise unlinked double points, for any integers n, i, q and p, with $0 \leq i \leq n$, and $n \geq 1$,

- if $k > n$, $y^{(i)}_{n,q/p}(K^s) = 0$,
- if $k = n$, $y^{(i)}_{n,q/p}(K^s) = y^{(i)}_{n,0}(K^s)$, is an explicit homogeneous polynomial of degree i in the coefficients of the linking matrix of K^s, and $y^{(0)}_{n,q/p}(K^s) = 0$.

Proposition 22 will give explicit examples of computations of the above homogeneous polynomials.

6 A few formulae for the Casson-Walker invariant

Set $\lambda = W_1 \circ Z_1$ where $W_1(\bigotimes) = 2$. According to [L4], λ is the Casson-Walker invariant as normalized by Casson for \mathbb{Z}-spheres (see [AM, GM, M]), λ is half the Walker invariant as normalized in [W], and λ coincides with $\frac{\pi}{|H_1(M)|}$ where $|H_1(M)|$ denotes the cardinality of $H_1(M;\mathbb{Z})$ for \mathbb{Q}-spheres, and π is the extension of $|H_1(M)|\lambda$ to oriented closed 3-manifolds that is denoted by λ in [L2].

A \textit{rationally algebraically split link} is a link whose components do not link each other. The following proposition gives formulae that generalize Theorem 4.1, Theorem 4.3 and Theorem 4.4 in the degree 1 case ($n = 1$) for rationally algebraically split links.

The \textit{order} of a knot K in a rational homology sphere is the smallest positive integer O_K such that $O_K K$ is null-homologous. A \textit{primitive curve} on a torus $S^1 \times S^1$ is a non-separating simple closed curve on the torus. A \textit{primitive satellite} of a knot is a primitive curve on the boundary $\partial N(K)$ of its tubular neighborhood. A surgery on a knot K is determined by a primitive satellite μ (oriented arbitrarily) of the knot that will bound a disk inside the surgered torus after surgery. If m_K is the meridian of K, the isotopy class of such a curve is determined by the pair

$$(p_K = \text{lk}(\mu, K), q_K = \langle m_K, \mu \rangle_{\partial N(K)})$$

and the \textit{surgery coefficient} is p_K/q_K.

For any order d component K of a rationally algebraically split link L, there exists an embedded surface Σ in the complement of L whose boundary $\partial \Sigma$ is made of essential parallel curves of the boundary $\partial N(K)$ of the tubular neighborhood $N(K)$ of K such that $\partial \Sigma$ is homologous to d parallels of K in $N(K)$. Let $H_1(\Sigma)/H_1(\partial \Sigma)$ denote the quotient of $H_1(\Sigma)$ by the image of $H_1(\partial \Sigma)$ under the...
map induced by the inclusion. Let \(B_s = (x_i, y_i)_{i \in \{1, \ldots, g\} } \) be a symplectic basis of \(H_1(\Sigma)/H_1(\partial \Sigma) \), define
\[
I(\Sigma) = \sum_{(j,k) \in \{(1,2, \ldots, g) \}^2} x_j y_j x_k^+ y_k^+.
\]

If \(W_n: \mathcal{A}_n \to \mathbb{Q} \) is a linear form, then \(W_n(\langle \cdot \rangle) \) will also be denoted by \(\langle \langle \cdot \rangle \rangle_{W_n} \).

For example,
\[
\langle \langle I(\Sigma) \rangle \rangle_{W_1} = 2 \sum_{(j,k) \in \{(1,2, \ldots, g) \}^2} (lk(x_j, x_k^+)lk(y_j, y_k^+) - lk(x_j, y_k^+)lk(y_j, x_k^+)).
\]

Proposition 6.1 Let \(n \) be an integer. Set \(N = \{1, \ldots, n\} \). Let \(L = (K_i; p_i/q_i)_{i \in N} \) be a framed rationally algebraically split link in a rational homology sphere \(M \). Let \(d_i \) be the order of \(K_i \) in \(H_1(M) \), let \(\Sigma_i \) be a surface of \(M \setminus L \) whose boundary is made of essential parallel curves of \(\partial N(K_i) \) and is homologous to \(d_iK_i \) in \(N(K_i) \). If \(n = 1 \), assume that the \(\mathbb{Q}/\mathbb{Z} \)-self-linking number of \(K_1 \) is zero.

Then
\[
\sum_{i \in N} \lambda(M(K_i; p_i/q_i))_{\langle \langle \cdot \rangle \rangle_{W_1}} = (-1)^n \left(\prod_{i=1}^n \frac{q_i}{p_i} \right) \lambda(L)
\]
where
\[
\lambda(L) = \frac{\langle \langle I(\Sigma_1) \rangle \rangle_{W_1}}{2d_1^2} + \frac{1}{12d_1^2} - \frac{1}{12d_1^2} \frac{\langle \langle I(\Sigma_1 \cap M)(K_2; 1) \rangle \rangle_{W_1}}{2d_1^4} - \frac{\langle \langle I(\Sigma_1 \cap M)(K_2; 1) \rangle \rangle_{W_1}}{2d_1^4} + \frac{\langle \langle I(\Sigma_1 \cap M)(K_2; 1) \rangle \rangle_{W_1}}{2d_1^4}
\]
and, if \(n > 1 \),
\[
\sum_{i \in N} \lambda(M(K_i; p_i/q_i))_{\langle \langle \cdot \rangle \rangle_{W_1}} = \sum_{i \in N} \left(-1 \right)^{d_i^2} \lambda(M(K_i; p_i/q_i))_{\langle \langle \cdot \rangle \rangle_{W_1}}.
\]

This proposition is proved in Section 13. Under its hypotheses, we then obviously have the following equalities
\[
\lambda(K_1 \subset M(K_2, p/q)) - \lambda(K_1 \subset M) = \delta(p) \lambda(K_1, K_2)
\]
and
\[
\lambda(K_1 \subset M((K_2, p_2/q_2), (K_3, p_3/q_3))) - \lambda(K_1 \subset M(K_2, p_2/q_2)) - \lambda(K_1 \subset M(K_3, p_3/q_3)) + \lambda(K_1 \subset M) = \frac{q_2q_3}{p_2p_3} \lambda(K_1, K_2, K_3).
\]

Then the variation of linking numbers under surgery recalled in Lemma 13.5 easily implies the following proposition (see also the proof of Lemma 13.5).

Proposition 6.2 Let \((K_1, K_2, K_3) \) be a rationally algebraically split link in a rational homology sphere \(M \). Let \(d_i \) be the order of \(K_i \) in \(H_1(M) \), let \(\Sigma_i \) be a surface of \(M \setminus L \) whose boundary is made of essential parallel curves of \(\partial N(K_i) \) and is homologous to \(d_iK_i \) in \(N(K_i) \). Then

\[
\sum_{i \in N} \lambda(M(K_i; p_i/q_i))_{\langle \langle \cdot \rangle \rangle_{W_1}} = \sum_{i \in N} \left(-1 \right)^{d_i^2} \lambda(M(K_i; p_i/q_i))_{\langle \langle \cdot \rangle \rangle_{W_1}}.
\]
\[\lambda'(K_1, K_2) = -\frac{1}{4}\langle\langle \frac{1}{2}I(\Sigma_1) K_2 \longrightarrow K_2 \rangle\rangle W_1, \]
\[= -\frac{1}{4}\langle\langle \frac{1}{2}I(\Sigma_2) K_1 \longrightarrow K_1 \rangle\rangle W_1, \]
\[\lambda'(K_1, K_2, K_3) = \frac{1}{8d_2}\langle\langle I(\Sigma_1) K_2 \longrightarrow K_2, K_3 \longrightarrow K_3 \rangle\rangle W_1. \]

\[\text{\textbullet} \]

Proposition 6.3 If \(K^* \) is a singular knot with one double point, then
\[\lambda'(K^*) = \ell_{11}(K^*). \]

The easy proof of this well-known proposition is also given in Section 13.

7. On the knot surgery formula for the degree 2 invariant \(\lambda_2 \)

Consider the degree 2 invariant
\[\lambda_2 = W_2 \circ Z_2^c \]
where \(W_2 \left(\begin{array}{c} \bigtriangleup \\ \bigtriangledown \end{array} \right) = 1 \) and therefore \(W_2 \left(\begin{array}{c} \bigtriangleup \\ \bigtriangledown \end{array} \right) = 2. \) The invariant \(\lambda_2 \) is invariant under orientation change and additive under connected sum.

Theorem 7.1 There exists a function \(c \) from \(\mathbb{Q}/\mathbb{Z} \) to \(\mathbb{Q} \) such that \(c(0) = 0, c(q/p) = c(-q/p) \) and the following assertions hold. Let \(r = q/p \in \mathbb{Q} \setminus \{0\} \), where \(p \) and \(q \) are coprime integers. Let \(K \) be a knot that bounds a Seifert surface \(F \) in a rational homology sphere \(M \). Let \(F^1 \) and \(F^2 \) be two parallel copies of \(F \). Then
\[\lambda_2(M(K; 1/r)) - \lambda_2(M) = \lambda^*_2(K)r^2 + w_3(K)r + C(K; q/p) + \lambda_2(L(p; -q)) \]
where
\[\lambda^*_2(K) = \frac{1}{8}\langle\langle \bigcup_{i \in \{1, 2\}} (I(F^i)) \rangle\rangle W_2 \]
\[w_3(K \subset M) = -w_3(K \subset (-M)) \]
and \(C(\cdot; q/p) \) is an invariant of null-homologous knots that only depends on \(q/p \) mod \(\mathbb{Z} \), such that \(C(K; 0) = 0 \), and, if \(K \) bounds a surface whose \(H_1 \) vanishes in \(H_1(M) \), then \(C(\cdot; q/p) = c(q/p)\lambda'(K) \).

Furthermore, if \(K^* \) is a singular knot with two unlinked double points, then
\[w_3(K^*) = -\frac{\ell_{12}(K^*)}{2} \text{ and } C(K^*; q/p) = 0. \]

Like all the statements in this section, the above theorem will be proved in Section 14.

Proposition 7.2 Let \(K^* \) be a singular knot with one double point in a rational homology sphere. Let \(K^+ \) and \(K^- \) be its two desingularisations, and let \(K' \) and \(K'' \) be the two knots obtained from \(K^* \) by smoothing the double point. Assume that \(K' \) and \(K'' \) are null-homologous, then
\[w_3(K^+) - w_3(K^-) = \frac{\lambda'(K') + \lambda'(K'')}{2} - \frac{\lambda'(K^+) + \lambda'(K^-) + \text{lk}^2(K', K'')}{4}. \]
Let \(f \) denote a two strand braid with \(|x| \) vertical juxtapositions of the motive \(\times \) if \(x > 0 \) and \(|x| \) vertical juxtapositions of the motive \(\times \) if \(x < 0 \).

Let \(x, y \) and \(z \) be three odd numbers. Let \(K(x, y, z) \) be the following pretzel knot that bounds a genus one Seifert surface \(\Sigma \) whose thickening \(H \) coincides with the thickening of the twice punctured disk next to it. \(H \) is a genus two handlebody whose boundary is equipped with curves \(X, Y \) and \(Z \) that bound disks in its exterior.

Note that any genus one knot that bounds a genus one surface, whose \(H_1 \) goes to 0 in \(H_1(M) \), may be written as the image of \(K(x, y, z) \) under an embedding \(\phi \) of \(H \) into \(M \) that maps \(X, Y \) to 0 in \(H_1(M \setminus \phi(H)) \).

Proposition 7.3
Let \(\phi \) be an embedding of \(H \) in a rational homology sphere such that \(\phi(X) \) and \(\phi(Y) \) are null homologous in the exterior of \(\phi(H) \). Then

\[
\begin{align*}
 \lambda'(\phi(X)) &= \lambda'(\phi(Y)) = \lambda'(\phi(Z))
end{align*}
\]

and

\[
\begin{align*}
 w_3(K(x, y, z)) &= \frac{1}{32}x^2(y + z) + \frac{1}{8}y^2(x + z) + \frac{3}{16}z^2(x + y) + \frac{xyz}{8} + \frac{x + y + z}{16}
end{align*}
\]

where \(\lambda'(\phi(X)) \) and \(\lambda'(\phi(X), \phi(Y)) \) are defined in several equivalent ways in Section 4.

8 Proof of the Lagrangian-preserving surgery formula

In this section, we prove Theorem 3.1 by proving that its formula is equivalent to the formula of [L4] (or [AL] for the case of integral homology spheres). We first rewrite the right-hand side of the formula of Theorem 3.1.

Let \(g(i) \) be the genus of \(A_i \). Let \((a_{1,1}^i, a_{1,2}^i, \ldots, a_{g(i)}^i) \) be a basis of \(\mathcal{L}_{A_i} \), and let \(z_{1,1}^i, \ldots, z_{g(i)}^i \) be homology classes of \(\partial A_i \), such that \([a_{1,1}^i, z_{1,1}^i]_{\partial A} = \delta_{ik} \). Let \(F \) be the set of maps \(f \) from \(\{1, \ldots, 2n\} \times \{1, 2, 3\} \) to \(\mathbb{N} \) such that \(1 \leq f(i, 1) < f(i, 2) < f(i, 3) \leq g(i) \). Let \(P \) be the set of pairings \(p \) of the disjoint union \(\mathcal{G}_p^0 \) of the following 2n tripods, that pair a univalent vertex of some tripod to a univalent vertex of a different tripod.

\[
i \lesssim \frac{3}{2}
\]

Let \(p \in P \). The half-edges of \(\mathcal{G}_p^0 \) are naturally labeled in \(\{1, \ldots, 2n\} \times \{1, 2, 3\} \). Assume that some \((f \in F) \) is given. With a half-edge of \(\mathcal{G}_p^0 \) labeled by \((i, j)\) that belongs to the tripod \(i \), associate the curve \(z_{f(i,j)}^j \) of \(\partial A_i \). Then to an edge of \(\mathcal{G}_p^0 \), associate the linking number of the curves associated to its two half-edges, and define \(\ell k(p; f) \) as the product over the edges of these linking numbers. Set

\[
c(p; f) = \ell k(p; f) \prod_{i=1}^{2n} \mathcal{I}_{A_i^i}(a_{f(i,1)}^i, a_{f(i,2)}^i, a_{f(i,3)}^i),
\]

14
Let D be the set of unoriented Jacobi diagrams of degree n. Consider a Jacobi diagram Γ of D. Let $P(\Gamma)$ be the set of the pairings p of P such that G^0_p is isomorphic to Γ as an unoriented Jacobi diagram. Then

$$(\bigcup_{i \in \{1, \ldots, 2n\}} T(\mathcal{I}_{A_i, A'_i}))_n = \sum_{p \in P} c(p)[G^0_p].$$

Fix Γ in D. Let $B(\Gamma)$ be the set of bijections b from the set $H(\Gamma)$ of half-edges of Γ to $\{1, \ldots, 2n\} \times \{1, 2, 3\}$ that map any half-edge c of a vertex $v(c)$ to three images with the same first coordinate $b_1(c) = b_1(v(c))$. An element b of $B(\Gamma)$ determines a pairing $p(b)$ of $P(\Gamma)$, and the number of elements of $B(\Gamma)$ that determine the same pairing is the number of automorphisms of Γ.

$$\sum_{p \in P(\Gamma)} c(p)[G^0_p] = \sum_{b \in B(\Gamma)} c(p(b)) \frac{c(p(b))}{\#\text{Aut}(\Gamma)[G^0_{p(b)}]} = \sum_{b \in B(\Gamma), f \in F} c(p(b); f) \frac{c(p(b); f)}{\#\text{Aut}(\Gamma)[G^0_{p(b)}]}.$$

Let $G(\Gamma)$ be the set of injections g from the set $H(\Gamma)$ of half-edges of Γ to

$$\{(i, j) \in \{1, \ldots, 2n\} \times \mathbb{N}; 1 \leq j \leq g(i)\}$$

that map the three half-edges of a vertex to three images with the same first coordinate, and that induce a bijection from $V(\Gamma)$ to $\{1, \ldots, 2n\}$. An injection g of $G(\Gamma)$ provides a natural bijection $b(g)$ of $B(\Gamma)$ and a map $f(g)$ of F such that $g(c) = (b_1(c), f(g) \circ b(g)(c))$. Furthermore, such a g orders the three half-edges of a vertex, and hence provides an orientation $o(g)$ of Γ.

$$\sum_{p \in P(\Gamma)} c(p)[G^0_p] = \sum_{g \in G(\Gamma)} c(p(g); f(g)) \frac{c(p(g); f(g))}{\#\text{Aut}(\Gamma)[(\Gamma, o(g))]}.$$

Let $g \in G(\Gamma)$, its first coordinate $b_1(g)$ induces a bijection from $V(\Gamma)$ to $\{1, \ldots, 2n\}$. Number the three half-edges of any vertex w of Γ with a bijection $b(w); v^{-1}(w) \rightarrow \{1, 2, 3\}$, arbitrarily. This orients Γ and equips each injection $g \in G(\Gamma)$ with a sign that is +1 if $o(g)$ coincides with this orientation of Γ (except for an even number of vertices) and (−1) otherwise. Furthermore, g orders summands of

$$\mathcal{I}(A_i, A'_i) = \sum_{g_i: \{1, 2, 3\} \rightarrow \{1, \ldots, g(i)\}} \mathcal{I}_{A_i, A'_i}(a^i_{g_1(1)}, a^i_{g_2(2)}, a^i_{g_3(3)}) z^i_{g_1(1)} \otimes z^i_{g_2(2)} \otimes z^i_{g_3(3)}$$

where $g(b_1(g)^{-1}(i))^{-1}(j) = (i, g_i(j))$. Note that the sign of an injection g is +1 if the number of vertices $b_1(g)^{-1}(i)$ where the cyclic order induced by g_i does not coincide with the cyclic order induced by $b_1(g)^{-1}(i)$ is even, and (−1), otherwise. This shows that for any bijection σ from $V(\Gamma)$ to $\{1, \ldots, 2n\}$,

$$\sum_{g \in G(\Gamma); b_1(g) = \sigma} c(p(b(g); f(g))[\Gamma, o(g)]) = \text{lk}((A_i, A'_i)_{i=1, \ldots, 2n}; \Gamma; \sigma)[\Gamma]$$

with the notation of \mathcal{A} or \mathcal{A}°. □

15
9 A direct proof of the formula for boundary links

9.1 A Lagrangian-preserving surgery associated to a Seifert surface

Let Σ be an oriented Seifert surface of a knot K in a manifold M. Consider an annular neighborhood $[-3,0] \times K$ of $(\{0\} \times K) = K = \partial \Sigma$ in Σ, a small disk D inside $]-2,-1[\times K$, and an open disk d in the interior of D. Let $F = \Sigma \setminus d$. Let h_F be the composition of the two left-handed Dehn twists on F along $c = \partial D$ and $K_2 = \{-2\} \times K$ with the right-handed one along $K_1 = \{-1\} \times K$.

