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Time and musical structures

Bernard Bel

ABSTRACT

A theoretical model is introduced, by the aid of which descriptions of sequantil
concurrent processes may be built taking account of the sophistication and geoérality
contemporary musicaloncepts. This is achieved through an independent and unrestricted
mapping between physical time and a symbebét of dates. Sequential structures are
considered first, then the nature of this mapping and its practicle implementatioaah a
time synthesizer are discussed. Polymetric structures are introduced and a method
outlined for mapping events symbolic dates when concurrent processes are incompletely
described.

Keywords:representation of time, concurrent processes, polyrhythm, computer music.

1. Introduction

Time is probably the most complex dimension of music, altogethewbreh has been
neglected in many formal models of music representation. &vemachines playing music
from scores require complete informatiabout time in order to compute durations and
delays. Such a discrepancy between the amount of information available on scores and the
accuracy required iperformance has led to models of timing in computer music that are
more based on ad-hoc procedures than on analytical/compositional musical concepts.

Ideas introduced here evolved from the need to formalize a model of masidamain
which is highlystructured yet uneasy to describe in terms of fixed catedoriEse aim of
the study was to simulate improvisation/evaluation processesulgrbased music
composition (see Laske 1989:49-ff regarding rule-based composition). Thefareed
efficient synthesis/recognition algorithms led us to develop an ad-hoc model of
transformational grammars, tf®l Processor in which constraints on duration, tempo,
etc. can be comprehensively formalized (Kipgemel 1989). More recently, we started
developing the BP as a tool for computer-aided compo3ijtiaring a MIDI interface
connected to a SYTER real-time interactive digital synthekizer

The main new concepts thag¢eded to be imbedded in the Bol Processor model were the
structure of time(Xenakis 1963)and concurrent processepolyphonyin a broad
meaning). The structud time may be represented — independently of musical structures

1 North Indiantabla drumming, in collaboration with ethnomusicologist Jim Kippen. Initial work was
supported bynternational Societfor Traditional Arts ResearclfiSTAR), the National Centre for the

Performing Arts(NCPA, Bombay) and theord Foundation

2 Concurrent processes are still under discussion within the ‘OC’ study graugbatatoire Musique et
Informatique de Marseille This paper should not, therefore, be considered as a final statement on the
matter.

3 SYTER was designed by J.F. Allouis at INA-GRM (Paris) and built by Digilog (Les Milles, Frahis).
system is currently used for reseaitiMarseille by Laboratoire Musique et Informatiquend by the team
of J.C. Risset dtaboratoire de Mécanique et Acoustique
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— as a mapping betweaymbolic timgsimilar to Jaffe'dasic timel985) andohysical
time. This approacls well-adapted to structural descriptions (e.g. automata or formal
grammars) in which it igot desirable to encode a priori information about durations and
tempo.

Changes in the structure of time do not affemihcidences stamped by symbolic dates.
Therefore it is also possible to define polyrhythmic structures basesyraholic time
without falling again into the complicate@mputation of delays. The end of this paper is a
presentation of an algorithm inferring a polymetric strucfuooen incomplete (sometimes
ambiguous or contradictory) information.

Several theoretical models of concurrent procebage been applied to descriptions of
polyphonic structures in musid.racelanguages— a generalization of string languages —
(Zielonka 1987, Mazurkiewicz 1984a-b) based refations of (time-) dependency and
independencyefined on pairs of individual ‘events’ have been used by Chemillier (1987).
Although this description of parallstructures bears some resemblance with trace languages
and their application to music (Chemilli@87, Chemillier & Timis 1988), a comparative
study is beyond the scope of this paper (Bel 1990).

2. Musical events, symbols and ‘meaning’

Understanding the process by which a trained listener is able to idemdifielate musical
events is a central problem addressing both psychoacoustics goel/tielogy of music.
Intuitively, a musicakventis a segment of soundwhich some musical ‘meaning’ may be
assigned. A saif interrelated musical events is called a musaahponent. Formally,

given a set of events E and a set of componenK),[] C. There arat least two features
specific to music perception, as opposed to speech:

— several events/components may meaningfully (partially or totally) overlap each other;
— only very few events/components are prelabglied. notes, silences, chords, etc. in
Western classical music).

