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Abstract

Our purpose is to show how light can interact with slab bounded by rough surfaces. In this

paper, we consider three-dimensional structures bounded by two-dimensional weakly rough

surfaces or by two-dimensional randomly rough surfaces with small-slope. We discuss the ex-

tension of the small-slope approximation method to slabs with two randomly rough surfaces.

The fourth order terms of the perturbative development are required in order to take into

account the interactions between the randomly rough surfaces.
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1. Introduction

Volume and surface scattering is a topic, which has been studied in an extensive way in

different domains such as radio-physics, geophysical remote sensing and surface optics. In this

paper, we study structures with two-dimensional randomly rough surfaces, including scattering

from freestanding films or films deposited on metal. We present the extension of the small-slope

approximation method to slabs with rough interfaces based upon the fourth order term of the

perturbative development.

2. Scattering Amplitude

A.G. Voronovich [1,2] observed that if the boundary of a rough surface z = h(r) (see Fig.

1) is shifted by a horizontal distance d, the scattering amplitude (SA) transforms as:

Rx→h(x−d)(p|p0) = exp−i(p−p0)·d Rx→h(x)(p|p0) , (1)

while for a vertical shift byH we obtain:

Rh+H(p|p0) = exp−i(α0(p)+α0(p0)) H Rh(p|p0) , (2)
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Fig. 1. Definition of the randomly rough slab. Notations : k−
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− p2)

1

2 .

from these properties he postulated an expression of the scattering amplitude in a form given

by:

R(p|p0) =

∫

d2xs exp−i (p−p0)·xs−i(α0(p)+α0(p0)) h(xs) ϕ(p,p0,xs) . (3)

A large amount of literature has been devoted to study further developments of this method

(see for example [3,4]). In a previous work [5], we developed the small-amplitude method to

the case of a layer delimited by weakly rough surfaces. In Ref. [6], we compared the small-

amplitude method, the small-slope approximation with experimental results. In the following,

we will consider a theoretical model based upon the small-slope approximation for the case

of a layer delimited by two rough surfaces. A natural extension of the scattering amplitude

involving two rough surfaces reads in Fourier space:

R(p,p0) =

∫

d2rd2r′
d2ξ

(2π)2
d2ξ′

(2π)2

exp
[

−i(p − p0 − ξ) · r − i(p − p0 − ξ′) · r′ − i(α(p) + α(p0))(h1(r) + h2(r
′))

]

×Φ̃
[

p,p0; ξ; ξ′; [h1(ξ)]; [h2(ξ
′)]

]

, (4)

here, h1(ξ) and h2(ξ) are the Fourier transforms of the roughness of the different surfaces.

In this paper, we consider a three-dimensional structure with two rough surfaces and the

scattering amplitude is expanded in a perturbative development:

R = R
(00)

+ R
(10)

+ R
(01)

+ R
(11)

+ R
(20)

+ R
(21)

+ R
(12)

+ R
(22)

+ R
(30)

+ R
(03)

+ . . . , (5)

R
(nm)

contains powers of hn
1hm

2 , in order to take into account the interaction between the two

surfaces.

Following the method proposed by Voronovich we expand the functional Φ̃ in the form of
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a Taylor series:

Φ̃(p,p0, ξ, ξ′) =
∑

nm,i1...ip

∫

d2ξ1 . . . d2ξpδ(ξ − ξ1 − . . . ξp)Φ̃
(nm)i1..ip

(ξ1 . . . ξp)h1(ξ1) . . . h2(ξp) ,

(6)

where we have truncated the series up to fourth order. Φ̃
(nm)i1 ..ip

(ξ1.....ξp) represent the 14

unknown kernel functions, we have to determine for this structure.