See F as $F \times \{0\}$ in the boundary of the handlebody $A_F = F \times [-1,0]$ of M. Extend h_F to a homeomorphism h_A of ∂A_F by defining it as the identity outside $F \times \{0\}$.

Let A'_F be a copy of A_F. Identify $\partial A'_F$ with ∂A_F with $h_A: \partial A'_F \to \partial A_F$.

Define the surgery associated to Σ as the surgery associated with (A_F, A'_F) (or $(A_F, A'_F; h_A)$). If ι denotes the embedding from ∂A_F to M. This surgery replaces

$M = (M \setminus \text{Int}(A_F)) \cup_\iota A_F$

by

$M_F = (M \setminus \text{Int}(A_F)) \cup_{h_A} A'_F$.

Proposition 9.1 With the notation above, the surgery (A_F, A'_F) associated to Σ is a Lagrangian-preserving surgery with the following properties. There is a homeomorphism from M_F to M

- that extends the identity of $M \setminus ([-3,0] \times K \times [-1,0])$,

- that transforms a curve going through $d \times [-1,0]$ by a band sum with K,

- that transforms a 0-framed meridian m of K going through $d \times [-1,0]$ into a 0-framed copy of K isotopic to the framed curve $h^{-1}_A(m)$ of the following figure.
Proof:} Observe that h_F extends to $\Sigma \times [-1, 0]$ as $$h: \Sigma \times [-1, 0] \to \Sigma \times [-1, 0] \quad (\sigma, t) \mapsto h(\sigma, t) = (\sigma_t(\sigma), t)$$ where h_0 is the extension of h_F by the identity on d that is isotopic to the identity, h_{-1} is the identity of Σ.

h_t coincides with the identity outside $[-5/2, -1/2] \times K(S^1)$, and h_t is defined as follows on $[-5/2, -1/2] \times K(S^1)$.

- When $t \leq -1/2$, then h_t describes the following isotopy between $(h_{-1} = \text{identity})$ and the composition $h_{-1/2}$ of the left-handed Dehn twist along K_2 located on $[-5/2, -2] \times K(S^1)$ and the right-handed Dehn twist along K_1 located on $[-1, -1/2] \times K(S^1)$.

\[
\begin{align*}
h_t(u, K(z)) &= (u, K(z \exp (i(2t + 2)(4\pi(u + 5/2)))))) \quad \text{if } u \leq -2 \\
h_t(u, K(z)) &= (u, K(z \exp (i(2t + 2)(2\pi)))) \quad \text{if } -2 \leq u \leq -1 \\
h_t(u, K(z)) &= (u, K(z \exp (i(2t + 2)(4\pi(u + 1/2)))))) \quad \text{if } u \geq -1.
\end{align*}
\]

- When $t \geq -1/2$, then h_t coincides with $h_{-1/2}$ outside the disk D whose elements will be written as $D(z \in \mathbb{C})$, with $|z| \leq 1$. The elements of d will be the $D(z)$ for $|z| < 1/2$. On D, h_t will describe the isotopy between the identity and the composition h_0 of the left-handed Dehn twist along ∂D located on $\{D(z); 1/2 \leq |z| \leq 1\}$ and a negative twist of d.

\[
\begin{align*}
h_t(u, K(z)) &= (u, K(z \exp (i(2t + 1)(4\pi(u + 5/2)))))) \quad \text{if } u \leq -2 \\
h_t(u, K(z)) &= (u, K(z \exp (i(2t + 1)(2\pi)))) \quad \text{if } -2 \leq u \leq -1, (u, K(z)) \not\in D \\
h_t(u, K(z)) &= (u, K(z \exp (i(2t + 1)(4\pi(u + 1/2)))))) \quad \text{if } u \geq -1.
\end{align*}
\]

Now, M_F is naturally homeomorphic to $$(M \setminus \text{Int}(\Sigma \times [-1, 0])) \cup_{h(\partial(\Sigma \times [-1, 0])} (\Sigma \times [-1, 0])$$ that maps to M by the identity outside $\Sigma \times [-1, 0]$ and by h on $\Sigma \times [-1, 0]$, homeomorphically. Therefore, we indeed have a homeomorphism from M_F to M that is the identity outside $[-3, 0] \times K \times [-1, 0]$ and that maps $d \times [-1, 0]$ to a cylinder that runs along K before being negatively twisted. In particular, looking at the action of the homeomorphism on a framed arc $x \times [-1, 0]$ where x is on the boundary of d shows that the meridian m with its framing induced by the boundary of A_F is mapped to a curve isotopic to $h^{-1}_A(m)$ in a tubular neighborhood of K with the framing induced by the boundary of A_F.

Now, $H_1(\partial A_F)$ is generated by the generators of $H_1(\Sigma) \times \{0\}$, the generators of $H_1(\Sigma) \times \{-1\}$, and the homology classes of $c = \partial D$ and m. Among them, only the class of m could be affected by h_A, and it is not. Therefore h_A acts trivially on $H_1(\partial A_F)$, and the defined surgery is an LP–surgery.

Let $F \times [-1, 2]$ be an extension of the previous neighborhood of F, and let $B_F = F \times [1, 2]$. Define the homeomorphism h_B of ∂B_F as the identity anywhere except on $F \times \{1\}$ where it coincides with the homeomorphism h_F of F with the obvious identification.

Let B'_F be a copy of B_F. Identify $\partial B'_F$ with ∂B_F with $h_B: \partial B'_F \to \partial B_F$.

Define the inverse surgery associated to Σ as the surgery associated with (B_F, B'_F) (or $(B_F, B'_F; h_B)$). Note that the previous study can be used for this surgery by using the central symmetry of $[-1, 2]$.

Then, we have the following obvious lemma that justifies the terminology.

17
Lemma 9.2 With the notation above, performing the two surgeries \((B_F, B'_F)\) and \((A_F, A'_F)\) affects neither \(M\) nor the curves in the complement of \(F \times [-1, 2]\), while performing one of them changes a 0-framed meridian of \(K\) going through \(d \times [-1, 2]\) into a 0-framed copy of \(\pm K\).

Lemma 9.3 Let \((x_i, y_i)_{i=1,...,g}\) be a symplectic basis of \(\Sigma\), then the tripod combination \(T(\mathcal{I}_{A_F A'_F})\) associated to the surgery \((A_F, A'_F)\) is

\[
T(\mathcal{I}_{A_F A'_F}) = - \sum_{i=1}^{g} \begin{pmatrix} y_i \\ x_i \end{pmatrix}_c.
\]

For a curve \(c\) of \(F\), let \(c^+\) denote \(c \times \{1\}\). The tripod combination \(T(\mathcal{I}_{B_F B'_F})\) associated to the surgery \((B_F, B'_F)\) is

\[
T(\mathcal{I}_{B_F B'_F}) = \sum_{i=1}^{g} \begin{pmatrix} y_i^+ \\ x_i^+ \end{pmatrix}_{c^+}.
\]

Proof: For a curve \(c\) of \(F\), \(c^-\) denotes \(c \times \{-1\}\). Use the basis \((m, (x_i - x_i^-, y_i - y_i^-))_{i=1,...,g}\) of the Lagrangian \(F\) to compute the intersection form of \((A_F \cup -A'_F)\). Its dual basis is \((\ell, (y_i, x_i^-))_{i=1,...,g}\). Note that only curve of the Lagrangian basis that is modified by \(h_A\) is \(m\), and that \(h_A(m) = mK_2^{-1}\).

The isomorphism \(\partial^{-1}_{MV}\) from \(\mathcal{L}_{A_F}\) to \(H_2(A_F \cup -A'_F)\) satisfies

\[
\begin{align*}
\partial^{-1}_{MV}(x_i - x_i^-) &= S(x_i) = -(x_i \times [-1, 0]) \cup (x_i \times [-1, 0] \subset A'_F) \\
\partial^{-1}_{MV}(y_i - y_i^-) &= S(y_i) = -(y_i \times [-1, 0]) \cup (y_i \times [-1, 0] \subset A'_F) \\
\partial^{-1}_{MV}(m) &= S_A(m) = D_m - (\Sigma \setminus ([2, 0] \times K)) \cup (-D_m \subset A'_F)
\end{align*}
\]

Since \(x_i\) intersects only \(y_i\), \(S(x_i)\) intersects only \(S(y_i)\) and \(S_A(m)\). The algebraic intersection of \(S(x_i), S(y_i)\) and \(S_A(m)\) is \(-1\).

For the surgery \((B_F, B'_F)\), \(S_B(m) = D_m + \Sigma \setminus ([2, 0] \times K) \cup (-D_m \subset B'_F)\), and the algebraic intersection of \(S(x_i), S(y_i)\) and \(S_B(m)\) is \(1\).

9.2 Proof of Theorem 4.1

Remark 9.4 For this proof, I could also have used the strategy of Section 1. But I prefer this self-contained proof.

First recall the following easy lemma that will be used several times.

Lemma 9.5 The variation of the linking number of two knots \(J\) and \(K\) after a \(p/q\)-surgery on a knot \(V\) in a rational homology sphere \(M\) is given by the following formula.

\[
\text{lk} \mathcal{M}(\psi:p/q)(J, K) = \text{lk} \mathcal{M}(J, K) - \frac{q}{p} \text{lk} \mathcal{M}(V, J) \text{lk} \mathcal{M}(V, K).
\]
meridian of \(K_i \) going through \(d^i \times [-1, 2] \), so that performing one of the two surgeries transforms \(U_i \) into \(\pm K_i \) and performing both or none of them leaves \(U_i \) unchanged. Then

\[
[M; (K_i; p_i/q_i)] = M(U; p_i/q_i) - M(K_i; p_i/q_i) = \frac{1}{2}[M(U; p_i/q_i); (A_i, A'_i), (B_i, B'_i)].
\]

More generally, for \(J \subset \{(A_i, A'_i), (B_i, B'_i)\}_{i=1,...,n}, \)

\[
(M(U; p_i/q_i), i \in N) \setminus J = M(K_i; p_i/q_i), i \in I \setminus J, L(p_j, -q_j) = M(J)
\]

where \(I(J) \) is the set of elements \(i \) of \(N \) such that \(\sharp(J \cap \{(A_i, A'_i), (B_i, B'_i)\}) \) is one. Note that \((-1)^{\sharp J} = (-1)^{\sharp I(J)} \) and that for any subset \(I \) of \(N \) there are \(2^n \) subsets \(J \) of the set of LP-surgeries such that \(I(J) = I \). Thus

\[
[M; (K_i; p_i/q_i) i \in N] = \frac{1}{2^n}[M(U; p_i/q_i), i \in N; (A_i, A'_i), (B_i, B'_i), i \in N].
\]

In particular, we can apply Theorem [1] to compute \(Z_n([M; (K_i; p_i/q_i) i \in N]) \).

According to Lemma [3], the tripods associated to the surgery \((A_{F'}, A'_{F'})\) and to the surgery \((B_{F'}, B'_{F'})\) are \(-\sum_{j=1}^{\sharp J} \frac{y'_j}{c'_j} x^j_i\) and \(\sum_{j=1}^{\sharp J} \frac{y'_j}{c'_j} x^j_i\), respectively. The only curve that links \(c' \) algebraically in \(M(U; p_i/q_i), i \in N \) among those appearing in all the tripods is \(c'^+ \) with a linking number \(-q_i/p_i\). Therefore, these two must be paired together with this coefficient. Theorem [1] follows when \(r = n \). The case \(r > n \) can be either deduced from the case \(r = n \) or proved directly, it is easy. \(\diamond \)

10 Some casper calculus

The proofs of Theorems [1,3] and [1,4] will be given in Section [1,1]. They will rely on the current section, where we recall some known casper calculus and where we show how to present algebraically split links \(L = (K_i)_{i=1,...,n} \) by clasps so that the associated Seifert surfaces \(\Sigma_i \) of the components \(K_i \) in \(M \setminus (U_{j \neq i} K_j) \) have minimal triple intersection, namely so that for any triple \((K_i, K_j, K_k) \) of components of \(L \), the geometric triple intersection of the transverse surfaces \(\Sigma_i, \Sigma_j \) and \(\Sigma_k \) is made of \([p(K_i, K_j, K_k)]\) points. (This shows Proposition [4,3] that will be a direct corollary of Lemma [10,7] and Proposition [10,8].)

10.1 Two ways of seeing surgeries on \(Y \)-graphs

Let \(\Lambda \) be the graph embedded in the surface \(\Sigma(\Lambda) \) shown below. In the 3-handlebody \((N = \Sigma(\Lambda) \times [-1, 1])\), the edges of \(\Lambda \) are framed by a vector field normal to \(\Sigma(\Lambda) = \Sigma(\Lambda) \times \{0\} \). \(\Sigma(\Lambda) \) is called a framing surface for \(\Lambda \).

A \(Y \)-graph in \(M \) is the isotopy class of an embedding \(\phi \) of \(N \) (or \(\Sigma(\Lambda) \)) into \(M \). Such an isotopy class is determined by the framed image of the framed unoriented graph \(\Lambda \) under \(\phi \). A leaf of a \(Y \)-graph \(\phi \) is the image under \(\phi \) of a simple loop of our graph \(\Lambda \). An edge of \(\phi \) is an edge of \(\phi(\Lambda) \) that is not a leaf. With this terminology, a \(Y \)-graph has three edges and three leaves.
The surgery on such a Y-graph can be defined in several equivalent ways. Originally, it was defined by Matveev in [Mat] and named \textit{Borromeo transformation} as the effect of the surgery on the following 6-component framed link in the framed neighborhood of the Y-graph.

The framing of the link is induced by the framing of the surface.

We shall prove the following proposition.

\textbf{Proposition 10.1} The above surgery is equivalent to the surgery (A_F, A'_F) associated to the following subsurface F of $\Sigma(\Lambda) \times [-1, 1]$, with respect to the notation of Subsection 9.1.

Let $G \subset M$ be a Y-graph. A leaf l of a Y-component of G is \textit{trivial} if l bounds an embedded disc that induces the framing of l, in $M \setminus G$. It is easy to see that with both definitions, performing the surgery on a Y-graph with a trivial leaf does not change the ambient manifold. More precisely, the following lemma is proved in [GGP], for the first definition.

\textbf{Lemma 10.2 ([GGP, Lemma 2.1])} Let M be an oriented 3–manifold (with possible boundary). Let G be a Y-graph in M with a trivial leaf that bounds a disc D in $M \setminus G$. Then

\begin{itemize}
 \item for any framed graph T_0 in $M \setminus G$ that does not meet D, the pair (M_G, T_0) is diffeomorphic to the pair (M, T_0).
 \item If T is a framed graph in $M \setminus G$ that meets $\text{Int}(D)$ at exactly one point, then the pair (M_G, T) is diffeomorphic to the pair (M, T_G), where T_G is the framed graph in M below.
\end{itemize}
Now, it is proved in [AL], Proof of Lemma 4.6, that this property fully determines the surgery. Therefore, since this property is also true for the second definition, the two definitions coincide and Proposition 10.1 is proved. In particular, the second definition has the same symmetries as the first one obviously has.

This definition does not depend on the orientation of $\Sigma(\Lambda)$. Nevertheless, we shall sometimes need orientations of our Y-graphs. An orientation of a Y-graph is an orientation of its three leaves, together with a cyclic order on the 3–element set they form, induced by an orientation of $\Sigma(\Lambda)$ as in the figure (everything turns counterclockwise).

An n–component Y–link $G \subset M$ is an embedding of the disjoint union of n copies of N into M up to isotopy. The Y–surgery along a Y–link G is defined as the surgery along each Y–component of G. The resulting manifold is denoted by M_G.

10.2 Some clasper calculus

Recall the following equivalences between surgeries inside handlebodies -that can be themselves embedded in any 3-manifold in an arbitrary way-. The first one is move Y_3 in [GGP], as rectified by Emmanuel Auclair in his thesis [Au].

Lemma 10.3 ([Au]) The surgeries on the following two Y–links are equivalent.

![Diagram](image1)

Lemma 10.4 (Theorem 3.1, move Y_4 in [GGP]) The surgeries on the following two Y–links are equivalent.

![Diagram](image2)

The two equivalences above easily imply the following one.

Lemma 10.5 The surgeries on the following two Y–links are equivalent.