The process by which a human listener is able to identifyalwiv several ‘voices’ on a
single sound track has been simulated rbgdels performing pattern recognition on
appropriate representations of sound (supposedly similar to the listening firodédes next
step, i.e. the segmentation of each ‘voice’, isade between ‘evident’ qualitative or
guantitativechanges, and some ‘meaning’ attached to particular sound segments. A typical
gualitative change is a sudden change of perceived pitch, amplitudé, eteaning-oriented
change is for instance the perceptiordistinct notes in gortamento where the task of
listening is drivereither by the overall feeling of a ‘tonal system’ (a scale, a mode, etc.) or
by the awareness of a ‘rhythmic system’ (e.g. a tempo)he narrow link between
understanding and parametcicangehas been pointed out by Minsky (1986), anaaistext
sensitivity by Smoliar (1989:61) in histerpretation of Ross Lee Finney's “law of the
balance of parameters”:

4 A comprehensive survey of recefeivelopments in psychoacoustics and sound modelling may be found in
Risset (1989).

5 Inverted commas ammpulsory here, as in many parts of this paper: the denotation of musical concepts
varies considerably from one musical system to the next.

— 3 —
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This law basically observes that the only parametric changes which rbattérey with regard to

pitch, tempo, dynamics, or timbre, are those which naaftiéference which can be perceived in their

context.

Both ethnomusicologistand contemporary musicians have contributed to build the
hypothesis that few categories of musical events/components are conssstargly within a
group of listener8. The most significant features characterizing groups of listeners,
therefore, are not so much a share of musical conceptsdibamminative procedures
developed by musical trainingCategories and concepts, within one group, remain centext
sensitive partly because several procedures may compete with each other (evgrsmsal
rhythmic identification asnentioned above). For this reason it is unrealistic to claim the
existence of abstract and universal modaélsnusic based on fixed hierarchies of musical
components: the existencd clear-cut categories of musical concepts is an ethnocentric
illusion imposed on Western musicians by standardized nofation

Musical‘meaning’, therefore, is not a simple category assignment: sound events do not
possess any potential interpretation unless they are structurally related, be it threagh a
imaginery, permanent or temporary structure activated byptbeess of listening. Any
labelling of musical components/symbols, therefore, reflects the (real, imagosential,
expected etc.) relations these components display in mutual inter@ictions

A musical component XI C has a finite number afescriptive features. The variables
attached to features may be nominal, ordinal, preordgratjuated, metric, statistical or
probabilistic (Vecchione 1989:9-10). Let,BB,, ... B, be the sets gfossible values for
variables y, yo, ...y, andf an injective mapping such that f(x) =1(yyo, ... W), the
values taken by all variables relatieex. In this viewpoint ¢oncept elaboration musical
‘meaning’ is less a hierarchical description@fthan anyinteresting structure of f(C),
‘interest’ being the matter of producing an explanation under some particular viewpoint.

3. Representing sequences of events

Throughout this paper we willse lower-case characters for labelling discrete events
although in real musidescriptions it is more convenient to deal with strings or iconic
representations.

One of the essential descriptive features of musical events/components isniapan
interval. The following three categories may be distinguished:

— (1) events witliixed duration, e.g. saying the sentence: “Hello, my name is John” at
given speed,;

— (2) events with undetermined duration, e.g. a stroke on a drigrmmata

— (3) events with no intrinsic duration, e.g. depressing a key on an electronic organ
keyboard;

6 The contribution of musical semiotics to this awareness shouldenahderestimated, see for instance
Molino (1988).

7 Indeed there are many other art-music systems giving importance to ndiatianpst of them do not
claim consistency nor completeness.

8 This argument comes in support to Smoliar's (1989) provokative paper on music modeling.

9 This issue is crucial because of new developmerftsmil music theory adressing several branches of Al
based on different approaches to ‘symbols’. See for instance Newell (1980) and Leman (1989).

— 4 —
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Events belonging to the first two categories are entirelyiptime when the on-setting
date is known, but for any event of the third category it is necessary to knqartaoeters:
its on-setting and off-setting dates (or any of the two plus its duration).