From gauge transformations we can derive an important relation between the orders

n - 1; n; n + 1, namely:

Φ̃
(nm)

= [Φ̃
(nm)

− Φ̃
(nm)∣

∣

ξ
n
=p−p0−ξ1−···−ξ

n−1

] + Φ̃
(nm)∣

∣

ξ
n
=p−p0−ξ1−···−ξ

n−1

, (7)

As an example of order 2 in the above series we obtain:
∫

d2p1

(2π)2

[

−
(α0(p) + α0(p0))

2

2
(Φ̃

(0)
u (p,p0) + Φ̃

(0)
d (p,p0))

+Φ̃
(11)12

(p,p0,p − p1,p1 − p0)
]

h1(p − p1)h2(p1 − p0)

+

∫

d2p1

(2π)2

[

−
(α0(p) + α0(p0))

2

2
(Φ̃

(0)
u (p,p0) + Φ̃

(0)
d (p,p0))

+Φ̃
(11)21

(p,p0,p − p1,p1 − p0)
]

h2(p − p1)h1(p1 − p0)

+

∫

d2p1

(2π)2

[

−
(α0(p) + α0(p0))

2

2
Φ̃

(0)
u (p,p0)

+Φ̃
(20)

(p,p0,p − p1,p1 − p0)
]

h1(p − p1)h1(p1 − p0)

+

∫

d2p1

(2π)2

[

−
(α0(p) + α0(p0))

2

2
Φ̃

(0)
d (p,p0)

+Φ̃
(02)

(p,p0,p − p1,p1 − p0)
]

h2(p − p1)h2(p1 − p0) . (8)

3. Computation of the kernel functions

For each order of the small-slope approximation the functions Φ̃
(nm)

are indentified with

X̃
(nm)

obtained from the small-amplitude perturbation method described in Ref. [5].

For instance, Φ̃
(12)221

describes the interaction of the electromagnetic field once with the

upper surface and twice with the lower surface in the order 2-2-1.

We have:

Φ̃
(12)221

(p,p0, ξ1, ξ2, ξ3) =
iα0(p0)

α0(p) + α0(p0)

{

1

5

[

X
(22)1221

+ X
(22)2121

+ X
(22)2211

+ X
(13)2221

+ X
(13)2212

]

+i
1

240
(α0(p) + α0(p0))

[

72X
(21)211

+ 90X
(21)121

+ 18X
(21)112

+ 138X
(12)212

+66X
(12)122

+ 216X
(12)221

+ 24X
(30)

+ 120X
(03)

]

−
1

240
(α0(p) + α0(p0))

2
[

312X
(11)12

+ 516X
(11)21

+ 749X
(02)

+ 389X
(20)

]

−i
1

480
(α0(p) + α0(p0))

3
(

1445X
(1)
u + 1837X

(1)
d

) }

, (9)
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4. The scattering matrices

When the expressions Φ̃
(nm)

are calculated we can deduce the scattering matrices R
(nm)

.

With the definition of the following integration operator J (n)

J (n) =

∫

d2rd2r′
d2 ξ

(2π)2
d2 ξ′

(2π)2
d2 ξ1

(2π)2
....

d2 ξn

(2π)2
(10)

exp
[

−i(p − p0 − ξ) · r − i(p − p0 − ξ′) · r′ − i(α(p) + α(p0))(h1(r) + h2(r
′))

]

,

we obtain the expressions:

R
(10)

(p|p0) = J (1)Φ̃
(10)

(p,p0, ξ1)h1(ξ1)

R
(01)

(p|p0) = J (1)Φ̃
(01)

(p,p0, ξ1)h2(ξ1)

R
(11)

(p|p0) = J (2)
[

Φ̃
(11)12

(p,p0, ξ1, ξ2)h1(ξ1)h2(ξ2)

+Φ̃
(11)21

(p,p0, ξ1, ξ2)h2(ξ2)h1(ξ1)
]

R
(20)

(p|p0) = J (2)Φ̃
(20)

(p,p0, ξ1, ξ2, ξ)h1(ξ1)h1(ξ2)

R
(02)

(p|p0) = J (2)Φ̃
(02)

(p,p0, ξ
′, ξ1, ξ2)h2(ξ1)h2(ξ2)

R
(21)

(p|p0) = J (3)
[

Φ̃
(21)112

(p,p0, ξ1, ξ2, ξ3)h1(ξ1)h1(ξ2)h2(ξ3)

+Φ̃
(21)121

(p,p0, ξ1, ξ2, ξ3)h1(ξ1)h2(ξ3)h2(ξ2)

+Φ̃
(21)211

(p,p0, ξ1, ξ2, ξ3)h2(ξ3)h1(ξ1)h1(ξ2)
]

R
(12)

(p|p0) = J (3)
[

Φ̃
(12)221

(p,p0, ξ1, ξ2, ξ3)h2(ξ1)h2(ξ2)h1(ξ3)