![Diagram](image3)
As a consequence of Lemma 10.4, we also have the following lemma that provides an inverse for a Y-graph. A mark χ on an edge indicates a positive half-twist of this edge.

Lemma 10.6 (Theorem 3.2 in [GGP]) The surgery on the following Y-link is trivial.

10.3 A clasper presentation of algebraically split links

A leaf ℓ of a Y-link G is a **meridional leaf** or is a **meridian** of a link L, if it is trivial, and if it bounds a meridian disk of some link component whose interior intersects $G \cup L$ at exactly one point of L.

Say that a Y-link G **laces** the trivial r-component link $U(r)$ of a connected 3-manifold if

- each of the Y-link components contains a meridional leaf of $U(r)$,
- The components U_i of $U(r)$ bound disjoint disks $(D_i)_{i=1,\ldots,r}$ ($U_i = \partial D_i$) so that $D_i \cap G$ is inside the meridional leaves of U_i (and contains one point per meridional leaf of U_i),
- no component of G contains more than one meridional leaf of a given component U_i.

Performing the surgery on such a G transforms $U(r)$ into the link $(K_1, \ldots, K_r) = U(r)(G)$ in M that is presented by $(G, U(r))$.

Since any null-homologous knot bounds an oriented Seifert surface, by Lemma 10.2, it is easy to see that any null-homologous knot is presented by a pair (G, U_1), where G is a Y-link that laces the trivial knot.

In a connected oriented compact 3-manifold M such that $H_2(M;\mathbb{Z}) = 0$, the **linking number** of a null-homologous knot K with a knot C in its complement is well-defined as the algebraic intersection of C with a surface bounded by K. The **Milnor triple linking number** $\mu(K_1, K_2, K_3)$ of three null-homologous knots K_1, K_2, K_3 that do not link each other is also well-defined, as the algebraic intersection of three Seifert surfaces of these knots in the complement of the other ones with the sign $\mu(K_1, K_2, K_3) = -(\Sigma_1, \Sigma_2, \Sigma_3)$.

Let G be a Y-link that laces the trivial link $U(r)$ of M. Let m_i denote the homology class of the oriented meridian of U_i. Say that a component of G is of type $(\varepsilon_i m_i, \varepsilon_j m_j, f)$ if its leaves are one meridian of U_i, one meridian of U_j, and another oriented framed leaf f and if it can be oriented so that the homology classes of its oriented leaves read $\varepsilon_i m_i$, $\varepsilon_j m_j$ and $[f]$ with respect to the cyclic order induced by the orientation, with $\varepsilon_i, \varepsilon_j \in \{-1, 1\}$. Similarly, say that a component of G is of type $(\varepsilon_i m_i, \varepsilon_j m_j, \varepsilon_k m_k)$ if its leaves are one meridian of U_i, one meridian of U_j, and one meridian of U_k, and if it can be oriented so that the homology classes of its oriented leaves read $\varepsilon_i m_i$, $\varepsilon_j m_j$ and $\varepsilon_k m_k$ with respect to the cyclic order induced by the orientation, with $\varepsilon_i, \varepsilon_j, \varepsilon_k \in \{-1, 1\}$.
Lemma 10.7 Let G be a Y-link that laces the trivial link $U^{(r)}$ of an oriented connected 3-manifold M. Let $L = (K_1, \ldots, K_r) = U^{(r)}_G$ be the link presented by G. Then L is algebraically split, and the K_i bound surfaces Σ_i such that

- for any $\{i, j\} \subset \{1, 2, \ldots, r\}$, $\Sigma_i \cap \Sigma_j$ is the union over all the components of type $(\varepsilon_i m_i, \varepsilon_j m_j, f)$ of the framed oriented leaves $\varepsilon_i \varepsilon_j f$;
- for any $\{i, j, k\} \subset \{1, 2, \ldots, r\}$, the oriented intersection $\Sigma_i \cap \Sigma_j \cap \Sigma_k$ is a union over all the components of type $(\varepsilon_i m_i, \varepsilon_j m_j, \varepsilon_k m_k)$ of points with sign $\varepsilon_i \varepsilon_j \varepsilon_k$.

In particular, if $H_2(M; \mathbb{Z}) = 0$, then $\mu(K_i, K_j, K_k)$ is the sum over all the components of type $(\varepsilon_i m_i, \varepsilon_j m_j, \varepsilon_k m_k)$ of the contributions $(-\varepsilon_i \varepsilon_j \varepsilon_k)$.

Proof: Define the index of a component Y of G as the smallest i such that Y has a meridional leaf of U_i. Realize the surgeries on the components of index i of G by applying Lemma 10.2 to the trivial meridional leaf ℓ of U_i and to the part of U_i going through ℓ. These surgeries transform $U^{(r)}$ into L and allow us to see each K_i as the boundary of a surface Σ_i whose 1-handles are thickenings of the framed leaves that are not meridians of U_i of the components of index i.

So far, Σ_k may intersect the K_i with $i < k$ (but not the K_i with $i > k$). More precisely, if $i < k$, each component of index i of type $(m_i, \varepsilon_m k, f)$ or $(m_i, f, -\varepsilon m_k)$ gives rise to an arc of intersection of $\Sigma_i \cap \Sigma_k$. Tubing Σ_k along the part of K_i between the two extremities of the intersection arc that is contained in the surgery picture transforms this arc of intersection into εf and removes the intersection of K_i with Σ_k.

If the third leaf is a meridian of K_j for $i < j < k$ then perform the tubing along this leaf inside the tubing of Σ_j along the meridional leaf of m_k. Let Σ_k denote the surface obtained after all these tubings.

It is left to the reader to check that the surfaces have the announced properties.

Say that a Y-link G μ-laces the trivial r-component link $U^{(r)}$ of a connected 3-manifold if it laces it, and if for any triple $\{i, j, k\}$ of integers in $\{1, \ldots, r\}$, there are exactly $|\mu(K_i, K_j, K_k)|$ components with one leaf that links U_i, one leaf that links U_j and one leaf that links U_k.

It is known that any algebraically split link can be presented by a Y-link G that laces the trivial link $U^{(r)}$ [GGH, Lemma 5.6], [Mat], [MN]. We prove the following proposition that refines this result, and that, together with Lemma 10.4, proves Proposition 4.8.
Proposition 10.8 For any algebraically split link \(L = (K_1, \ldots, K_r) \) in a connected 3-manifold \(M \) such that \(H_2(M; \mathbb{Z}) = 0 \), there exists a \(Y \)-link \(G \) that \(\mu \)-laces the trivial link \(U^{(r)} \) of \(M \) such that \((G, U^{(r)}) \) presents \(L \).

This proposition will be a direct corollary from the slightly more general proposition 10.9 below, that may be used for the study of homology handlebodies.

Here, an \(r \)-component based link is an embedding \(\Gamma_L \) of the following graph with \(r \) loops, up to isotopy. Its underlying link is the restriction of the embedding to its \(r \) loops.

\[
\begin{aligned}
U_1 & \circlearrowleft \\
\vdots & \\
U_r & \circlearrowleft
\end{aligned}
\]

The trivial \(r \)-component based link \(\Gamma_U^{(r)} \) is the above \(r \)-component based link seen in a 3-ball.

Proposition 10.9 For any based \(r \)-component link \(\Gamma_L \), whose underlying link \(L = (K_1, \ldots, K_r) \) is algebraically split, in a connected 3-manifold \(M \) such that \(H_2(M; \mathbb{Z}) = 0 \), there exists a \(Y \)-link \(G \) in \(M \setminus \Gamma_U^{(r)} \) that \(\mu \)-laces the trivial link \(U^{(r)} \) of \(M \) such that \((G, \Gamma_U^{(r)}) \) presents \(\Gamma_L \).

Proof: For any sublink \(L' \) of \(L \), there is a canonical subgraph \(\Gamma_{L'} \) of \(\Gamma_L \) that is a based link with underlying link \(L' \). We prove Proposition 10.9 by proving the following statement by induction on the number \(r \) of components of \(L \).

Induction hypothesis

Let \(M \) be a connected 3-manifold such that \(H_2(M; \mathbb{Z}) = 0 \). Let \(\Gamma_{L \cup L'} \) be a based algebraically split link in \(M \) where \(L \) has \(r \) components. Let \(\Gamma_{U^{(r)} \cup L'} \) be the based link obtained from \(\Gamma_{L \cup L'} \) by replacing \(\Gamma_L \) by \(\Gamma_U^{(r)} \) so that each component of \(U^{(r)} \) bounds a disk \(D_i \) whose interior does not meet \(\Gamma_{U^{(r)} \cup L'} \). Then there exists a \(Y \)-link \(G \) in \(M \setminus \Gamma_{L'} \) such that the following set of properties \(H(G, \Gamma_L, \Gamma_{L'}) \) is satisfied.

- \(G \subset M \setminus \Gamma_{U^{(r)} \cup L'} \),
- \(G \mu \)-laces the trivial link \(U^{(r)} \) of \(M \setminus L' \)
- \((G, \Gamma_{U^{(r)} \cup L'}) \) presents \(\Gamma_{L \cup L'} \) in \(M \),
- the only leaves of \(G \) that link \(L' \) algebraically are meridional leaves of \(L' \),
- no component of \(G \) contains more than one meridional leaf of a given component of \(L' \),
- for any triple \(\{I, J, K\} \) of components of \(L \cup L' \) with at least one component in \(L \), there are exactly \(|\mu(I, J, K)| \) components of \(G \) with one leaf that links \(I \), one leaf that links \(J \) and one leaf that links \(K \).

This statement is obviously true for \(0 \)-component links.

Assume that it is true for \((r-1)\)-component links, we wish to prove it for \((L = (K_1, \ldots, K_r), L') \). Let \(U^{(r-1)} = (U_1, \ldots, U_{r-1}) \) denote the trivial \((r-1)\)-component link that bounds a disjoint union of disks \((D_i)_{i=1, \ldots, r-1} \). By induction, there exists \((G_1 \subset M \setminus \Gamma_{L \cup K_r}) \) such that \(H(G_1, \Gamma_{K_1, \ldots, K_{r-1}, L'} \cup \Gamma_{K_r, U^{'r}}) \) is satisfied.

Consider a two-dimensional disk \(D \) that meets \(K_r \) along an arc \(\alpha \) of its boundary around which all the meridional leaves of \(K_r \) are, and such that \(D \) intersects all the meridional leaves, so that

\[
K'_r = (K_r \setminus \alpha) \cup (-\partial D \setminus \alpha)
\]

bounds a surface \(\Sigma \) that meets neither \(\Gamma_{L \cup L'^{r-1}} \cup \cup_{i<r} D_i \), nor the path \(\gamma_r \) from the vertex of \(\Gamma_{L \cup L'} \) to \(K_r \), nor the leaves of \(G_1 \).
Lemma 10.10 The graph G_1 and the surface Σ can be modified so that Σ does not meet G_1 at all outside the meridional leaves of L, and the following set of assumptions $H_2(G_1, \Gamma_{K_1}, \ldots, \Gamma_{K_r-1}, \Gamma_{K_r \cup L'}, \Sigma)$

- Σ meets neither $\Gamma_{U(r-1) \cup L' \cup \cup_j D_j}$, nor γ_r, nor the leaves of G_1
- $H(G_1, \Gamma_{K_1}, \ldots, \Gamma_{K_r-1}, \Gamma_{K_r \cup L'})$ is satisfied except that components of G_1 are allowed to have no meridians of $L \setminus K_r$ provided that they have a meridian of K_r.

is still satisfied.

Proof: We need to remove the intersections of Σ with the edges of G_1. By isotopy, without loss, assume that no edge adjacent to a meridional leaf of K_r intersects Σ (push the intersection on the two other edges, if necessary). Similarly, assume that if a component contains only one meridian of L, the edge adjacent to this component does not meet Σ. Now, the intersections of the edges adjacent to non-meridional leaves can be removed by tubing Σ around the part of the Y-graph that contains the corresponding leaf. Here tubing means replacing a small disk of Σ in a neighborhood of an intersection point with an edge by the closure of its complement in the boundary of a regular neighborhood of the part of the Y-graph that contains the corresponding leaf, as below.

Thus, we are under the assumptions $H(E)$ that the only edge intersections occur on edges adjacent to a meridional leaf of some K_j, with $j < r$, of components with at least two meridional leaves of L. Define the complexity $c(\Sigma; G_1)$ of such a situation as follows. Define the complexity $c_e(Y)$ of a component Y of G_1 as the number of intersection points of its edges with Σ. Define the complexity $c(\Sigma; G_1)$ as the pair (maximal complexity c_e of the components, number of components with this complexity) ordered by the lexicographic order.

Now, to prove the lemma, it is enough to prove that there exists a pair $(\Sigma; G_1)$ with lower complexity such that $H_2(G_1, \Gamma_{K_1}, \ldots, \Gamma_{K_r-1}, \Gamma_{K_r \cup L'}, \Sigma)$ and $H(E)$ are satisfied.

Consider a component Y of G_1 with maximal complexity, and its edge e with the maximal number of intersection points. By hypothesis, e is adjacent with a meridional leaf ℓ of some component K_i with $i < r$. Remove the point of $e \cap \Sigma$ that is closest to ℓ as follows. By our assumptions, Σ intersects a neighborhood of Y in the gray part of the following picture, where the intersection point that will be removed is at the top right corner. Perform the modification of Lemma 10.5 so that the resulting three graphs are like in the following picture with respect to the positions of the possible intersections with Σ.

25
Let Y_1 be the graph that replaces Y with one edge intersection removed. Let Y_3 be the graph with a meridional leaf of K_r, a leaf parallel to t, and another trivial leaf t_1, and let Y_2 be the other one with one meridian of t_1. Remove all the intersection of Y_3 with Σ outside its meridional leaf of K_r by tubing. If Y_2 has only one meridional leaf of L, then remove its intersections as before, too. Otherwise, don’t change it, it has two meridional leaves, and its complexity c_e is lower than $c_e(Y)$. Slide the meridional leaf of K_r in Y_3 so that it is around the arc α of K_r. Thus, the obtained graph and the modified Σ together satisfy $H_2(G_1, \Gamma_{K_1,...,K_{r-1}}, \Gamma_{K_r\cup L'}, \Sigma)$ and $H(E)$, and have lower complexity. The lemma is proved.

By Lemma 10.2, $K_r \setminus \alpha$ is obtained from $\partial D \setminus \alpha$ by surgery on a Y-link G_2 in the neighborhood of $\Sigma \setminus D$ such that any component of G_2 contains exactly one meridian of ∂D. Let $U_r = \partial D$. Thus, K_r is obtained from U_r by surgery on $G_1 \cup G_2$, $G_1 \cup G_2$ μ-laces the trivial μ-link U_α of $M \setminus L'$, $(G_1 \cup G_2, \Gamma_{U_\alpha \cup L'})$ presents $\Gamma_{L' \cup L'}$ in M. Let us now modify $G = G_1 \cup G_2$ so that the last three conditions of $H(G, \Gamma_L, \Gamma_{L'})$ are satisfied in addition to the previous ones.

- **Cutting the leaves so that the only leaves that link L' algebraically are meridional leaves of L'**

Use Move Y4 of [GGP] (Lemma 10.4) to cut the leaves of G_2 that are not meridians of K_r so that they are either 0-framed meridians of L' or they do not link L' at all. Indeed, this move allows us to cut the leaves into leaves that are homologically trivial in the complement of L', and meridians of the components of L' without creating further intersections of G_2 with the disk D. Define the complexity of a leaf as the minimal number of leaves in such a decomposition minus one. Define the complexity of a Y-graph as the sum of the complexities of its leaves. Finally define the complexity of a Y-link as the pair (maximal complexity of the components, number of components with this complexity) ordered by the lexicographic order. The leaves can be cut in order to make this complexity decrease without creating further intersections of G with D.

- **Sliding the handles so that no component of G contains more than one meridional leaf of a given component of L'**

Now, we wish to remove the Y-components with a meridional leaf of K_r and two meridional leaves of the same component J of L'. By Lemma 10.2, a surgery with respect to such a graph G_3 corresponds to a band sum with the boundary of a genus one Seifert surface as below.

![Diagram of Seifert surface](image)

where α and β are meridians of J. In this figure, a right-handed (resp.left-handed) Dehn twist of the surface along the simple curve $c(\alpha)$ freely homotopic to α transforms β into $\alpha \beta$ (resp. $\alpha^{-1} \beta$) and does not change α. Therefore, the Y-graph G_3 is equivalent to a Y-graph whose leaves are a meridian of K_r, the meridian α, and the curve among $\alpha \beta$ and $\alpha^{-1} \beta$ that is null-homologous.

- **Realizing the algebraic cancellations to the Milnor invariants** $\mu(K_r, K_s, K_1)$ where K_s and K_t are components of L'.
First recall from Lemma \[10.7\] that \(\mu(K_r, K_s, K_t)\) is the sum of the contributions \(\varepsilon\eta\) of the \(Y\)-graphs of type \((m_r, -\varepsilon m_s, \eta m_t)\) or \((m_r, \varepsilon m_s, \eta m_t)\) where \(\varepsilon\) and \(\eta\) belong to \([-1, 1]\). Second, exchange the order of the \(Y\)-graphs that link \(U_r\) so that all the graphs that contribute with a sign opposite to the Milnor invariant are followed by a graph that contributes with the sign of the Milnor invariant. In order to exchange two \(Y\)-graphs that link \(U_r\), perform the following sequence of operations.