Intuitively, a string of symbols is meatat represent a sequence of events. For instance,
consider the sketch ‘abcd’ where:

a = ‘John opens the door and comes in’
b = ‘John says: “Hi, my name is John™
¢ = ‘Bill gets up’

d = ‘John and Bill shake hands’

‘abcd’ may be thought of as a strict sequebag,n a real situation overlappings or gaps
between two (or more) events would possibly take pladee reason for calling ‘abcd’ a
sequence is the awareness of a strict orderiognefettingdates: wénow for sure that Bill
did not get up before John started talking. If we consider all possible relative positibas of
time-span intervals of two events, say X and Y, we obtain the followingneetioned by
Allen & Kautz (1985), Van Bentheif1983:58-79) and Vecchione (1984:150ff). Following
Vecchione's notation:

: (- =—)
(0 -
Y Y
1 . —B1 a
Pl ——— Pl—
X
b2 B2 v
5 ——
B3 —— ~p3 Y
—— i
A P ——
, N =
Y 1]
—— . —
5 ] Y]

Fig. 1
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If XY’ is meant to be asequenceacceptable configurations axe 1, 32, 33, B4, yr

0. Configurationsx andB1 may also be excluded as they dersitaultaneousvents in a
strict or broad sensg

If we consider eventdelonging to the second category, whose off-setting date is
irrelevant,f2, 33, 4, yandd may be viewed as equivalent. With eveatsthe third
category we should call ‘sequential’ only pairs of events that weafy.

For all categories it maye argued thad is not a strict sequence: it is always possible to
define an ‘empty’ event, a silence filling the gap, if any, between the off-sdtiegof X
and the on-setting date of Y.

Events of categorie$l) and (2) have either predetermined or imprecise durations,
therefore no off-setting date needs to be computed. Asdnts of category (3), we will
consider that the off-settirdate of each event coincides with the on-setting date of the next
event. For consistency we may append a ‘NIL’ event to the end of every sequence.

In this view, theduration of an event in a sequence is the time-span interval between its
on-setting date and the on-setting date of the next event in the sequence. Wesasgethe
word ‘duration’ whatever category the event belongs to. In category (3aicept is
consistent with common-sense ‘duration’. In category (2), we owamgider that a
‘punctual’ event extends its ‘effect’ until the next event in the sequence starts, asbié may
observed in homophonic drumming sequences. In category (1), howswera word like
‘duration’ is arguable because it relates totitine elapsed till the next event takes place, not
the actual duration dhe current event. Nevertheless it is acceptable in sound sequences to
the extent that then-setting of a new event pulls attention away from the remaining part of
the previous event.

There ardwo reasons for using the same definition of ‘duration’ in the three categories.
One is that it allows synchronizing sequences contaimwents irrespective of their
categories. Theecond one is that in computer music there is rarely a test verifying that an
event of categoryl) has come to its end. If the duration of the event, or its maximum
possible value, is known, then a machine or a human composer is ftblertesetting dates
depending on which configurationBX, 32, B3, 4ory) are acceptable in a sequence.
test on the completion of an event would be pai bindshakeprocedure synchronizing
processes. If several sequences are competing with eachhatingshake interruptions may
refer to events occurring in either sequence. Models for the managemhent
asynchronous/synchronous parallel processes (see the literature ré&tatagtomated
machinery: Petri networks, etc.) are beyond the scope of this paper: vayiknvisage
sequences synchronized by the internal clock of the syatéypical situation is a sequencer
hooked to a synthesizer via its MIDI interface.

4. Symbolic dates

The relevant time features of events in a sequencth@iremappings to an index (their
position in the string) and to on-setting dates:

10 The use of these time operators/predicates in formal representations of mubiehadiscussed by
Vecchione (1984-5), Risch (1988) and Bel (1989c). A similar approach has been proposed by Oppo (1984).

— 6 —
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S—06—2>D

S—p—>N
where S denotes a sequernbe strictlyordered (enumerable) set of (on-settisginbolic
dates,\’ the set of positive integers, ampgx) the position of event x in the string
describing S.

Intuitively, a symbolic date ia reference such as “the third quaver after the 27th bar”
wherephysicaldate might be “4137 milliseconds aftbe violin started”. This may also be
related to what Boulez callde¢mps strig as opposed totémps lisse(Boulez 1963:104
ff).

Both 8 andp are uni-valued functions is a bijective mappind is injective: given two
distinct events X and Y, thmeaning of propert¥(X) = 6(Y) would be that X and Y have
identical on-setting dates, i.e. either configuratigi,Y) or B1(X,Y) is verified, which we
assumed is not acceptable in a sequence . Consequently, X and Wetongtto distinct
sequencesSand $ such that81(X) = 05(Y) (see for instance eventsande on fig.2
below).

Simultaneity (of on-setting dates), ig/nchronizationis the main feature to consider
when associating several sequences in a concurrent prolcessis model, therefore, we
envisageimultaneity as a high-level property imbedded in the map@ngksequences to
the set of symbolic dates.