+Φ̃
(12)212

(p,p0, ξ1, ξ2, ξ3)h2(ξ1)h1(ξ3)h2(ξ2)

+Φ̃
(12)122

(p,p0, ξ1, ξ2, ξ3)h1(ξ3)h2(ξ1)h2(ξ2)
]

R
(30)

(p|p0) = J (3)Φ̃
(30)

(p,p0, ξ1, ξ2, ξ3)h1(ξ1)h1(ξ2)h1(ξ3)

R
(03)

(p|p0) = J (3)Φ̃
(03)

(p,p0, ξ1, ξ2, ξ3)h2(ξ1)h2(ξ2)h2(ξ3) . (11)

5. The bistatic cross-sections

To compute the bistatic cross-section, we take the expansion of R in terms of the (mn)

scattering matrices given by R
(nm)

. The incoherent bistatic cross-section is given by:

γincoh
ij (p|p0) =

K2
0 cos2 θ

A (2π)2 cos θ0

[

< R(p|p0) � R(p|p0) > − < R(p|p0) > � < R(p|p0) >
]

,

(12)

where the angle brackets denote an average over the ensemble of realizations of the functions

hi(r), and ij are the polarization components.
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An example of contribution coming from 4h2 heights reads:

< R
(03)

(p|p0) � R
(01)

(p|p0) >= exp[−(α0(p)+α0(p0))
2/2W22(0)] ×

∫

d2x1 d2x2 exp[−i(p−p0)(x1−x2)] exp[(α0(p)+α0(p0))
2W22(x1−x2)]×

∫

d2ξ

(2π)2
exp[iξ(x1−x2)] W22(ξ)

∫

d2ξ2

(2π)2
W22(ξ2)

[

Φ
(03)

(p,p0, ξ, ξ2,−ξ2) �Φ
(01) ∗

(p,p0, ξ)

+Φ
(03)

(p,p0, ξ2, ξ,−ξ2) �Φ
(01) ∗

(p,p0, ξ)

+Φ
(03)

(p,p0, ξ2,−ξ2, ξ) �Φ
(01) ∗

(p,p0, ξ)
]

, (13)

where we have assumed a Gaussian expression for the heights in our applications, and Wij are

the correlation functions associated with the surfaces.

6. An illustrative structure and conclusions

As an application of the previous formalism we consider a slab made of a air-dielectric

film whose dielectric constant is ε1 = 2.6896 + i0.0075, deposited on a silver surface with

ε2 = −18.3 + i0.55. The air-dielectric interface is a two-dimensional rough surface, whose

parameters are σ1 = 15nm and l1 = 100nm.

Fig. 2. Diffuse scattering cross-section for a normal incident wave in the incidence plane.

Polarization TE-TE black curve, polarization TM-TM green curve.
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We consider that the randomly rough surfaces are Gaussian surfaces with Gaussian auto-

correlation functions . The dielectric-silver boundary has a roughness defined by σ2 = 5nm and

l2 = 100nm. The mean thickness of the dielectric layer is constant and equal to 500nm. The

incident wave has an arbitrary polarization and its wavelength is λ = 632.8nm. We show in

figure 2 the incoherent bistatic cross-section for different polarizations. We have checked that

when the orders increase the magnitudes of the corresponding contributions decrease justifying

a posteriori a perturbative development, however there is no proof of convergence for the series.

In figure 2, we observe the backscattering enhancement at θd = 0˚.

We have studied structures with two-dimensional randomly rough surfaces. We can apply

this formalism to electromagnetic wave scattering from freestanding films or films on a sub-

strate, where one or both of those surfaces are randomly rough. In this paper, we have discussed

the extension of the small-slope approximation method to randomly rough slabs. The fourth

order term of the perturbative development is included in the formalism. We have calculated

the perturbative development for different structures composed of two randomly rough surfaces

separating homogeneous medium. The numerical results show an enhancement of the backs-

cattering for the structure we have presented. We have focused on less-known mechanisms that

occur in the cases where the randomly rough surfaces enclose bounded structures. These me-

chanisms are included in the extension of the small-slope approximation. We have obtained a

general formulation which can be applied to configurations including slab with randomly rough

surfaces.

This analysis is relevant to problems of laser cross-section calculation, remote sensing of

irregular layered structures and remote detection of chemical coatings.
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