First slide the meridian \(m\) of one of them inside the other one \(m'\). Next use move \(Y_4\) (Lemma \[10.4\]) to cut \(m'\) into \(m'\) and a leaf that links the edge going to \(m\). It is enough to slide inside components that contribute to \(\mu(K_r, K_s, K_t)\). Thus, we do not lose properties of our graphs, (and otherwise we could just perform the surgery).

Last, transform a pair of \(K_r\)-adjacent \(Y\)-graphs with opposite contributions to \(\mu(K_r, K_s, K_t)\) into a family of \(Y\)-graphs that do not individually contribute to \(\mu(K_r, K_s, K_t)\). To do this, see the effect of the surgery along the two \(K_r\)-adjacent \(Y\)-graphs as a band sum with the boundary of a genus two surface \(\Sigma\) whose 1–handles are \(\alpha_1, \beta_1, \alpha_2, \beta_2\), and are meridians of \(K_s\) and \(K_t\).

We are in one of the following situations for the homology classes of the curves: Either \([\alpha_1] = [\alpha_2]\) and \([\beta_1] = -[\beta_2]\), or \([\alpha_1] = -[\alpha_2]\) and \([\beta_1] = [\beta_2]\), or \([\alpha_1] = [\beta_2]\) and \([\beta_1] = [\alpha_2]\), or \([\alpha_1] = -[\beta_2]\) and \([\beta_1] = -[\alpha_2]\).

Consider the following simple closed curves \(c(\alpha_2), c(\beta_1), c(\beta_2), c(\alpha_1\alpha_2)\) and \(c(\beta_1\beta_2)\) whose homology classes are \([\alpha_2], [\beta_1], [\beta_2], [\beta_1\alpha_2]\) and \([\beta_1\beta_2]\), respectively.

For a curve \(c\), let \(\tau_c\) denote the right-handed Dehn twist around this curve. Recall the action of \(\tau\) on homology classes \(\tau_c(x) = x + \langle c, x \rangle \Sigma c\). Then the homeomorphism \(\tau_{c(\alpha_2)}^{-1} \tau_{c(\beta_1)}^{-1} \tau_{c(\beta_1\alpha_2)}\) of \(\Sigma\) transforms \(\alpha_2\) and \(\beta_1\) to conjugate curves, where the conjugation paths are in the neighborhood of the genus 2 surface and avoids the disks \(D_i\), for \(i \leq r\), and it transforms \(\alpha_1\) and \(\beta_2\) into curves homologous to \(\alpha_1\alpha_2^{-1}\) and \(\beta_1\beta_2\). Therefore using this boundary-preserving homeomorphism in the first case allows us to transform the surgery on the initial pair of \(Y\)-graphs into a surgery on a pair of \(Y\)-graphs such that each of the graphs has a homologically trivial leaf and two meridional leaves. In the second case, use \(\tau_{c(\alpha_2)} \tau_{c(\beta_1)} \tau_{c(\beta_1\alpha_2)}\). Use \(\tau_{c(\beta_2)}^{-1} \tau_{c(\alpha_1)}^{-1} \tau_{c(\beta_1\beta_2)}\) and \(\tau_{c(\beta_1)} \tau_{c(\beta_1)} \tau_{c(\beta_1\beta_2)}\) in the third and fourth cases, respectively to achieve a similar reduction.
11 Proof of the formulae for algebraically split links

We prove the surgery formulae of Theorem 4.4 and Theorem 4.4 following a strategy that was used in [GGP] to compare the filtration of the space of Z-spheres associated to algebraically split links to the filtration associated to Y-links.

According to Proposition 10.8, it is enough to prove these theorems for links that are presented by pairs \((G, U^{(r)})\) where \(G\) is a Y-link that \(\mu\)-laces the trivial link \(U^{(r)}\) of \(M\), that is for \(U^{(r)} \subset M_G\), where \(U^{(r)}\) is equipped with surgery coefficients \(p_1/q_1, p_2/q_2, \ldots, p_r/q_r\).

\[[M_G; U^{(r)}] = \sum_{H \subset G} (-1)^{2H} [M; H \cup U^{(r)}] \]

where

\[[M; H \cup U^{(r)}] = \sum_{J \subset H, I \subset \{1, 2, \ldots, r\}} (-1)^{J+J} M_{J \cup I}(p_{i_j/q_{i_j}}), \quad (\forall j \in \{1, 2, \ldots, r\}, \forall I \cup J) \in L(p_j, -q_j) \cdot \]

Then \([M_G; U^{(r)}] \equiv \sum_{H \subset G : H \leq 2n} (-1)^{2H} [M; H \cup U^{(r)}] \).

If there exists \(i\), such that \(U_i\) does not link any leaf of \(H\), then \([M; H \cup U^{(r)}] = 0\).

If there exists \(i\), such that \(U_i\) links only one leaf of \(H\), then let \(Y_1\) be the component of this leaf.

\[[M; H \cup U^{(r)}] = -[M_{Y_1}; H \setminus Y_1 \cup U^{(r)}]. \]

Recall that the surgery on \(Y_1\) is a surgery associated with a genus one surface bounded by some \(K_i\) as in Subsection 9.3. Then the inverse surgery of this subsection transforms \(U_i\) into \(-K_i\) and since it can be realized as a genus one cobordism, it can also be realized by a surgery on a Y-graph that laces \(U_1\) and that sits in the complement of \(G\). Let \(Y_{1}^{-1}\) be such a graph. We can assume that its leaves are a meridian of \(U_i\) and two leaves parallel to the two other leaves of \(Y_1\). Compare with Lemma 10.6.

Then \([M_{Y_1}; H \setminus Y_1 \cup U^{(r)}] = [M_{Y_1^{-1}}; H \setminus Y_1 \cup U^{(r)}]\) and

\[[M; H \cup U^{(r)}] = \frac{1}{2} [M; H \cup Y_{1}^{-1} \cup U^{(r)}]. \]

As long as there is a component \(U_i\) that bounds a disk \(D_j\) intersecting \(H \cup Y_{1}^{-1} \cup \ldots \cup Y_{k}^{-1}\) once (and necessarily) inside a meridional leaf of some component \(Y_{k+1}\) of \(H\), add \(Y_{k+1}\), and write

\[[M; H \cup Y_{1}^{-1} \cup \ldots \cup Y_{k}^{-1} \cup U^{(r)}] = \frac{1}{2} [M; H \cup Y_{1}^{-1} \cup \ldots \cup Y_{k}^{-1} \cup Y_{k+1}^{-1} \cup U^{(r)}]. \]

\[[M; H \cup U^{(r)}] = \frac{1}{2k+1} [M; H \cup Y_{1}^{-1} \cup \ldots \cup Y_{k}^{-1} \cup Y_{k+1}^{-1} \cup U^{(r)}]. \]

Finally, \([M_G; U^{(r)}]\) is a rational combination of terms of the form \([M; H' \cup U^{(r)}]\) where each \(U_i\) links at least two leaves of \(H'\). To be more specific, the considered \(H'\) are of the form \(H \cup H_1^{-1}\), where \(H\) is a sublink of \(G\), and \(H_1^{-1}\) is a link made of inverses of the components of a sublink \(H_1\) of \(H\). In particular, the leaves of a component of \(H_1^{-1}\) have the same constraints as the leaves of a component of \(G\). Since a leaf of \(H'\) links at most one \(U_i\), such a \(H'\) has at least \(2r\) leaves linking the \(U_i\). In particular, if \(2r > 6n\), \([M_G; U^{(r)}] \equiv 0\).

• Under the hypotheses of Theorem 4.3, assume \(2r = 6n\). Up to elements in \(F_{2n+1}\), \([M_G; U^{(r)}]\) is a rational combination of terms of the form \([M; H' \cup U^{(r)}]\) where each \(U_i\) links exactly two
leaves of \(H' \), and each leaf of \(H' \) is a meridional leaf of some \(U_i \). More precisely, let \(G_3 \) be the sublink of \(G \) made of the components that have three meridional leaves, we have

\[
[M_G; U^{(r)}] \overset{\text{def}}{=} \sum_H (-1)^{2H} [M; H \cup U^{(r)}]
\]

where the sum runs over the \(H \) that read as the disjoint union of two \(Y \)-links \(H_1 \) and \(H_2 \) of \(G_3 \) such that for any component \(U_i \) of \(U^{(r)} \), either there is one meridional leaf of \(U_i \) in \(H_1 \) and no meridional leaf of \(U_i \) in \(H_2 \), or there is no meridional leaf of \(U_i \) in \(H_1 \) and there are two meridional leaves of \(U_i \) in \(H_2 \). Let \(\mathcal{H} \) denote the set of the \((H_1, H_2)\) where \(H_1 \cup H_2 \) is a decomposition as above of such a graph.

- Under the hypotheses of Theorem \ref{thm:application}, at most two thirds of the leaves of the \(H' \) link the \(U_i \) once, and the leaves of the other third do not link the \(U_i \) at all. Therefore, if \(2r > 4n \), \([M_G; U^{(r)}] \) belongs to \(\mathcal{F}_{2n+1} \). If \(r = 2n \), up to elements in \(\mathcal{F}_{2n+1} \), \([M_G; U^{(r)}] \) is a rational combination of terms of the form \([M; H' \cup U^{(r)}]\) where each \(U_i \) links exactly two leaves of \(H' \), and in each component of \(H' \), there are two meridional leaves of \(U^{(r)} \) and a null-homologous leaf. More precisely, let \(G_2 \) be the sublink of \(G \) made of the components that have two meridional leaves, we have

\[
[M_G; U^{(r)}] \overset{\text{def}}{=} \sum_H (-1)^{2H} [M; H \cup U^{(r)}]
\]

where the sum runs over the \(H \) that read as the disjoint union of two \(Y \)-links \(H_1 \) and \(H_2 \) of \(G_2 \) such for any component \(U_i \) of \(U^{(r)} \), either there is one meridional leaf of \(U_i \) in \(H_1 \) and no meridional leaf of \(U_i \) in \(H_2 \), or there is no meridional leaf of \(U_i \) in \(H_1 \) and there are two meridional leaves of \(U_i \) in \(H_2 \). Let \(\mathcal{H} \) denote the set of the \((H_1, H_2)\) where \(H_1 \cup H_2 \) is a decomposition as above of such a graph.

In both cases

\[
[M_G; U^{(r)}] \overset{\text{def}}{=} \sum_{(H_1, H_2) \in \mathcal{H}} \left(\frac{1}{2} \right)^{2H_1} (-1)^{2H_2} [M; H_1 \cup H_1^{-1} \cup H_2 \cup U^{(r)}]
\]

where \(H_1 \cup H_1^{-1} \cup H_2 \) has \(2n \) components (and therefore \((-1)^{2H_2} = 1 \)). Apply Theorem \ref{thm:application} to compute it. The tripod associated to a surgery on an oriented \(Y \)-graph whose leaves are \(\ell_1, \ell_2, \ell_3 \) was computed in Lemma \ref{lem:tripod} (thanks to Proposition \ref{prop:tripod}). It is \(\begin{array}{c} \ell_2 \\ \ell_1 \\ \ell_3 \end{array} \) while the tripod associated to an inverse of such a graph is \(\begin{array}{c} \ell_3 \\ \ell_1 \\ \ell_2 \end{array} \) where the parallels are taken with respect of the parallelization of the leaves.

Later, we shall consider twice the tripods of the components of \(H_1 \) and remove the \((-1)^{2H_1}\). Recall the formula of Lemma \ref{lem:lk}

\[
l_{k_M(U_i, m_i)}(J, K) = l_{k_M}(J, K) - \frac{q_i}{p_i} l_{k_M}(U_i, J)l_{k_M}(U_i, K).
\]

If for some \(i \), a contraction does not pair two curves linking \(U_i \), then its contribution to \([M; H' \cup (U \setminus U_i)]\) and its contribution to \([M_{U_i}; H' \cup (U \setminus U_i)]\) will be the same. Therefore, it won’t contribute to \([M; H' \cup U] \). Thus since there are exactly two leaves \(m_i \) and \(m_i' \) linking \(U_i \) in each \(H' \), the only pairings that will contribute will pair these pairs together, and the corresponding remaining linking number will be \(\frac{q_i}{p_i} l_{k_M}(U_i, m_i)l_{k_M}(U_i, m_i') \).

- Under the hypotheses of Theorem \ref{thm:application}, there is one contributing pairing for every \((H_1, H_2) \in \mathcal{H} \).

It can be seen as an edge-labelled Jacobi diagram \(\Gamma(H_1, H_2) \) together with a bijection \(b \) from the
Let $f = f(b)$ be the map from $V(\Gamma(H_1, H_2))$ to the set of components of G obtained from a bijection b as above by setting

$$f(b)(v) = b(v) \quad \text{if } b(v) \text{ is a component of } H_1 \cup H_2$$

$$= Y_i \quad \text{if } b(v) = Y_i^{-1}.$$

Now, Lemma 10.7 easily leads to the conclusion of the proof of Theorem 4.3.

Orient G arbitrarily. Let $\Gamma \in D_{3,n}$. Equip Γ with an arbitrary orientation. Let $G(\Gamma)$ be the set of maps g from $V(\Gamma)$ to the set of components of G that map a vertex v with adjacent edges labelled by i, j, k, with respect to the order induced by the orientation, to a component of type $(\varepsilon_i m_i, -\varepsilon_j m_j, \varepsilon_k m_k)$ or $(\varepsilon_i m_i, \varepsilon_k m_k, \varepsilon_j m_j)$. Define $\text{sign}(g; v) = \varepsilon_i \varepsilon_j \varepsilon_k$ for such a vertex. Define $\text{sign}(\Gamma; g)$ as the product of the signs associated to the vertices. Then

$$Z_n \left([M_G; U^{(s)}] \right) = \prod_{i=1}^{3n} \frac{q_i}{p_i} \sum_{\Gamma \in \mathcal{H}_n} \frac{1}{2^{\sharp H}} \text{sign}(\Gamma(H_1, H_2); b)[\Gamma(H_1, H_2)]$$

Now, Lemma 10.7 easily leads to the conclusion of the proof of Theorem 4.3.

- Orient G arbitrarily. Under the hypotheses of Theorem 4.4, a contributing pairing for $(H_1, H_2) \in \mathcal{H}$ is a $2/3$-labelled Jacobi diagram Γ, equipped with a bijection from $V(\Gamma)$ to the set of components of $H_1 \cup H_1^{-1} \cup H_2$ that maps a vertex with two adjacent edges labelled by i and j to a component of type $(\varepsilon_i m_i, \varepsilon_j m_j, f)$ or $(\varepsilon_j m_j, -\varepsilon_i m_i, f)$. For a fixed $2/3$-labelled Jacobi diagram Γ, there are $\sharp \text{Aut}_{2/3}(\Gamma)$ bijections from $V(\Gamma)$ to the set of components of $H_1 \cup H_1^{-1} \cup H_2$ that will correspond to the same pairing.

Let $\Gamma \in D_{2/3,n}$. Equip Γ with an orientation. Let $G(\Gamma)$ be the set of maps g from $V(\Gamma)$ to the set of components of G that map a vertex v whose adjacent edges are labelled by $(i, j, \text{nothing})$ (with respect to the orientation of Γ) to a component of type $(\varepsilon_i m_i, \varepsilon_j m_j, f)$ or $(\varepsilon_j m_j, -\varepsilon_i m_i, f)$ of G. When $g \in G(\Gamma)$ is fixed, assign the framed oriented curve $\varepsilon_i \varepsilon_j f$ to the unlabelled edge of each $v \in V(\Gamma)$ as above. Then assign to each edge of Γ the linking number of the two curves assigned to its half-edges (change a curve f into its parallel f_\parallel, if the two curves coincide) and define $lk(\Gamma; g)$ as the product over the edges of Γ of the associated linking numbers.

$$Z_n \left([M_G; U^{(s)}] \right) = \prod_{i=1}^{2n} \frac{q_i}{p_i} \sum_{\Gamma \in D_{2/3,n} \cdot \text{g} \in G(\Gamma)} \frac{lk(\Gamma; g)}{2^{\sharp \text{Aut}_{2/3}(\Gamma)}}[\Gamma].$$

Now, Lemma 10.7 easily leads to the conclusion of the proof of Theorem 4.4 when the Seifert surfaces are associated to a presentation of the link by a graph that μ-laces the unlink as in...
Proposition [10.8]. Fortunately, this is enough to conclude the proof of Theorem [1.4] thanks to the following proposition [11.1] that ensures that the right-hand side of the equality of Theorem [1.4] does not depend on the choice of the Seifert surfaces.

Let \(n \in \mathbb{N} \). Let \(D_{2/3,o,n} \) be the set of 2/3-labelled unoriented Jacobi diagrams whose labelled edges are oriented. Forgetting the edge orientations transforms an element \(\Gamma \) of \(D_{2/3,o,n} \) into an element \(f(\Gamma) \) of \(D_{2/3,n} \) and an element of \(D_{2/3,o,n} \) comes from \(\frac{2^n}{\text{Aut}_{2/3}(\Gamma)} \) elements of \(D_{2/3,o,n} \).

Let \(L = (K_i; p_i/q_i)_{i \in \{1,2,3,\ldots,2n\}} \) be a framed \(2n \)-component algebraically split link in a rational homology sphere \(M \). Assume that for any \(\{i,j,k\} \subset \{1,2,3,\ldots,2n\} \), \(\mu(K_i,K_j,K_k) = 0 \). Let \((F_i^-)_{i \in \{1,2,3,\ldots,2n\}} \cup (F_i^+)_{i \in \{1,2,3,\ldots,2n\}} \) be a collection of transverse surfaces such that, for any \(i \), \(F_i^- \) and \(F_i^+ \) are two Seifert surfaces of \(K_i \) that do not meet the \(K_j \) for \(j \neq i \).