The set of date® is not necessarily unique: in fact, each musical componenhanagy its
own local symbolic time..

5. Symbolic versus physical time

The set(s) of symbolic date® is (are) mapped to physical time, i.e. the setabbnal

numbersQ . Each such mapping is a restriction taD of a more general mapping that we
call thestructure of time. The following is a mapping of tweequences represented by
strings ‘abcd’ and ‘efg’
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Ordering
of eventsin
sequences

S2

01 D B2 Rhythmic

structure
L
IRRAARSN A Symbolic
D t1 t2 t3 t4 t5 167 t8 t9 t10 t11 t1213 t14 ... dates

NN x
/\/\ \ Structure

Qi\\\x%cz

0 Physical time (sec.)

Fig.2

In many common-sense descriptiopss a bijective mapping with additional property:
di <d <=>q(dj) <(d;). If we consideA(d;,d;) = [@(d;) - @(d}) |, the absolute value of the
difference A is a distance oD and it is easy to prove thaf)(A) is ametric spacél.
(D,A) is alsoEuclidian if the following property holds:

j-i=1-k =>qd) - o(d;) = @(d) - «(ck)
To simplify we will talkaboutmetric timeandEuclidian time Informally, when (D,A)

is Euclidian it contains explicit information about the durations of events. On the other
hand, metric (non-Euclidian) time may be used for expressinglerandandritardando.

In generalgis a multi-valued injective mapping with mestriction on ordering: events
mapped to the same symbolic date may be performed more thamgleetime; events in
sequences magiso come in an order varying from one occurrence to the next, etc. An
essential constraint remains that events wdtimtical symbolic dates must be performed
together regardless of the structure of tingonverselyaninjective mapping prevents two

11i.e.0ijk, D(d;j,4) + D(d.d) = D(d;,d)
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events, X and Y, fronbeing performed simultaneously unless their symbolic dates are
identical:@(d;) = ¢(d;) => d = . Several models of structure of time are discussed in §8.

The composition of the two mappingg.0) is thein-time structureof thesequence, i.e.
the mapping that permits its actual performan8&ucture of time and in-time structures are
two concepts borrowed from Xenakis (196971, 1972:57), which we find essential as
they deal with a set of dates not necessarily structured as a Euclidiat?space

6. Rhythmic structure
Therhythmic structureof any sequence Sfisnction® itself.

In the same wap, andp, representhe bijective mappings ordering events in sequences
S; and S, we may callpt the bijective mapping ordering the set of da#es For any
sequence;S (P;j1. 6; . p7) is a monotonously increasing function. Tisiequivalent to
saying that anywo events having consecutive labels in a string must be in relative position
B2, B3, B4ry. This could be expected sinite2 on-setting symbolic dates reflect the-left
to-right ordering of the string.

To compare rhythmic patterns in two sequencesneeels to eliminate their (symbolic)

time offset. Let @= pt (6; (p;"1(1))) be the origin of sequence S-or the two examplem
fig.2, O; = 3 (‘a’ is mapped to;x and G = 6 (‘e’ is mappedo f5). Let us compare the
image sets of functions:

Ri(K) = p7 (8; (pi"(K))) - O, where kO A(
Each image set of a;Runction characterizes a rhythmic pattern independesttlythe

symbolic date when the sequerstarted (and, needless to say, on the physical durations of
events when non-Euclidian time is used). For example we get the following sets of values:

Sequence S ‘abcd’:

T (01 (P11(K))) = {3.5.6,7.8} ==> R(K) =p1 (81 (P1(K))) - O; = {0,2,3,4,5}
Sequence 5= ‘efg’:

Pt (62 (p24K))) = {6,9,11,12} ==> B(K) = pt (82 (P21(K))) - Or = {0,3,5,6}

Trying to match R(k) with Ry(k) does not yield any information except strict identity or

difference. Approximate matching is more conveniepidyformed on lists osymbolic
durationsl;(k) defined as follows:

|Given n, the length of the string representing a sequepce S
|for any k such that 0 < k <,n

1100 = R(k+1) R(K).

12 we do not claim that the terminology in this paper is faithful to Xenakis. Interestingly, altdengkis
had introduced three structureshiis early work (1963:190-1,200, 1971): in-tinsrQcture en-tempsout-
time structuresstructure hors-tempsand structure of times{ructuretemporell®, in 1972 he did not seem
to be concerned any more with the structure of time.

