Nonlinear optimal control via occupation measures and LMI-relaxations

Abstract : We consider the class of nonlinear optimal control problems (OCP) with polynomial data, i.e., the differential equation, state and control constraints and cost are all described by polynomials, and more generally for OCPs with smooth data. In addition, state constraints as well as state and/or action constraints are allowed. We provide a simple hierarchy of LMI (linear matrix inequality)-relaxations whose optimal values form a nondecreasing sequence of lower bounds on the optimal value. Under some convexity assumptions, the sequence converges to the optimal value of the OCP. Preliminary results show that good approximations are obtained with few moments.
Type de document :
Article dans une revue
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2008, 47 (4), pp.1643--1666
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00136032
Contributeur : Emmanuel Trélat <>
Soumis le : dimanche 24 août 2008 - 20:58:32
Dernière modification le : jeudi 7 février 2019 - 15:52:52
Document(s) archivé(s) le : vendredi 5 octobre 2012 - 11:49:18

Fichier

ocp.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00136032, version 3

Citation

Jean-Bernard Lasserre, Didier Henrion, Christophe Prieur, Emmanuel Trélat. Nonlinear optimal control via occupation measures and LMI-relaxations. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2008, 47 (4), pp.1643--1666. 〈hal-00136032v3〉

Partager

Métriques

Consultations de la notice

403

Téléchargements de fichiers

264