Let \(\Gamma \in D_{2/3,o,n} \). Orient \(\Gamma \). In such a \(\Gamma \) the half-edges of the labelled edges inherit a label from the edge orientation. Namely, Edge \(i \) goes from \(i^- \) to \(i^+ \).

For any vertex of \(\Gamma \), whose half-edges are labelled by \((i^-,j^+)\), nothing with respect to the cyclic order induced by the orientation, assign the intersection curve \(F_i^- \cap F_j^+ \) to its unlabelled half-edge. To any unlabelled edge that is now equipped with two intersection curves associate the linking number of these curves. Then define \(\ell_\Gamma((F_i^-,F_i^+)_{i=1,\ldots,2n}) \) as the product over all the unlabelled edges of \(\Gamma \) of the corresponding linking numbers. Note that \(\ell_\Gamma((F_i^-,F_i^+)_{i=1,\ldots,2n})[\Gamma] \) does not depend on the orientation of \(\Gamma \).

When \(F_i^+ \) is a parallel copy of \(F_i^- \), then

\[
\sum_{\Gamma \in D_{2/3,n}} \frac{\ell_\Gamma((F_i^-)_{i=1,\ldots,2n};\Gamma)}{2^{\text{Aut}_{2/3}(\Gamma)}}[\Gamma] = \sum_{\Gamma \in D_{2/3,o,n}} \frac{\ell_\Gamma((F_i^-,F_i^+)_{i=1,\ldots,2n})}{2^{\text{Aut}_{2/3}(\Gamma)}}[\Gamma]
\]

Proposition 11.1 With the notation and hypotheses above

\[
\sum_{\Gamma \in D_{2/3,o,n}} \frac{\ell_\Gamma((F_i^-,F_i^+)_{i=1,\ldots,2n})}{2^{\text{Aut}_{2/3}(\Gamma)}}[\Gamma]
\]

is independent of the choice of the surfaces \((F_i^-,F_i^+)_{i=1,\ldots,2n}\) in the complement of \(\cup_{j \neq i} K_j \), it only depends on \(L \).

Proof: We study the effect of changing a surface \(F_i^- \) to another Seifert surface \(F' \) of \(K_i \) disjoint from the \(K_j \) for \(i \neq j \), and transverse to the other ones. Obviously, for any \(\Gamma \), the only modified ingredient is the linking number associated with the unlabelled edge \(e \) that shares a vertex with \(i^- \) that reads

\[
\pm lk(F_i^- \cap S_1, S_2 \cap S_3)
\]

where \(S_1, S_2 \) and \(S_3 \) are the three other surfaces associated to the three other labelled half-edges containing the vertices of \(e \).

Let us compute the variation of such a linking number. Recall that \(H_2(M \setminus \cup_{j=1,2,\ldots,2n} K_j) \) is generated by the homology classes of the boundaries \(\partial N(K_j) \) of the tubular neighborhoods of the \(K_j \), for \(j \neq i \). Therefore the immersed oriented closed surface \((F_i^- \cup -F')\) cobounds a 3-dimensional chain \(C \) with some copies \(\partial N(K_j) \). In particular, if \(S_1 \) is a Seifert surface for \(K_{(j)} \), the boundary of \(C \cap S_1 \) is the union of \((F' \cap S_1 - F_i^- \cap S_1)\) and some copies of \(K_{(j)} \). Since all the Milnor triple linking numbers vanish, \(lk(K_{(j)}, S_2 \cap S_3) = 0 \), and

\[
lk(F' \cap S_1 - F_i^- \cap S_1, S_2 \cap S_3) = \pm (C \cap S_1, S_2 \cap S_3) = \pm (C, S_1 \cap S_2 \cap S_3).
\]

Now, consider the two elements of \(D_{2/3,o,n} \) obtained from \(\Gamma \) by changing the neighborhood of \(e \) in \(\Gamma \) as in the following figure.
Proposition 11.2
Let a, b and c be three real numbers such that \(a + b + c = 0 \). Let \(\Sigma_i \) be a Seifert surface for \(K_i \) in the exterior of \(L \setminus K \). Then

\[
\nu_{abc}(K_0, K_1, K_2, K_3) = \frac{1}{4}(\pm lk(\Sigma_0 \cap \Sigma_1, \Sigma_2 \cap \Sigma_3) + blk(\Sigma_0 \cap \Sigma_2, \Sigma_3 \cap \Sigma_4) + clk(\Sigma_0 \cap \Sigma_3, \Sigma_1 \cap \Sigma_2))
\]

does not depend on the surfaces \(\Sigma_i \) that satisfy the given assumption. The invariant \(\nu_{abc} \) satisfies the following properties.

- It is invariant under self-crossing changes of the components of \(L \).
- If \(M = S^3 \), \(\nu_{abc} \) is the following combination of the Milnor invariants defined in [Mi],

\[
\nu_{abc} = b\mu(10, 23) - c\mu(01, 23).
\]

\[
\mu(01, 23) = \nu_{1,0,-1} \text{ and } \mu(10, 23) = \nu_{-1,1,0}.
\]

Proof: The proof of Proposition 11.1 shows that \(\nu_{abc} \) does not depend on the surfaces and that it is therefore well-defined. Let us prove that \(\nu_{abc} \) does not vary under self-crossing changes and is therefore a homotopy invariant of these four-component links. To study the effect of a self-crossing change on \(K_0 \) inside a ball \(B \), choose the surfaces \(\Sigma_i \) for \(i > 0 \) so that they intersect \(B \) as parallel tubes around one strand of \(K_0 \). Then their intersections like \(\Sigma_2 \cap \Sigma_3 \) will not meet \(B \), and will also bound a surface \(\Sigma_{23} \) in the exterior of \(K_0 \) and \(K_1 \) that intersects \(B \) as parallel tubes around the same strand of \(K_0 \). Now, \(\Sigma_1 \cap \Sigma_{23} \) does not meet \(B \), and then

\[
lk(\Sigma_0 \cap \Sigma_1, \Sigma_2 \cap \Sigma_3) = \pm lk(K_0, \Sigma_1 \cap \Sigma_{23})
\]

does not vary under the considered crossing change of \(K_0 \).

According to [Mi], if the ambient 3-manifold is \(S^3 \), there is a bijection from the set of homotopy classes of four-component algebraically split links \(L \) whose three-component sublinks have Milnor triple linking number 0 to \(\mathbb{Z} \oplus \mathbb{Z} \) that maps \(L \) to \((\mu(01, 23)(L), \mu(10, 23)(L))\).
Furthermore, if \((K_0, K_1, K_2)\) is the trivial three-component link with meridians \(\alpha_0, \alpha_1, \alpha_2\), and if the homotopy class of \(K_{01}\) in the exterior of \((K_0, K_1, K_2)\) reads (with the notation of \([M]\)),

\[
\alpha_{2k_0}^{k_1} = \alpha_0 \alpha_1 \alpha_2 (\alpha_0 \alpha_1^{-1} (\alpha_0 \alpha_2^{-1} \alpha_0^{-1}) \alpha_2 (\alpha_1 \alpha_2^{-1} \alpha_1^{-1}) = [\alpha_0, [\alpha_1, \alpha_2]]
\]

then \(\mu(01, 23)(K_0, K_1, K_2, K_{01}) = 1\) and \(\mu(10, 23)(K_0, K_1, K_2, K_{01}) = 0\). More generally, if the homotopy class of \(K_3\) reads \([\alpha_0, [\alpha_1, \alpha_2]]^{\mu_{10}} [\alpha_1, [\alpha_0, \alpha_2]]^{\mu_{10}}\), then \(\mu(01, 23)(K_0, K_1, K_2, K_3) = \mu_{01}\) and \(\mu(10, 23)(K_0, K_1, K_2, K_3) = \mu_{10}\). The link presented by the following clasper

\[
\begin{align*}
U_2 & \circlearrowleft \quad U_0 \\
U_1 & \quad U_{01}
\end{align*}
\]

has the same properties than \((K_0, K_1, K_2, K_{01})\) and, according to Lemma 10.7,

\[
\nu_{abc}(K_0, K_1, K_2, K_{01}) = -c.
\]

More generally, if the homotopy class of \(K_3\) reads \([\alpha_0, [\alpha_1, \alpha_2]]^{\mu_{10}} [\alpha_1, [\alpha_0, \alpha_2]]^{\mu_{10}}\), then

\[
\nu_{abc}(K_0, K_1, K_2, K_3) = \langle b \mu_{10} - c \mu_{01} \rangle (K_0, K_1, K_2, K_3).
\]

\[\Box\]

12 On the polynomial form of the knot surgery formula: proofs and remarks

Proof of Theorem 5.1: Since the theorem easily follows from Theorem 4.1 for \(n = 1\), we assume \(n \geq 2\). First assume \((p, q) = (1, 0)\). A \(\frac{1}{r}\)-surgery on \(K\) is equivalent to \(|r|\) \(\text{sign}(r)\)-surgeries on parallel copies on \(K\). These parallel copies form an \(|r|\)-component boundary link \(L\) bounding parallel copies of \(F\). We have

\[
M(K; \frac{1}{r}) = \sum_{J \subset L} (-1)^{|J|} [M; J]
\]

Up to elements of \(\text{Ker}(Z_n)\), we only consider the sublinks \(J\) of \(L\) with at most \(n\) components, according to Theorem 4.1. There are

\[
\binom{|r|}{j} \frac{|r|(|r| - 1) \ldots (|r| - j + 1)}{j!}
\]

sublinks \(J\) of \(L\) with \(j\) components and they are all isomorphic to the boundary link \(L_j\) whose components are framed by \(\text{sign}(r)\). This shows that

\[
Z_n(M(K; \frac{1}{r})) - Z_n(M) = \sum_{j=0}^{n} Y_{n,0}^{(j)} (K \subset M) r^j \quad \text{if } r \geq 0
\]

\[
= \sum_{j=0}^{n} Y_{n,0}^{(j)-} (K \subset M) r^j \quad \text{if } r \leq 0
\]

where

\[
Y_{n,0}^{(n)} = Y_{n,0}^{(n)} = \frac{(-1)^n}{n!} Z_n ([M; L_n])
\]
is given by Theorem [4.1]. Now, we prove that the two polynomial expressions, the one for $r > 0$ and the one for $r < 0$, coincide. Applying the above result to $M(K; \frac{1}{r_0})$ with $r_0 < -n$, implies that for any $r \geq n$,

$$Z_n(M(K; \frac{1}{r})) - Z_n(M(K; \frac{1}{r_0})) = \sum_{i=1}^{n} Y_{n,0}^{(i)}(K \subset M(K; \frac{1}{r_0}))(r-r_0)^i.$$

The above result also implies that $Z_n(M(K; \frac{1}{r})) - Z_n(M(K; \frac{1}{r_0}))$ is

$$\sum_{i=1}^{n} Y_{n,0}^{(i)}(K \subset M)r^i + Z_n(M) - Z_n(M(K; \frac{1}{r_0})) \quad \text{if } r \geq 0$$

$$\sum_{i=1}^{n} Y_{n,0}^{(i)}(K \subset M)r^i + Z_n(M) - Z_n(M(K; \frac{1}{r_0})) \quad \text{if } r \leq 0.$$

Therefore the coefficients of the two polynomials coincide. This proves the existence of the polynomial expression with its given leading term for $(p, q) = (1, 0)$. Applying this result in $M(K; \frac{p}{q})$ and using the fact that a $\frac{p}{q}$-surgery on K is equivalent to a p/q-surgery on K and a 1/r surgery on a parallel copy on K gives a similar polynomial expression for $Z_n(M(K; \frac{p}{q}r)) - Z_n(M(K; \frac{p}{q}))$ with the same leading coefficient since, according to Theorem [4.1], $Z_n([M; L_n]) = Z_n([M(K; \frac{p}{q}); L_n])$. Now, up to polynomials in r of degree less than $(n - 1)$,

$$Z_n(M(K; \frac{p}{q + rp})) - Z_n(M) = \frac{(-1)^n}{n!} Z_n([M; L_n]) r^n$$

$$+ \left(\frac{n(1 - n)}{2} \right) (-1)^n Z_n([M; L_n]) + \frac{(-1)^{n-1}}{(n-1)!} Z_n([M(K; \frac{p}{q}); L_{n-1}]) \right) r^{n-1}$$

$$= Y_{n,0}^{(n)}(K \subset M)(r^n + \frac{pq}{n} r^{n-1}) + Y_{n,q/p}^{(n-1)}(K \subset M)r^{n-1}.$$

Thus

$$Y_{n,q/p}^{(n-1)}(K \subset M) = \frac{(-1)^n}{n!} Z_n([M; L_n])$$

$$= \frac{(-1)^{n-1}}{(n-1)!} \left(Z_n([M(K; \frac{p}{q}); L_{n-1}]) + \frac{1}{2} \frac{(-1)^{n-1}(n-1)}{(n-1)!} Z_n([M; L_n]) \right).$$

Then

$$Y_{n,q/p}^{(n-1)}(K \subset M) = Y_{n,q/p}^{(n-1)}(K')$$

$$= \frac{(-1)^{n-1}}{(n-1)!} \left(Z_n([M; L_{n-1}]) + Z_n([M(K; \frac{p}{q}); L_{n-1}] - [M; L_{n-1}]) \right)$$

where

$$Z_n([M(K; \frac{p}{q}); L_{n-1}] - [M;pL_{n-1}]) = -\frac{q}{p} Z_n([M; L_{n-1}])$$

by Theorem [4.1] and by additivity of $\phi^c(Z_n) = Z_n^c$ under connected sum, since $n \geq 2$,

$$Z_n^c([M;pL_{n-1}]) = Z_n^c([M; L_{n-1}]).$$

Therefore $Y_{n,q/p}^{(n-1)}(K \subset M) = Y_{n,0}^{(n-1)}(K \subset M).$

The behaviour of $Y_{n,q/p}^{(i)}(K \subset M)$ under an orientation change of M comes from the fact that $Z_n(-M) = (-1)^n Z_n(M)$, and the other assertions are easy to observe. \hfill \diamond
Remark 12.1 It is easy to see that \(\langle \bigsqcup_{i \in \{1, \ldots, n\}} I(F^i) \rangle \) is an invariant of the knot. First, it does not depend on the symplectic bases chosen for the Seifert surfaces because \(H_1(F) \) may be identified to \(H_1(F)^* \) via \((x \mapsto (x, \cdot)) \), and therefore the tensor \(\langle \sum x_i \otimes y_i - \sum y_i \otimes x_i \rangle \) may be identified with the intersection form of the surface that lives in \(H_1(F)^* \otimes H_1(F)^* \). Now, \(\langle \bigsqcup_{i \in \{1, \ldots, n\}} I(F^i) \rangle \) is invariant under the addition of a hollow handle. (See [Go, p. 27] or [KeL] for a reference for the fact that for two Seifert surfaces of a knot \(K \), there exists a third Seifert surface of \(K \) that is obtained from the two former ones by adding hollow handles.) Indeed let \(m \) be a meridian of a one-handle whose boundary is the union of the hollow handle and two disks, and let \(\ell \) be a dual curve for it with respect to the intersection form of the stabilized surface \(F \). Since the innermost copy of \(m \) does not link any curve of the other copies of \(F \), the pair \((m, \ell)\) does not contribute to the pairing. Now, the next innermost meridian does not link any other curve either... In such a way, it is easily seen that the pairs \((m, \ell)\) can be forgotten and this shows that \(\langle \bigsqcup_{i \in \{1, \ldots, n\}} I(F^i) \rangle \) is invariant under a stabilization of \(F \) by addition of a hollow handle.

Proof of Proposition 5.3: Let \(K_0 = K_\emptyset \) be the positive desingularisation of \(K^* \). Let \(U^{(k)} \) be the trivial link that bounds a disjoint union of disks \(D_i \) such that each \(D_i \) meets \(K^* \) exactly at one double point, and \(\partial D_i \) does not algebraically link \(K_0 \), so that each desingularisation of \(K^* \) is obtained from \(K_0 \) by surgery on a subset of \(L = \{(U_i; -1)\}_{i \in \{1, \ldots, n\}} \).

Then

\[
\sum_{i=0}^n Y_{n,q/p}(K^* \subset M)(r + \frac{q}{p})^i = Z_n([M(K_0; \frac{p}{q+rp}); L]).
\]

Each \(U_i \) bounds a genus one surface \(\Sigma_i \) in \(M \setminus K_0 \) obtained from \(D_i \) by tubing \(K_0 \), say in the \(K^*_i \) part, where we fix the choice of the \(K^*_i \) so that for any pair \(\{i, j\} \), \(K^*_i \cap K^*_j \) is connected.

Let us prove that such a choice is indeed possible for the \(K^*_i \). Fixing the choice of \(K^*_i \) amounts to choosing an interval of the circle between the two preimages of the double point \(i \). If some of the two possible intervals for a double point \(i \) does not contain a pair of preimages for another double point, pick such an interval. In the next steps, if some of the two intervals for a double point \(i \) only contains pairs of preimages for another double point together with their associate already chosen intervals, then pick such an interval. It is easy to see that this process will stop when all the \(K^*_i \) are chosen so that for any pair \(\{i, j\} \), \(K^*_i \cap K^*_j \) is connected.

Now, assume that the diameters of the tubes are all constant and different and that the tube for \(U_j \) is thinner than the tube for \(U_i \), if \(K^*_j \) contains the two preimages of the double point \(i \).