— 9 —
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In the exampleabove, {(k) = (2,1,1,1) andJ{k) = (3,2,1). We call these durations
‘symbolic’ because they are built on the set of symbolic dates. Althg(lFI15(2) = 2 in
this example, point to events (‘a’ in ‘abcd’ and ‘f' in ‘efg’) with identical symlzbli@tions,
their physical durations may be unrelated.

The meaning of two sequences with identiebk of symbolic durations is thatl the
(on-setting) dates of the corresponding events woeldentical if the sequences were
performed from the same time origin

Rhythmic patterns, therefore, amvariant with respect to translations on symbolic
timel3. For example, if the first sequensbose symbolic dates were (3,5,6,7,8) is shifted
to the left by two ‘units’'we obtain the list of dates (1,3,4,5,6) which has exactly the same
pattern. Unless theet of dates is Euclidian, this does not apply to changes of the physical
starting date: if a sequence is delayed or repeatetust be ‘adapted’ to the local time

structure, using thefunction.

7. Notating symbolic durations

If we consider the Cartesian prod®txA\’ we can represent events together with their
symbolic durations considering the function:

S ——> S x\( such thatp(x) = (x, 1(p(x)))
For instancey(S) = ((a,2),(b,1),(c,1),(d,1)) aniSy) = ((e,3),(f,2),(9,1)).

Since in each couple the first argumenais alphanumeric string and the second one a
positive integer, every coupheay be unambiguously represented as an (unordered) set. In
addition, we may also leaweit commas wherever they indicate concatenation, plus the pair
of brackets bordering the list. The notation obtained:

W(Sy) = {a,2} {b,1} {c,1} {d,1} = {2,a} {b,1} {1,c} {d,1} = ... etc.
and

WSy ={e,3} {f,2} {9,1} = {3,e} {2,1} {9, 1} = ... etc.
will be useful in polymetric structures (see infra).

Another notation system, designed by North Indian drummers (Kip@&8:xvi-xxiii), is
based on the idea that no symbolic duration is ever smallerlthabefault duration is
conventionally ‘1’. An event Xvith symbolic duratiom may be represented by appending
(n-1) prolongational gaps to the right of its label. almlrumming sequence prolongational
gaps are equivalent to silences: the time-span between two strokes is filled wetbothance
of the first stroke, if any. However, if we deal with events of category (3) (see i83)Jsb
necessary to dispose of an empty event (€rmpta-off’ in MIDI terminology) distinct from
the prolongationasilence. Silences may be notated with hyphens, and prolongational gaps
with underline characters. Using this system,

13 A similarity function is easily definetbr comparing the rhythmic patterns of two sequences: giyga |
and b(k), find the maximum common subsequence and calcitetéength. If pattern expansions are
considered relevant, search for common subsequences with identical duration ratios.

— 10 —
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WSy ={a,2} {b,1} {c,1} {d,1}=a_ bcd
and
WSy ={e3}{f.2}{g.1}=e_ _f_g
The advantage of this system is twofétd

— it facilitates the pronunciation of rhythmsentences: speak symbols or clap ‘' on
metronome beats;

— when durations are 1 the representation is simple string notatiap(S$)= S.
We may notate:

WSy ={a,2}{bcd3}={a,2}bcd={{a2}{bcd3}5}=..etc.

We will see later how an expression like {b ¢ d,5} may be notated without brackets. A
useful minor extension of the systenthis use of integers in replacement of strings of *_ .
The following notations are equivalent:

ab__ _c=ab{_ _ _3}c=ab{3}c=ab3c
Each of the last two transformations illustrates extensbtise system: the set represented

in curled brackets may have less (or more) tiaanelements, and brackets may be omitted
for sets with only one element. Conversely,

abcd={a}{b}{cd}={a1}{b,1}{cd,2}
demonstratethat duration may be omitted in a bracket when it is exactly the length of the
string.
Also note identical following expressions:

a={at={a,1}={a_,1}={a_ _ _ _,1}=...etc.
abc={abc}={abc3}={fa_b_c_3}={fa_ _ b c_ _,3}=..etc.

7.1. Tempo indications

The reader may feel impatient to know how {b ¢ d,5} can be interpreted. In the abfence
explicit information the symbolic durations of b, ¢ andhwbuld be identical. In terms of
physical or Euclidian durations this is easy to achieve by stttaigthe duration of each
event shall be 5/3. The next paragraph will indicate necessary changestrutheare of
the set of date®. Let us, for the time being, indicate this transformation with X&e
obtain:

{bcd,5}=/3{bcd15}=/3{b,5}{c,5}{d,5}=/3 b c d

in which ‘/3” indicates a change in the division of ebelat(thisconcept will be introduced
in 87.2). Achangepresupposes of course that the default divisioniwasnother method
for solving that problem is based on the last remark of the preceding paragraph:

= /3{b c d }=/3b c d

The following threeexamples indicate transformations dealing with multiple changes of
tempo. (The same process is illustrated by Boulez, 1963:56, example 14):

14 Both prolongational-gap and curled-bracket systeave been implemented in the most recent version of
the Bol Processor.
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{ab,3}{cd,2}=/2{ab,6}/1{cd,2}=/2{a,3}{b,3}/1 {c,1} {d,1}
=/2a__b_ _/lcd=/2a__b_ _[2c d =/2a__b c¢c d =/2a b c.d

{abc3}/2{de2}/1{f,1}={abc}/2{de}/L{f}=abc/2de/lf
=/2a_ b c _def =/2a b_c_ de f_

{abc,2}{de5b}=/3{abc,6}/2{de,10}=/6{abc,12}/6{d e,30}
= /6 {a,4} {b,4} {c,4} {d,15} {e,15} =

In the final expressions the tempas unique along the whole sequence. Consequently,
tabulations or spaces could be used to indicate b&hats.makes it clear (first example) that
the on-setting date difis exactly the off-beat of the second beat. The saitiee in the last
example.

A minor syntax modification is necessary to introduce fractional gaps. We notate:

{abc3}/2{ ,3}/1{de2}=abc/2__ _/1{de2}=abc/2__ _J/lde
=2a_b_c¢__ _ _d_e_=/2a_b_c_3d_e_
but an equivalent description is:
abc/2_  /1de=(abc®R/lde=)abB/2/1de=ab8/2de

Thesecond expression is illegal because spaces have no syntactic value in our system: ‘/2
3’ would be wrongly interpreted as /23’. Correct expressions are the last two oress ‘3’
become the numerator of the ratio; consequently, the tempo after ‘3/2’ réneagame one
as in ‘abc’.

In a fractional gap the denominator of the ratio maynkerpreted arelative change of
tempo. The following transformations:

ab/2cdefd4/3gh=ab/2cdef{ ,43}gh=ab/2cdef/2{ ,4/3}/2gh
=—ab/2cdef{ ,4/6}/2gh=ab/2cdef/6{ ,4}/2gh
=ab/6c_ _d_ _e_ _f__/6{ 4/6g__h_ _
=ab/6c_ _d_ _e__f__{ 49_ _h_ _
=/6a b c_ _d__e_ _f_ _4g_ _h

are correct, whereas the following one

ab/2cdefd4/3gh =? ab/2cdef/3{ ,4}/2gh
=? ab/6c_ _d__e_ _f__/6{ ,8/6g__h__
=? /6 a b c d _e__f__8g_ _nh

IS wrong.

7.2. Fractional symbolic dates and durations

Fractional gaps point to the idea that time coulthleasured with integer ratios instead of
integers. Consequently, /3{a b c,2} = /1 {a b c, 2/3}.ofner words, the set of symbolic
dates should now be ordered with a mapping to the set of positive rational n@hbekay
symbolic date is a ratio p/q, or equivalently a pair of integers (p,q). To compare raties we
the equivalence class ‘=" buildin@" on A(x N

OpOA, OkgOA, (p.9) = (k-p,k.q)
Strict ordering ‘<’ is defined as follows:
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OprOA,0q0A0, (p.g)<(r,g) <=>p<r

Op,rd A, 0a,sOA, (p.a) <(rs)
<=>0p"rdA, 0q,s'0A, (p,a) = (p',9) and (r,s) = (',s") and (p',q") < (r',s")
Symbolic durations are computém symbolic dates using the classical subtraction
operation, a partial mapping aff x Q*) to Q*:

Op,r0AN,0gOAN suchthatgr,
(r.a) - (p,a) = (r-p,q)
with the additional property:

O0ABCOQ" B<A C<AC<B/A-B=(A-C)-(B-C)

The rest of the theory (duratiomfyythmic patterns, etc.) is unchanged. Evidently the
size of the set of date® maygrow considerably larger than it was the case with integer
dates. One may argue that, since for every sequence it is possible toumgeeatempo
(e.g. the lowest common multiple — LCM —alf tempos appearing in the sequence), it is
possible to use anique tempo for all sequences (the LCM of all individual tempos) and
report the change of scale into the structure of tpmél'he method is acceptable buhas
two drawbacks:

— the globaltempo may be a very large number resulting in cumbersome notation of
‘ sequences;

— thesystem is not incremental: what if a new sequence is introduced, the tempo of
‘ which is not a divider of the global tempo?