Then \(\Sigma_i \cap \Sigma_j \) is empty if the pair \((D_i \cap K_0)\) does not link the pair \((D_j \cap K_0)\), and it is a meridian curve of \(K_0 \) in \(D_j \) otherwise. Therefore, the \(\mu \)-invariants of the three-component sublinks of \(L \) in \(M(K_0; \frac{p}{q+rp}) \) are zero and Theorem 4.4 can be used to compute \(Z_n([M(K_0; \frac{p}{q+rp}); L]) \).

In particular, if \(k > 2n \), \(Z_n([M(K_0; \frac{p}{q+rp}); L]) = 0 \). Since the linking numbers between two intersection curves will be \(\pm \frac{q+rp}{p} \) or zero, if \(k = 2n \), \(Z_n([M(K_0; \frac{p}{q+rp}); L]) \) is a monomial in \(\left(\frac{q+rp}{p} \right)^n \).

Proof of Proposition 5.4: In this case, the link \(U^{(k)} \) of the previous proof is a boundary link in \(M(K_0; \frac{p}{q+rp}) \) because the produced genus one surfaces are disjoint. Then Theorem 5.3 can be applied. It implies the first part of the proposition. Use bases \((m_i, \ell_i)\) for the Seifert surfaces where \(m_i \) is a 0-framed meridian of \(K_0 \), and \(\ell_i \) is a curve along the tube of \(\Sigma_i \) and \(D_i \) that is homotopic to \(K^*_i \), and
that does not link K_0. In $M(K_0; \frac{p}{q}, \frac{r}{s})$, the linking number of two meridians is $\pm \frac{1}{\gcd(p, r)}$, the linking number of a meridian and a longitude is 0 or ± 1 while the linking number of two longitudes is their linking number in M. Note that if one tube for Σ_i goes inside another one for Σ_j (if $K_i^{s,i} \neq K_j^{s,j}$), and if $K_j^{s,j}$ is the positive desingularisation of $K_j^{s,j}$ then $lk(\ell_i, \ell_j) = lk(\ell_i, K_j^{s,j}) = -lk(\ell_i, K_0 - K_j^{s,j}) = -\ell_{ij}(K^s)$.

There are at most n pairings of meridians. Furthermore, since there is at least one innermost meridian that cannot be paired with a longitude, there is at least one pairing of meridians. Now, the number of pairs of meridians coincides with the number of pairs of longitudes in a pairing. \diamondsuit

As an example, we compute $\mathcal{Y}_2^{(i)\varepsilon}(K^s)$ where K^s is a singular knot with two unlinked double points.

Proposition 12.2 Let K^s be a singular knot with two unlinked double points.

$$
\sum_{I \subset \{1, 2\}} (-1)^I Z_2^s(M(K_I; \frac{1}{r})) = \frac{1}{4} \left((5\ell_{12}(K^s) + 2\ell_{11}(K^s)\ell_{22}(K^s)) r^2 - \ell_{12}(K^s) r \right) \mathcal{C} \mathcal{C}.
$$

Proof: Use the strategy and the notation of the proofs of the two previous propositions. Choose Seifert surfaces of the two knots of the crossing changes with disjoint tubes whose longitudes ℓ_1 and ℓ_2 are homotopic to $K_1^{s,2}$ and $K_2^{s,1}$, respectively, so that

$$
lk(\ell_1, \ell_2) = lk(\ell_1^+, \ell_2) = lk(\ell_1^+, \ell_2^+) = \ell_{12}(K^s)
$$

$$
lk(m_1, m_2) = -r = lk(m_1^+, m_2^+)
$$

$$
lk(\ell_i, \ell_i^+) = -\ell_{ii}(K^s)
$$

$$
lk(m_i, \ell_i^+) = lk(m_1, \ell_2) = lk(m_2, \ell_1) = 0
$$

$$
lk(m_i^+, \ell_i) = 1.
$$

Then, according to Theorem 4.1.

$$
\sum_{I \subset \{1, 2\}} (-1)^I Z_2^s(M(K_I; \frac{1}{r})) = \frac{1}{4} r^2 \left(\langle \left\langle \begin{array}{c}
m_1^+ \\
\ell_1^+ \\
m_2^+
\end{array} \right\rangle \, \left\langle \begin{array}{c}
m_1^+ \\
\ell_1 \\
m_2^+
\end{array} \right\rangle \, \left\langle \begin{array}{c}
m_1^+ \\
\ell_2 \\
m_2^+
\end{array} \right\rangle \right) \mathcal{C} \mathcal{C}.
$$

Note that m_1 and m_2 must be paired to another meridian. Then the right-hand side of the equality can be rewritten as

$$
\frac{r^2}{4} r^2 \left(\langle \left\langle \begin{array}{c}
m_1^+ \\
\ell_1^+ \\
m_2^+
\end{array} \right\rangle \, \left\langle \begin{array}{c}
m_1^+ \\
\ell_1^+ \\
m_2^+
\end{array} \right\rangle \, \left\langle \begin{array}{c}
m_1^+ \\
\ell_1^+ \\
m_2^+
\end{array} \right\rangle \right) - \frac{r}{4} \ell_{12}(K^s) \mathcal{C} \mathcal{C}.
$$

Indeed, either two pairs of meridians are paired together. This leads to the quadratic contribution in r above, or there is one pair of meridians, it is necessarily (m_1, m_2) and in this case m_1^+ must be paired with ℓ_1 and m_2^+ must be paired with ℓ_2. Then ℓ_1^+ and ℓ_2^+ must be paired together, and this provides the linear contribution above. \diamondsuit
13 Computation of the Casson-Walker knot invariant

Let K be an order O_K knot in a rational homology sphere M. Let $\widetilde{M \setminus K}$ be the infinite cyclic covering of $M \setminus K$. Denote the action of the homotopy class of the meridian of K on $H_1(\widetilde{M \setminus K}; \mathbb{Q})$ as the multiplication by t so that a generator of $H_1(\widetilde{M \setminus K})/\text{Torsion}$ acts as the multiplication by t^{1/O_K}. As in [L1, Chapter 2], define the Alexander polynomial $\Delta(K)$ of K as the order of the $\mathbb{Q}[t^{\pm 1/O_K}]$-module $H_1(\widetilde{M \setminus K}; \mathbb{Q})$ normalized so that

$$\Delta(K)(1) = |\text{Torsion}(H_1(\widetilde{M \setminus K}))| = \frac{|H_1(M)|}{O_K}$$

and $\Delta(K)(t^{1/O_K}) = \Delta(K)(t^{-1/O_K})$.

Then the formula of [L1, p 12-13] implies the following lemma.

Lemma 13.1 For any knot K such that $\text{lk}(K, K) \in \mathbb{Z}$ in a rational homology sphere M, for any pair (p, q) of coprime integers such that $q \neq 0$,

$$\lambda(M; p/q) - \lambda(M) = \frac{q}{p} \left(\frac{O_K}{|H_1(M)|} \frac{\Delta''(K)(1)}{2} - \frac{1}{24O_K^2} + \frac{1}{24} \right) + \lambda(L(p, -q)).$$

Proof: Recall that $\lambda(M) = \frac{\pi(M)}{|H_1(M)|}$ where $|H_1(M)|$ is the cardinality of $H_1(M; \mathbb{Z})$ and π is the extension of $|H_1(M)|\lambda$ to oriented closed 3-manifolds that is denoted by λ in [L1]. For any knot K in a rational homology sphere M, according to [L1, 1.4.8], for $q > 0$,

$$\lambda(M; p/q) - \lambda(M) = \frac{q}{p} \left(\frac{O_K}{|H_1(M)|} \frac{\Delta''(K)(1)}{2} - \frac{1}{24O_K^2} + \frac{1}{24} \right) + \frac{\text{sign}(pq)}{8} + \frac{s(p - q\text{lk}(K, K), q)}{2},$$

where the Dedekind sum $s(p - q\text{lk}(K, K), q)$ is defined in [RG] (and in [L1, 1.4.5]). This formula makes clear that

$$\lambda(M; p/q) - \lambda(M) = \frac{q}{p} \left(\frac{O_K}{|H_1(M)|} \frac{\Delta''(K)(1)}{2} - \frac{1}{24O_K^2} + \frac{1}{24} \right) + f(p, q)$$

for some $f(p, q)$ that depends neither on the knot K with self-linking number 0 nor on its ambient manifold M. Applying this formula to the trivial knot U of S^3 concludes the proof of the lemma. ◦

We now express $\Delta(K)$ from the Seifert form of a Seifert surface for K in the following proposition.

Proposition 13.2 Let K be a knot of order d, with self-linking number $-a/b \in \mathbb{Q}/\mathbb{Z}$, where a and b are coprime integers, in a rational homology sphere M. Let $N(K)$ be a tubular neighborhood of K. Let Σ be a surface in M whose boundary is made of (d/b) parallel copies of a primitive curve of $\partial N(K)$. Let B_s be a symplectic basis for $H_1(\Sigma)/H_1(\Sigma)$, and let

$$\Delta_{\Sigma}(\tau) = \text{det}[(\tau^{1/2}\delta^+ - \tau^{-1/2}\delta^-)_{ \delta^- (0, b) }]_{(0, b) \in B_s}$$

where δ^+ (resp. δ^-) is a representative of δ pushed away from Σ in the direction of the positive (resp. negative) normal direction to Σ. Then

$$\frac{d}{|H_1(M)|} \Delta(K) = \Delta_{\Sigma}(t^{1/d}) b t^{b + \delta} - t^{-\delta} \frac{d t^b - t^{-\delta}}{d t^b - t^{-\delta}}.$$

37
Consider a collar $\Sigma \times [-1, 1]$ of M whose boundary is made of d parallel copies of K. Let $N(K)$ be a tubular neighborhood of K. There exists a genus g surface Σ in M whose boundary is made of d parallel copies of K. Let $Y = M \setminus (N(K) \cup \Sigma \times [-1, 1])$. Then it is easy to see that, if the action of h on $H_1(\tilde{X}; \mathbb{Q})$ is denoted as a multiplication by τ,

$$H_1(\tilde{X}; \mathbb{Q}) = \frac{H_1(Y; \mathbb{Q}) \otimes \mathbb{Q}[\tau, \tau^{-1}]}{(\oplus_{b \in \mathcal{B}} (\tau b^+ - b^-) \mathbb{Q}) \otimes \mathbb{Q}[\tau, \tau^{-1}]}$$

as a $\mathbb{Q}[\tau, \tau^{-1}]$-module, where \mathcal{B} is a basis of $H_1(\Sigma)$ and, for $b \in \mathcal{B}$, b^+ (resp. b^-) denotes the class of b in $H_1(\Sigma \times \{1\})$ (resp. in $H_1(\Sigma \times \{-1\})$).

In particular, if \mathcal{C} is a basis of $H^1(Y; \mathbb{Q})$, then

$$\Delta(K)(\tau = t^{1/d}) = \det \left[\tau^{1/2} c(b^+) - \tau^{-1/2} c(b^-) \right]_{(b, h) \in \mathcal{C} \times \mathcal{B}}$$

up to a multiplication by a unit of $\mathbb{Q}[\tau, \tau^{-1}]$.

Computation of $H^1(Y; \mathbb{Q})$. Let $Z = M \setminus (\Sigma \times [-1, 1])$.

The collar $\Sigma \times [-1, 1]$ is a genus $(2g + d - 1)$-handlebody whose H_1 has a basis \mathcal{B} made of the classes $\ell_1, \ell_2, \ldots, \ell_{d-1}$ of $(d - 1)$ boundary components of Σ, and a symplectic basis \mathcal{B}_s for $H_1(\Sigma) / H_1(\partial \Sigma)$. Therefore, Z has the rational homology of a genus $(2g + d - 1)$-handlebody and $H^1(Z; \mathbb{Q})$ is freely generated by the linking numbers with the elements of \mathcal{B}.

Use the following exact sequence to compute $H^1(Y; \mathbb{Q})$

$$H^1(Z, Y; \mathbb{Q}) \hookrightarrow H^1(Z; \mathbb{Q}) \rightarrow H^1(Y; \mathbb{Q}) \rightarrow H^2(Z, Y; \mathbb{Q}) \rightarrow 0.$$

The pair (Z, Y) has the homology of the pair $(N(K), \partial N(K) \setminus (\partial \Sigma \times [-1, 1]))$ where $\partial N(K) \setminus (\partial \Sigma \times [-1, 1])$ is a disjoint union of d annuli $A(\ell_i^{+})$ whose cores are parallels $\ell_1^{++}, \ell_2^{++}, \ldots, \ell_d^{++}$ of K, and such that

$$\partial A(\ell_i^{++}) = \ell_i^{+} - \ell_{i+1}^{-}$$

(where $\ell_{d+1}^{-} = \ell_1^-$. In particular,

$$H_j(Z, Y) = \begin{cases} 0 & \text{if } j \neq 1, 2 \\ \oplus_{i=2}^d \mathbb{Z} \ell_i & \text{if } j = 1 \\ \oplus_{i=2}^d \mathbb{Z} B_i & \text{if } j = 2 \end{cases}$$

$$H_3(Z, Y) \cong \mathbb{Z}.$$

38
where \(c_i \) is the class of a path from \(\ell_1^{++} \) to \(\ell_i^{++} \) in \(N(K) \), and \(B_i \) is the class of an annulus whose boundary is \((\ell_i^{++} - \ell_i^{-+}) \).

The image of \(H^1(Z, \mathbb{Q}) \) is freely generated by the algebraic intersections \(\langle ., -A(\ell_i^{++}) \rangle = \ell k(, \ell_{i+1} - \ell_i^{++}) \) for \(i \in \{0, \ldots, d\} \).

For \(i \geq 2 \), consider a curve \(e_i \) that goes from \(\ell_i \) to \(\ell_{i+1} \) in \(\Sigma \) and that avoids the chosen geometric symplectic basis of \(H_1(\Sigma)/H_1(\partial \Sigma) \), and consider a closed loop \(\mu_i \) in \(N(K) \cap \Sigma \times [-1, 1] \) that equals \(e_i \) outside \(N(k) \).

Then \(\ell k(\partial B_i = \ell_i^{++} - \ell_i^{-+}, \mu_j) = \delta_{ij} \). Therefore the map \(H^1(Y, \mathbb{Q}) \to H^2(Z, \mathbb{Q}) \) admits a section whose image is \(\bigoplus_{i=2}^{d} \ell k(, \mu_i) \).

Thus
\[
H^1(Y, \mathbb{Q}) = \bigoplus_{b \in B_s} \ell k(, b) \oplus \bigoplus_{i=2}^{d} \ell k(, \mu_i)
\]

Since \(\ell k(\tau^{\pm}, b) = 0 \) for any \(b \in B_s \), up to units of \(\mathbb{Q}[t^{\pm 1/\kappa}] \),
\[
\Delta(K) = \Delta_{\Sigma}(\tau) \Delta(d)
\]

where \(\ell_1^{+} = \ell_1^{++} \) and \(\ell_1^{-} = \ell_1^{-+} \).

Sublemma 13.3

\[
\Delta(d) = \frac{\tau^{d/2} - \tau^{-d/2}}{d(\tau^{1/2} - \tau^{-1/2})}.
\]

Proof of the Sublemma: By pushing \(\mu_j \) along the negative normal of the Seifert surface of \(\ell_1^{++} \) (or \(K \)) we see that \(\ell k(\ell_1^{++}, \mu_j) = -\frac{1}{2} \).

Set \(z = \tau^{1/2} - \tau^{-1/2} \) and \(\rho = \tau^{1/2} \), \(\Delta(d) \) is the determinant of the following matrix \([\Delta_{ij}] \) where
\[
\Delta_{2j} = \ell k(\rho^{\ell_2^{++}} - \rho^{-1} \ell_1^{++}, \mu_j) = \rho \delta_{2j}^2 - \frac{z}{d},
\]

and for \(i > 2 \)
\[
\Delta_{ij} = \ell k(\rho^{\ell_i^{++}} - \rho^{\ell_2^{++}}) - \rho^{-1}(\ell_i^{++} - \ell_1^{++}), \mu_j) = \rho(\delta_{ij} - \delta_{2j}) - \rho^{-1} \delta(i-1)j,
\]

that is for \(d = 5 \),
\[
[\Delta_{ij}] = \begin{bmatrix}
\rho^2 - \frac{z}{d} & -\frac{z}{d} & -\frac{z}{d} & -\frac{z}{d} \\
-\rho - \rho^{-1} & \rho & 0 & 0 \\
-\rho & -\rho^{-1} & \rho & 0 \\
-\rho & 0 & -\rho^{-1} & \rho
\end{bmatrix},
\]

\(\Delta(2) = \frac{\rho^2 - \frac{z}{d}}{2} \) and \(\Delta(3) = \frac{\tau^{1/2} - \tau^{-1/2}}{3} \).