In order to deal withD it is helpful to structure it with an equivalence relatioA. very
simple structure is the following: every rational number A = (p,q) has a unique representation

_:.n
E‘A._ I+ d
such that

i,n0 A, dOAS, (i.d+n,d) = (p,g), n < d and n/d is a ratio in its lowest terms.

Letpu be themapping ofQ* to itself yielding (n,d) from (p,q) in the above relation. The
equivalence relatiorx' on D':

Otyt, O D, ty = tp <=> p(pr(ty)) = Kp1(t)
may be interpreted as a (not necessarily Eucligpaige Rational number (n,d) &(t) is a
label for each class. For instance, (0,1) is the label for dates fefagly onbeats (1,2)
may be calledhe off-beat (3,4) the third quarter, etc. These class labels are assigned
automatically when a new sequence is analysed: if N is the global temposgence,
theclasses through which the symbolic dates of events in S may be related are those with
labels (p,q) such thdp,q) = (n,M) for every positive integer n < M. The following
example will clarify this process. Consider the sequence:

{abc,2}{de5}=

=/6a__ b ¢ d e

in which M = 6. The possible values for (n,M) are:

— 13 —
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(0,6)=(0,1)

(1,6)

(2,6) = (1,3)

(3.6) = (1,2)

(4,6) = (2,3)

(5.6)

Every event in the sequence is assigned a class:
Event Symbolic date t &(t) Class labeju(t)

a (0,6) = (0,1) 0+0/1 (0,1)
- (1,6) 0+1/6 (1,6)
- (2,6) = (1,3) 0+1/3 1,3)
- (3,6) = (1,2) 0+1/2 1,2
b (4,6) = (2,3) 0+2/3 (2,3)
- (5,6) 0 +5/6 (5,6)
c (8,6) = (4,3) 1+1/3 (1,3)
d (12,6) = (2,1) 2+0/1 (0,1)
e (27,6) = (9,2) 4+1/2 (1,2)

Only four classes are needed for structurifg (0,1), (1,3),(1,2) and (2,3). Other
classes such as (1,6) and (5,6) may be introduced later. A structural representai®n of
sequence is the following:

— 14 —
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# /> (3] Rhythm

\ Equivalenc

IR y Y classes
D J< (0,1)
Symbolic - // < (1.32’) _
dat 77 \ AN (1,2
777 \ (23)
/S / \

/

)/’/ T &/mt%ﬂlc date orderi Q

| | »
(0,2) (2, 3) (4,3) (2 1) 9,2) (7,1)
213 |1 2/3 | 2/3 5/2 5/2
Symbolic durations
— \ \\ \\ \\ Au—
Structure
of time

(not represented)

-rrrrrrrrrrrrrrrreTrTT
0 Physical time (sec.)

Fig.3

This method for structuring the set of symbolic dates is not unique but it is geneugh
for representing and matching rhythmic patterns in sequences whatever the structure of time.

8. Structure of time: a computational approach

In a digital synthesizer, ‘physical time’ is eithiee direct output of a sawtooth generator,
or an output adjusted manually or automaticallyr@gsponse to instructions contained in a
symbolic sequence S itself).

The structure of timep may be represented with amygebraic formula, or explicitly.
Explicit representations are implementedableswhereas formulasefer toprocedures In
real-time synthesisglis required for converting physical tinh@ symbolic dates: one single
table or procedure is neededpiis injective (see 85).