39
In general the development with respect to the first column gives that
\[
\Delta(d) = (\rho - \frac{z}{d})\rho^{(d-2)} - \frac{z}{d}(\rho + \rho^{-1}) \left(\sum_{j=3}^{d} \rho^{(d-j)-(j-3)} \right) - \frac{z}{d} \rho \sum_{i=4}^{d} \rho^{i-3} \sum_{j=i}^{d} \rho^{(d-j)-(j-i)}
\]
where
\[
\rho^{-1} \left(\sum_{j=3}^{d} \rho^{(d-j)-(j-3)} \right) = \sum_{j=3}^{d} \rho^{(d-2j)+2} = \rho^{(2-d)} + \rho^{(4-d)} + \ldots + \rho^{(d-4)}.
\]
Thus,
\[
\Delta(d) = \rho^{(d-1)} - \frac{z}{d} \rho^{(d-2)} - \frac{z}{d}\rho^{(d-3)} - \frac{z}{d}\rho^{(d-4)} - \frac{z}{d} \rho^{(d-5)} - \ldots - \rho^{(5-d)}
\]
\[
\sum_{i=3}^{d} \sum_{j=i}^{d} \rho^{(d+2i-2j)} = (d-2)\rho^{d} + (d-3)\rho^{d-2} + (d-4)\rho^{d-4} + \ldots + \rho^{(6-d)}
\]
\[
d\Delta(d) = d\rho^{(d-1)} - \rho^{(d-1)} - \rho^{(d-1)} - \rho^{(d-3)} - \ldots - \rho^{(5-d)}
\]
\[
= \rho^{(d-1)} + \rho^{(d-3)} + \rho^{(d-5)} + \ldots + \rho^{(3-d)} + \rho^{(1-d)} = \frac{\tau^{d/2} - \tau^{-d/2}}{(\tau^{1/2} - \tau^{-1/2})}.
\]

Back to the proof of Proposition 13.2, since \(\Delta(K)(t = \tau^{d})(1) = \frac{[H_1(M)]}{d}\)
\[
\Delta(K)(t) = \frac{[H_1(M)]}{d} \frac{t^{1/2} - t^{-1/2}}{d(t^{1/(2d)} - t^{-1/(2d)})} \Delta_{\Sigma}(\tau).
\]
and Proposition 13.2 is proved in the self-linking number 0 case. Let us now deduce the general case from this case. Let \(K\) be a knot with order \(d\) and with self-linking number \((-a/b)\) where \(a\) and \(b\) are coprime. Let \(m\) be a meridian of \(K\), there exist a parallel \(L\) of \(K\) and a surface \(\Sigma\) in \(M \setminus K\) whose boundary is made of \((d/b)\) parallel copies of \(am + bL\). Then there exists a primitive curve \(m_J\) such that \((m_J, am + bL) = 1\). Let \(J\) be the knot with meridian \(m_J\) and with complement \(M \setminus K\). This knot has order \((d/b)\) and self-linking number 0. Its Alexander polynomial is then given by the proposition. Furthermore, since it satisfies \(\Delta(J)(t) = [\text{Torsion}(H_1(M \setminus K))] = \Delta(K)(t)\), \(\Delta(J)(t_J = \tau^{d/h}) = \Delta(K)(t_K = \tau^d)\). Then \(\Delta(K)(t_K) = \Delta(J)(t_J = t_K^{1/h})\) and we are done.

Proposition 13.2 implies the following lemma that together with Lemma 13.1 proves Proposition 13.1 for \(n = 1\). We use the notation of Section 3.

Lemma 13.4 Under the assumptions of Proposition 13.1,
\[
\frac{d}{|H_1(M)|} \frac{\Delta''(K)(1)}{2} = \frac{\langle(I(\Sigma))\rangle W_1}{2d^2} + \frac{1}{24b^2} - \frac{1}{24d^2}.
\]

40
Proof: First note that when \(K \) is null-homologous, \(O_K = d = b = 1 \). Then since \(\lambda = W_1 \circ Z_1 \), Lemma 13.5 together with Theorem 4.1 together imply that

\[
\frac{1}{|H_1(M)|} \Delta''(K)(1) = \frac{\langle (I(\Sigma)) \rangle_{w_1}}{2}.
\]

Therefore, according to Proposition 13.2 (that is well-known in this case),

\[
\frac{\Delta''(1)}{2} = \frac{\langle (I(\Sigma)) \rangle_{w_1}}{2}.
\]

Then since \(\Delta_{\Sigma}(t) = \Delta_{\Sigma}(t^{-1}) \),

\[
\Delta_{\Sigma} \left(\exp(u) \right) = 1 + \frac{\langle (I(\Sigma)) \rangle_{w_1}}{2} u^2 + O(4)
\]

where \(O(4) \) stands for an element of \(u^4 \mathbb{Q}[[u]] \), and this formula remains true for any \(\Sigma \) as in the statement of Proposition 13.2. Since

\[
\exp(u) \frac{\partial}{\partial x} - \exp(u)^{-1} \frac{\partial}{\partial x} = \frac{u}{d} \left(1 + \frac{u^2}{24d^2} + O(4) \right),
\]

it is easy to conclude. \(\Box \)

Now that Proposition 6.1 is shown for \(n = 1 \), let us prove it for \(n = 2 \). By the formula that is recalled in the beginning of the proof of Lemma 13.1,

\[
\lambda(M(K; p/q)) - \lambda(M) = \frac{q}{p} \frac{O_K}{|H_1(M)|} \Delta''(K)(1) + f(p, q, lk(K, K), O_K)
\]

for some \(f(p, q, lk(K, K), O_K) \) that only depends on \(p, q, lk(K, K), O_K \), and that therefore does not change under surgery on a knot \(K_2 \) that does not link \(K \) algebraically, so that

\[
\sum_{I \subset \{1, 2\}} (-1)^{I} \lambda \left(M_{(K_1; p/q_1); I_2; q_2} \right) - \sum_{I \subset \{1, 2\}} (-1)^{I} \lambda \left(M_{(K_1; p/q_1) \setminus I_2} \right) = \sum_{I \subset \{1, 2\}} (-1)^{I} \lambda \left(M_{(K_1; p/q_1) \setminus I_2} \right)
\]

\[
= \frac{q_1}{p_1} \left(\frac{O_{K_1} \Delta''(K_1) \subset M(K_2; p_2/q_2)(1)}{2|H_1(M(K_2; p_2/q_2))|} - \frac{O_{K_1} \Delta''(K_1) \subset M(K_2; p_2/q_2)(1)}{2|H_1(M)|} \right)
\]

\[
= \frac{q_1}{2p_1 O_{K_1}} \left(\langle (I(\Sigma_1) \subset M(K_2; p_2/q_2)) \rangle_{w_1} - \langle (I(\Sigma_1) \subset M) \rangle_{w_1} \right)
\]

according to Lemma 13.4. Therefore, Proposition 6.1 for \(n = 2 \) follows from the following lemma.

Lemma 13.5 Under the assumptions of Proposition 6.1,

\[
\langle (I(\Sigma_1) \subset M(K_2; p/q)) \rangle_{w_1} - \langle (I(\Sigma_1) \subset M) \rangle_{w_1} = \frac{2q}{d^2 p} \left(\Sigma_1 \cap \Sigma_2, (\Sigma_1 \cap \Sigma_2) \| \right).
\]

Proof: Let \((x_i, y_i)_{i \in \{1, \ldots, g\}} \) be a symplectic basis for \(H_1(\Sigma_1)/H_1(\partial \Sigma_1) \). Because of the variation of linking numbers after surgery recalled in Lemma 13.2, the variation of the expression of \(\langle (I(\Sigma_1)) \rangle_{w_1} \) given before Proposition 6.1 reads

\[
\sum_{I \subset \{1, 2, \ldots, g\}} \frac{2q}{d^2 p} \sum_{(j, k) \in \{1, 2, \ldots, g\}} lk(x_j, K_2)lk(K_2, x_k^+)lk(y_j, K_2)lk(K_2, y_k^+).
\]

41
\[- \frac{2q^2}{p^2} \sum_{(j,k) \in \{1,2,\ldots,g\}^2} lk(x_j, K_2)lk(K_2, y_k)lk(y_j, K_2)lk(K_2, x_k^+) \]
\[- \frac{2q}{p} \sum_{(j,k) \in \{1,2,\ldots,g\}^2} \left(lk(x_j, K_2)lk(K_2, x_k^+)lk(y_j, y_k) - lk(x_j, K_2)lk(K_2, y_k^+)lk(y_j, x_k^+) \right) \]
\[- \frac{2q}{p} \sum_{(j,k) \in \{1,2,\ldots,g\}^2} \left(lk(x_j, x_k^+)lk(y_j, K_2)lk(K_2, y_k^+) - lk(x_j, y_k^+)lk(y_j, K_2)lk(K_2, x_k^+) \right) \]

where the quadratic part in \(q/p \) is obviously zero. On the other hand, when \(c \in H_1(\Sigma_1) \),
\[\langle c, \Sigma_1 \cap \Sigma_2 \rangle_{\Sigma_1} = d_2 lk(c, K_2). \]

Therefore in \(H_1(\Sigma_1) \),
\[\Sigma_1 \cap \Sigma_2 = d_2 \sum_{i=1}^g (lk(x_i, K_2)y_i - lk(y_i, K_2)x_i) \]
and
\[lk(\Sigma_1 \cap \Sigma_2, (\Sigma_1 \cap \Sigma_2)^+) = d_2^2 \sum_{(j,k) \in \{1,2,\ldots,g\}^2} lk(x_j, K_2)y_j - lk(y_j, K_2)x_j, lk(x_k, K_2)y_k^+ - lk(y_k, K_2)x_k^+). \]

Then Proposition \(\ref{3} \) is proved for \(n = 2 \). Since
\[lk_M(K_3; p/q_3)(\Sigma_1 \cap \Sigma_2, (\Sigma_1 \cap \Sigma_2)_3) = - \frac{q_3}{p_3} lk_M(\Sigma_1 \cap \Sigma_2, K_3)^2 \]
\[= - \frac{q_3}{d_3^2 p_3} (\Sigma_1, \Sigma_2, \Sigma_3)^2 \]
this in turn implies Proposition \(\ref{6.1} \) for \(n = 3 \). Now, since \(lk(\Sigma_1 \cap \Sigma_2, K_3) \) does not vary under a surgery on a knot that does not link \(K_1, K_2 \) and \(K_3 \) algebraically, Proposition \(\ref{6.1} \) is also true for \(n \geq 4 \) and hence for all \(n \).

Proof of Proposition \(\ref{1} \). Use that \(\lambda'(K^*) = \lambda'(U, K^-) \) where \(U \) is a trivial knot that surrounds the crossing change. (See the proofs of Propositions \(\ref{5.3} \) and \(\ref{12.2} \) in Section \(\ref{12} \).)

14 Proofs of the statements on \(\lambda_2 \) and \(w_3 \)

Theorem \(\ref{5.1} \) guarantees the existence of a polynomial surgery formula
\[\lambda_2(M(K; p/q)) = \lambda_2(M) = \lambda_2'(K)(q/p)^2 + w_3(K)(q/p) + C(K; q/p) + \lambda_2(L(p; -q)) \]
where \(C(K; q/p) \) only depends on \(q/p \) mod \(\mathbb{Z} \) and \(C(U; q/p) = 0 \). Since \(Z_2^*(\mathbb{Z}) = Z_2^*(\mathbb{M}) \), \(w_3(K) \subset M \) \(= w_3(K \cap (-M)) \).

Furthermore, according to Proposition \(\ref{12.2} \), if \(K^* \) is a singular link with two unlinked double points, then \(w_3(K^*) = -\frac{\lambda_2'(K^*)}{2} \) and \(C(K^*; q/p) = 0 \).

The only unproved assertion of Theorem \(\ref{7.1} \) is that the knot invariants \(C(K; q/p) \) read \(c(q/p)\lambda'(K) \) for knots that bound a surface whose \(H_1 \) vanishes in \(H_1(M) \). The proof of this assertion will be given in this section.
Also note that for any knot K in a rational homology sphere M, $w_3(K \subset M) = w_3(K \subset M \sharp \mathbb{Z}N)$ and $C(K \subset M; q/p) = C(K \subset M \sharp \mathbb{Z}N; q/p)$.

Let K^* be a singular knot with one double point in a rational homology sphere. Let K^+ and K^- be its two desingularisations, and let K' and K'' be the two knots obtained from K^* by smoothing the double point. Assume that K' and K'' are null-homologous, set

$$f(K^*) = \frac{\lambda'(K') + \lambda'(K'')}{2} - \frac{\lambda'(K^+) + \lambda'(K^-) + lk(K', K'')}{4}.$$

Note that $f(K^* \subset M) = f(K^* \subset M \sharp \mathbb{Z}N)$.

In order to prove Proposition 7.2, we shall successively prove the following lemmas. The two last ones Lemmas 14.3 and 14.4 obviously imply Proposition 7.2.

Lemma 14.1 Let K^* be a singular knot with one double point in a rational homology sphere. The invariants $C(K^*; q/p)$ and $(w_3 - f)(K^*)$ do not vary under a surgery on a knot that is null-homologous in the complement of K^*.

Lemma 14.2 Let Γ be a non-necessarily connected graph in a rational homology sphere M, such that every loop of Γ is null-homologous in M. Then there exist a graph Γ_0 in S^3, an algebraically split (rationally) framed link L in S^3 whose components are null-homologous in $S^3 \setminus \Gamma_0$, and a rational homology sphere N, such that $(S^3(L), \Gamma_0) = (M, \Gamma) \sharp N$.

Lemma 14.3 Let K^*_n be the following singular knot

![Diagram of a singular knot](#)

where $\underbrace{\square}_{n}$ represents $|n|$ vertical juxtapositions of the motive \bigotimes if $n > 0$ and $|n|$ vertical juxtapositions of the motive \bigotimes if $n < 0$. Then for any singular knot K^* with one double point p, such that the two knots K' and K'' obtained from K^* by smoothing p are null-homologous,

$$(w_3 - f)(K^*) = (w_3 - f)(K^*_{lk(K', K'')}).$$

Lemma 14.4 For all $n \in \mathbb{Z}$, $(w_3 - f)(K^*_n) = 0$.

We shall next prove the following proposition that generalizes a Casson lemma from integral to rational homology spheres.

Proposition 14.5 Let C be a real-valued invariant of null-homologous knots in rational homology spheres such that

- $C(K \subset M) = C(K \subset M \sharp \mathbb{Z}N)$,
- $C(U) = 0$,
- $C(K)$ does not vary under a surgery on a knot J such that (J, K) is a boundary link,
- if K^* is a singular knot with one double point, $C(K^*)$ does not vary under surgery on a knot that is null-homologous in the complement of K^*.
Then there exists \(c \in \mathbb{R} \) such that

- if \(K^s \) is a singular knot with one double point \(p \), such that the two knots \(K' \) and \(K'' \) obtained from \(K^s \) by smoothing \(p \) are null-homologous, then \(C(K^s) = \text{clk}(K', K'') \), and,
- if \(K \) bounds a surface whose \(H_1 \) maps to zero in \(H_1(M) \), \(C(K) = c\lambda'(K) \).

Since the \(C(\cdot; p/q) \) satisfy the hypotheses of the proposition above (thanks to Theorem 4.1 for the hypothesis on boundary links), this proposition will be sufficient to conclude the proof of Theorem 7.1.

Let us now prove all the lemmas and the proposition.

Proof of Lemma 14.1: Let \(J \) be a null-homologous knot unlinked with \(K' \) and \(K'' \). Let \(F_J \) be a Seifert surface for \(J \) that does not meet \(K_s \), and let \((m, \ell)\) be the usual basis of the genus one surface obtained by tubing a trivial knot \(V \) surrounding the double point of \(K_s \), \(m \) is a meridian of \(K - \), \(\ell \) is homotopic to \(K' \) and \(\text{lk}(\ell, K -) = 0 \). By Theorem 4.1,

\[
Z_c^2(M(J; \frac{p}{q_J})(K^s; \frac{p}{q})) = Z_c^2(M(K^s; \frac{p}{q})) - q_J^4 \langle \ell, m^+ \rangle_{M(K^s; \frac{p}{q})},
\]

where

\[
\text{where } m \text{ must be paired either with } m^+ \text{ or with } I(F_J), \text{ and in the latter case } m^+ \text{ must be paired with } \ell \text{ in order to lead to a linear contribution in } r.
\]

Since \(K = K'' + \ell \), as far as the connected pairing with \(I(F_J) \) is concerned,

\[
K \to \ell^+ = \ell \to \ell^+ + K'' \to K''^+ + 2 \ell \to K''^+
\]

and

\[
K \to \ell^+ = \ell \to \ell^+ + K'' \to \ell^+.
\]

Therefore,

\[
K \to \ell^+ = \frac{1}{2} \ell \to \ell^+ - \frac{1}{2} K'' \to K''^+ + \frac{1}{2} K \to K^+.
\]

Since, according to Lemma 9.5, the pairing of \(m \) and a curve \(c \) in the contraction above will give rise to the coefficient \((-q/p)\text{lk}(K,c) = -r\text{lk}(K,c), C(K^s; q/p) \) does not vary under a \((p_j/q_J)\)-surgery on \(J \).

\[
\frac{\partial}{\partial r} w_2(\frac{p}{q_J}) = -q_J^4 \langle \ell, m^+ \rangle_{M(K^s; \frac{p}{q})}.
\]

Since

\[
w_3(K^s \subset M(J; \frac{p}{q_J})) - w_3(K^s \subset M) =
\]

\[
= -q_J^4 \langle \ell, m^+ \rangle_{M(J; \frac{p}{q_J})} - q_J^4 \langle K, m^+ \rangle_{M(J; \frac{p}{q_J})}.
\]

Since \(K = K'' + \ell \), as far as the connected pairing with \(I(F_J) \) is concerned,
\[-\frac{q_J}{8p_J} \langle \ell^+ I(F_J) \rangle w_2 - \frac{q_J}{8p_J} \langle \ell^- I(F_J) \rangle w_2 + \frac{q_J}{8p_J} \langle \ell^- I(F_J) \rangle w_2. \]

Thus, according to Proposition 6.3, since

\[\langle K \circlearrowleft K^+ I(F_J) \rangle w_2 = \langle K \rightarrow K^+ I(F_J) \rangle w_1, \]

\[w_3(K^+ \subset M(J; p_J\ell J)) - w_3(K^* \subset M) \]

\[= \frac{q_J}{2p_J} (\lambda'(J, K') - \lambda'(J, K')) \]

\[= \frac{q_J}{p_J} \left(\frac{\lambda'(J, K')}{2} + \frac{\lambda'(J, K'+)}{2} - \frac{\lambda'(J, K^+)}{4} - \frac{\lambda'(J, K^-)}{4} \right) \]

\[= f(K^* \subset M(J; p_J\ell J)) - f(K^* \subset M). \]

\[\blacklozenge \]

Proof of Lemma 14.2: After a possible connected sum with some lens spaces, the \mathbb{Q}/\mathbb{Z}-valued linking form of M is diagonal \mathbb{W}_0, and the generators of $H_1(M; \mathbb{Z})$ can be represented by a link L of algebraically unlinked curves K_i that do not link Γ, algebraically. Then for each K_i, there exists a surface Σ_i in the exterior $(M \setminus \operatorname{Int} \mathbb{N}(L))$ of L whose boundary is a connected essential curve of $\partial \mathbb{N}(K_i)$, and that does not meet Γ. Thus, $H^1(M \setminus \operatorname{Int} \mathbb{N}(L); \mathbb{Z})$ is freely generated by the algebraic intersections with the Σ_i, and there exists a surgery on L that transforms M into a homology sphere H. The manifold H can in turn be transformed into S^3 by surgery on a boundary link of H bounding a disjoint union F_H of surfaces in H that can be assumed to be disjoint from the first surgery link and from the image of Γ in H. This proves the lemma.

\[\blacklozenge \]

Proof of Lemma 14.3: Apply Lemma 14.2 to $\Gamma = K^*$, then $K^{*,0} = \Gamma_0$. Note that $\ell(k(K^*_0, K''^*)) = \ell(k(K', K''))$. Recall that $(w_3 - f)(K^* \subset M) = (w_3 - f)(K^* \subset M \sharp N)$. Thanks to Lemma 14.1, $(w_3 - f)(K^* \subset M \sharp N) = (w_3 - f)(K^* \subset S^3)$. Now that the proof has been reduced to the case where $M = S^3$, recall that a crossing change on K' or K'' may be realized by a surgery on a knot satisfying the hypotheses of Lemma 14.1, that changes neither $\ell(k(K', K''))$ nor $(w_3 - f)(K^*)$.

Unlinking K'' first by crossing changes and next unknotting the parts of K''' between two consecutive intersection points with the disk bounded by K' transforms K' into $K_{\ell(k(K', K''))}^\times$. \(\blacklozenge \)

Proof of Lemma 14.4: By the crossing change formula of Proposition 6.3, \(\lambda'((K^+)^n) = \lambda'(K^n_{n-1}) = -1 \), and \(\lambda'(K^n_0) = -n \). Since K_0^n, K_0^n, and K_0^n are trivial, \(f(K^n_0) = -\frac{n(n-1)}{4} \).

On the other hand, since $w_3(K^n_0) = 0$, \(w_3(K^n_0) = w_3(K^n_0) \). The unlinking double crossing change formula of Theorem 7.3 implies that

\[w_3(K^n_{n+2}) - 2w_3(K^n_{n+1}) + w_3(K^n_0) = -\frac{1}{2} \]

Since K_0^+ is trivial, $w_3(K_0^+) = 0$, and since K_1^+ is the figure-eight knot that coincides with its mirror image, $w_3(K_1^+) = 0$, too. Then $w_3(K^n_0) = w_3(K^n_0) = -\frac{n(n-1)}{4}$. \(\blacklozenge \)

Proof of Proposition 14.5: Let K^* be as in the hypotheses of Proposition 7.2. The proof of Lemma 14.3 shows that $C(K^*) = C(K_{\ell(k(K', K''))}^\times)$. Since $C(U) = 0$, $C(K^n_0) = C(K^n_0)$. Since the hypotheses of the proposition imply that C maps singular knots of S^3 with two unlinked double
Consider the genus one surface Σ in H and its symplectic basis (a, b) below.

\[
\begin{aligned}
(a, b) &= 1, \quad lk(a, a^+) = \frac{x + z}{2}, \quad lk(b, b^+) = \frac{x + z}{2}, \quad lk(a^+, b) = \frac{1 - z}{2}, \quad lk(a, b) = \frac{1 - z}{2}, \\
\lambda'(K(x, y, z)) &= \frac{(x + z)(y + z) + 1 - z^2}{4} = \frac{xy + yz + zx + 1}{4}.
\end{aligned}
\]

Note that $\lambda'(\phi(X), \phi(Y)) = \lambda'(\phi(Y), \phi(Z)) = \lambda'(\phi(Z), \phi(X))$. In particular, both sides of the equality to be proved are symmetric under a cyclic permutation of $((X, x), (Y, y), (Z, z))$. Using this cyclic symmetry, the formula for the pretzel knot $K(x, y, z)$ follows from the crossing change formula starting with the trivial knot $K_{-1,1,1}$:

\[
4w_3(K(x + 2, y, z)) - 4w_3(K(x, y, z)) = \lambda'(K(x + 2, y, z)) + \lambda'(K(x, y, z)) + \left(\frac{y + z}{2}\right)^2.
\]

\[
16 (w_3(K(x + 2, y, z)) - w_3(K(x, y, z))) = (2x + 2)(y + z) + 2 + 4yz + y^2 + z^2.
\]

Otherwise, the following lemma reduces the proof of Proposition 7.3 to the case where the knot $\phi(K(x, y, z))$ is in S^3, thanks to Lemma 14.2 and next when the knot is a pretzel knot $K(x, y, z)$ by crossing changes on X and Y.

Lemma 14.6 Let ϕ be an embedding of H in a rational homology sphere such that $\phi(X)$ and $\phi(Y)$ are null homologous in the exterior of $\phi(H)$. Let J be a knot in the exterior of $\phi(H)$ that links neither $\phi(X)$ nor $\phi(Y)$, then

\[
w_3(\phi(K(x, y, z))) \subset M(J; p/q) - w_3(\phi(K(x, y, z))) \subset M
\]

\[
= \frac{q}{2p} \left(3\lambda'(\phi(X), \phi(Y), J) - x\lambda'(\phi(X), J) - y\lambda'(\phi(Y), J) - z\lambda'(\phi(Z), J)\right).
\]

Proof of Lemma 14.6: According to Theorem 4.1, if F_j is a Seifert surface of J in the complement of the genus one Seifert surface Σ of $\phi(K(x, y, z))$ in $\phi(H)$,

\[
w_3(\phi(K(x, y, z)) \subset M(J; p/q) - w_3(\phi(K(x, y, z))) \subset M = \frac{q}{2p}((I(\Sigma) I(F_j))w_2
\]
where
\[I(\Sigma) = \sqrt{ab + a^+ + b^+}. \]

Write
\[\frac{q}{4p} \langle \langle I(\Sigma) \ I(F_J) \rangle \rangle_{W_2} = C_A + C_B \]
where \(C_A \) is the contribution of the pairings that pair two univalent vertices of \(I(\Sigma) \), and \(C_B \) is the contribution of the pairings that pair all the univalent vertices of \(I(\Sigma) \) to univalent vertices of \(I(F_J) \).

\[C_A = \frac{q}{4p} \langle \langle \left(\frac{x + z}{2} b \bullet b^+ + \frac{y + z}{2} a \bullet a^+ + z a \bullet b \right) I(F_J) \rangle \rangle_{W_2}. \]

From now on, we write \(X, Y \) and \(Z \) for \(\phi(X), \phi(Y) \) and \(\phi(Z) \), respectively.

\[C_A = \frac{q}{4p} \langle \langle \left(\frac{x}{2} X \bullet X^+ + \frac{y}{2} Y \bullet Y^+ + \frac{z}{2} (X + Y) \bullet (X + Y)^+ \right) I(F_J) \rangle \rangle_{W_2}. \]

Thus, according to Proposition 6.2,
\[C_A = -\frac{q}{p} \left(\frac{x\lambda'(X, J)}{2} + \frac{y\lambda'(Y, J)}{2} + \frac{z\lambda'(Z, J)}{2} \right). \]

Let us now compute the contribution of the pairings that are bijections from the set of univalent vertices of \(I(\Sigma) \) to the set of univalent vertices of \(I(F_J) \). For them, we may change \(a \) to \(Y \) and \(b \) to \(X \) and write
\[I(\Sigma) = \sqrt{XYX^+}. \]

where the superscripts + distinguish two copies of \(X \) (or \(Y \)) whose linking numbers with the curves of \(F_J \) are the same.

Let us compute the contribution \(C_B \) of the pairings that are bijections from the set of univalent vertices of \(I(\Sigma) \) to the set of univalent vertices of some
\[I(c, d, e, f) = \sqrt{cde}. \]

to \(\langle \langle I(c, d, e, f) \ I(\Sigma) \rangle \rangle_{W_2} \).

Note the symmetry under the exchange of the pair \((X, Y)\) with the pair \((X^+, Y^+)\).

The contribution of the pairings that pair \(c \) and \(d \) to \(X \) and \(X^+ \) is
\[\text{lk}(c, X)\text{lk}(d, X) \langle \langle \sqrt{Y Y^+ + Y^+ Y} \rangle \rangle_{W_2} \]
that is zero by the antisymmetry relation in the space of Jacobi diagrams. Similarly, the contribution of the pairings that pair \(c \) and \(d \) to \(Y \) and \(Y^+ \) vanishes.
The contributions of the pairings that pair \(d \) and \(e \) to \(X \) and \(X^+ \) is

\[
2lk(d, X)lk(e, X)lk(e, Y)lk(f, Y)W_2 \left(\bigotimes + \bigotimes \right)
\]

where

\[
W_2 \left(\bigotimes \right) = W_2 \left(\bigodot \right) = 1.
\]

Therefore, the contribution to \(\langle \langle I(c, d, e, f) I(\Sigma) \rangle \rangle \) of the pairings that are bijections from the set of univalent vertices of \(I(\Sigma) \) to the set of univalent vertices of \(I(c, d, e, f) \) is

\[
\frac{3}{4} \langle \langle I(c, d, e, f) \ X \rightarrow X^+ \ Y \rightarrow Y^+ \ \rangle \rangle_{W_1}
\]

Therefore, according to Proposition \(\mathfrak{P} \).

\[
C_B = \frac{q}{4p} \frac{3}{4} \langle \langle I(F_j) \ X \rightarrow X^+ \ Y \rightarrow Y^+ \ \rangle \rangle_{W_1} = \frac{3q}{2p} \lambda'(J, X, Y)
\]

\[
= \frac{3}{2} \left(\lambda'(\langle X, Y \rangle \subset M(J; q/p)) - \lambda'(\langle X, Y \rangle \subset M) \right).
\]

\(\diamond \)

15 More about surgeries on general knots in rational homology spheres

Theorem \(\mathfrak{5.1} \) describes the polynomial behaviour of \(Z_n \) under surgeries on null-homologous knots. It can easily be generalized to the case of non null-homologous knots \(K \) a primitive satellite \(\ell \) of which bounds a Seifert surface. Let \(m_K \) be the meridian of such a knot \(K \) such that \(\langle m_K, \ell \rangle_{\partial N(K)} = O_K \).

A surgery curve \(\mu \) on \(\partial N(K) \) is determined by its coordinates \((p_K, q_K)\) in the symplectic basis \((m_K, 1)\) of \(H_1(\partial N(K); \mathbb{Q}) \) where \(p_K = \frac{1}{\langle m_K, \mu \rangle} \) is the linking number of \(K \) and \(\mu \), and \(q_K = \langle m_K, \mu \rangle \). The associate surgery coefficient is \(p_K/q_K \).

Theorem 15.1 Let \(n \in \mathbb{N} \). Let \(K \) be a knot of order \(O_K \) in a rational homology sphere \(M \) such that a primitive satellite \(\ell \) of \(K \) bounds a Seifert surface \(F \). Let \(F^1, \ldots, F^n \) be parallel copies of \(F \). Let \(p_K/q_K \in \mathbb{Q} \) be a surgery coefficient for \(K \). Then

\[
Z_n(M(K; \frac{p_K}{q_K})) - Z_n(M) = \sum_{i=0}^{n} Y^{(i)}_{n, q_K/(p_K O_K^2)}(K \subset M)(\frac{q_K}{p_K})^i
\]

where

\[
Y^{(n)}_{n, q_K/(p_K O_K^2)}(K) = \frac{1}{n! 2^n O_K^2} \langle \bigcup_{i \in \{1, \ldots, n\}} I(F_i) \rangle
\]

\(Y^{(i)}_{n, q_K/(p_K O_K^2)} \) only depends on \(q_K/(p_K O_K^2) \) mod \(\mathbb{Z} \), and, if \(n \geq 2 \), \(p_c(Y^{(n-1)}_{n, q_K/(p_K O_K^2)}) = Y^{(n-1)}_{n, q_K/(p_K O_K^2)} \) does not depend on \(p_K \) and \(q_K \). Furthermore, if \(m \) is a primitive satellite of \(K \) such that \(\langle m, \ell \rangle_{\partial N(K)} = 1 \), and if \(\hat{K} \subset \hat{M} \) is the knot with the same complement as \(K \) whose meridian is \(m \), then, if \(n \geq 2 \),

\[
Y^{(n-1)}_{n}(\hat{K} \subset \hat{M}) = \frac{1}{O_K^{n-1}} Y^{(n-1)}_{n}(\hat{K} \subset \hat{M}) + n\langle m, m_K \rangle O_K Y^{(n)}_{n}(K \subset M).
\]

48
PROOF: Let \(\mu = p_K m_K + (q_K/O_K) \ell \) be a surgery curve on \(\partial N(K) \). Let
\[
(p = \langle \mu, \ell \rangle = O_K p_K, q = \langle m, \mu \rangle = p_K \langle m, m_K \rangle + q_K/O_K)
\]
be the coordinates of \(\mu \) in the symplectic basis \((m, \ell) \) of \(H_1(N(K); \mathbb{Z}) \). Note that changing \(m \) to another curve such that \(\langle m, \ell \rangle_{\partial N(K)} = 1 \) leaves \(p \) invariant and does not change the class of \(\frac{q}{p} \) in \(\mathbb{Q}/\mathbb{Z} \).

When the other data are fixed, the mod \(\mathbb{Z} \) congruence class of \(\frac{q}{p} = \langle m, m_K \rangle O_K + \langle m_K, m_K \rangle O_K + \frac{q_K}{O_K} \) depends on the class of \(\frac{2q}{pK} \) in \(\mathbb{Q}/\mathbb{Z} \). From the formula of Theorem 5.1
\[
Z_n(M(\hat{K}; \frac{pK}{q + rp})) - Z_n(M) = \sum_{i=0}^{n} Y_{n,q/p}^{(i)}(\hat{K} \subset \hat{M})(r + \frac{q}{p})^i,
\]
we deduce
\[
Z_n(M(K; \frac{pK}{q + rp} + \frac{qK}{pK}) - Z_n(M) = \sum_{i=0}^{n} Y_{n,q/p}^{(i)}(\hat{K} \subset \hat{M})(r + \frac{qK}{pK})^i + \sum_{i=0}^{n} Y_{n,q/p}^{(i)}(\hat{K} \subset \hat{M})(r + \frac{qK}{pK})^i
\]
where
\[
Y_{n,q/p}^{(i)}(K \subset M) = \frac{1}{n! 2^n O_K^{2n}} \left\langle \bigcup_{i \in \{1, \ldots, n\}} \bigcup I(F^i) \right\rangle
\]
and, if \(n \geq 2 \),
\[
Y_{n,q/p}^{(n-1)}(K \subset M) = \frac{1}{O_K^{2n-2}} Y_{n,q/p}^{(n-1)}(\hat{K} \subset \hat{M}) + \sum_{i=0}^{n} Y_{n,q/p}^{(i)}(\hat{K} \subset \hat{M}) + n \langle m, m_K \rangle O_K Y_{n}^{(n)}(K \subset M).
\]

\[\Box\]

Remarks 15.2 A knot \(K \) of order \(O_K \) in a rational homology sphere has a primitive satellite that is null-homologous in its exterior if and only if the self-linking number of \(K \) reads \(d/O_K \) (mod \(\mathbb{Z} \)) where \(d \) is coprime with \(O_K \).

Like in the proof of Theorem 15.1, the case of knots without null-homologous primitive satellites can be reduced to the case of knots of order \(O_K > 1 \) with self-linking number 0. This latter case is still unclear to me (except for the degree 1 case that can be treated with the methods of the article).

Relationships between surgery formulae for various \(q/p \) can be found using some equivalences of surgeries. See [GO].

16 Questions

The statements of Theorems 4.3 and 4.4 make sense for rationally algebraically split links. Do they hold true in this case?

How do the properties of surgery formulae generalize for surgeries on non null-homologous knots?
What is the graded space associated to the filtration of the rational vector space generated by rational homology spheres, defined using Lagrangian-preserving surgeries?

The degree n parts of the LMO invariant and the Kontsevich-Kuperberg-Thurston invariant coincide on the intersection of \mathcal{F}_n with the vector space generated by homology spheres. The configuration space invariant for knots in S^3 is obtained from the Kontsevich integral by an isomorphism that inserts a (possibly trivial) specific two-leg box β on each chord of a chord diagram. See [L5] for a more specific statement. Do the LMO invariant and the Kontsevich-Kuperberg-Thurston invariant actually coincide? Is the Kontsevich-Kuperberg-Thurston invariant obtained from the LMO invariant by inserting the two-leg box β, k (or $2k$ or $3k$) times on each degree k component of a Jacobi diagram?

References

[Wa] C. T. C. Wall, Quadratic forms on finite groups and related topics, Topology (1964) 2, 281–298