Several ‘cascade’ mappings are almuetessarily involved, i.ep = @ . @ . ...¢,.
Jaffe (1985:40) only consideresdrictly increasing functions, but he introduced multiple

— 15 —
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mappings for different voiceand methods with view of merging them in the actual

performance (ibid:44-ff). In SYTER implementationany @~1 is not necessarily
monotonous nor even continuous:

D

reverse+linear

linear
reverse+ non linear

linear linear

Fig.4

In this example, the same component is (partly) performed several times; in each
occurrence the flow of symbolic time is either ‘normal’ (linear and ‘clockwiséfodified’
(‘anticlockwise’, non linear, etc.). Using several taldddressed by the same variable
linkedto physical time, it is possible to split physical time to several local sets of symbolic
dates. Example below shows a split to three sets of symbolic dates:

a
L/
)

Component A

Component E

Component C

Time input

Fig.5

— 16 —
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Each table in the left part is a score or ‘history’ of compoAer or C. This set-up
produces an effect similar to that of a conditional branching triggeringahdBC. For each
component, one or more table(s) is (are¢ded to define the structure of its ‘local time’
component A has a continuous yebatolike overall structureB has a discrete ‘tempo’
structure, while C is performed in ‘linear’ time. In ta& part, straight segments have been
used to provoke repetitive performances of each component at different sipeledsl more
complicated functions may be used to account for context-sendistertions of each
component's local time.

Each musical component may be in target of components and/or musical events. The
split to subcomponents may be tresult of more conditional branchings, as above, or
sudden changes of the value or range ofsmuyd parameter, as evidenced in the local time
structure of component B. Evepgrameter may have its own ‘private’ local time structure,
and possible interactions withe musical output of the synthesizer itself or with other
human/mechanical performéps

Time mappings and the manual/automatic control of the flow of physical time are highly
dependant on technical features of sound-making machines, and willfoothee discussed
here. An important problem, however, is the structure of local time in each component.

Time structures, like pitch structures in many traditional music systemsftare felt
intuitively as a trade between strict periodicity (a boring order) and chaos (cfteumcture
that is not immediately perceived). One way of producing such strugtutesrely on
automatic sequences.e. sequences generated by automata, or equivalently formal
grammars (Bel 1989d), constant lengtibstitutions (Allouche & Mouret 1988), etc. Since
it deals withnominative variables, this first method does not take directly into account
additive properties of time/pitch interval&nother approach is to build strictly periodic sets
of integers and combine them using set operations. Since finite sets are needed, a prior
scaling (an arbitrary origin and a unitary vector) of the domain is neceksagxample, use
440Hz as an origin and 1 cent (frequency ralid229 as arelementary interval for pitch
scaling; similarly, define a time origin and an elementary pulse intéovaiime scaling.
Once the scale haieen fixed (although independantly of it), sets of values may be built by
means okieves

8.1. Sieves

Scales offer a wide scope for intuitively grasping the femusical structure because of
the predominance ancklative complexity of pitch relations in many traditional music
systems. Partly for this reason, sieves were first introduced by Xenakis @968)
structural model of musical scales. The concept we introduce heteebasused for a
practical implementation in SYTER.

An elementary sieves a congruence class oglative integers. For examplelass 3
modulo 5is the set of relative integexsverifying property P(x):

|There exists a relative integessuch that x = 5k+3
|i.e. x= 3 [5] in standard mathematical notation.

The sieve generated by this formula is the following set:
5,={...-12,-7,-2, 3,8, 13, 18, ...}

15 A stochastic control of on-setting times taking into account the density of ésefotsnd in Xenakis'
Achorripsis 1956).
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where ‘%’ is the notation used by Xenakis. P(x) is a boolean expression wieiamay
call ‘atomic’ as it relates to an elementary sieve.

Although the structure of an elementary sieve is infinite and stpettiodic, in practice
the domain of P(x) must be restrict@ausical parameters such as pitch, time, intensity, etc.
are necessarily bound to limits. Consequently, four parametersecessary to define an
elementary sievats modulo and origin (class label or remainder of the Euclidian division),
and the two limits of its definition domain.

It is possible to manipulate these parameters to show more of liggs periodicity of the
infinite structure. For instance, taking a period larger than the danajrlead to a structure
containing one single value — or no value at all... This makes it possible to intbhvda&s
into the apparent periodicity of a compound sieve.

A compound sieves a set of integers built by union, intersection and complementation
of elementary sieves. fhay also be defined as a Boolean expression built on atomic
expressions with the aid of the three operatams} or, not., e.qg.:

3%,
that is,no (3) or 4.
This set is calculated as follows: first builg {... -11, -7, -3, 1, 5, 9, 13, ...} and 3

{..-10,-7,-4, -1, 2, 5, 8, 11, 14, ...}, then take only those elentt@itbelong to 4 and
notto 3: {... -11, -3, 1, 9, 13, ...}

It is possible to approach the problem of sieves from two practielpoints: (1)
generate a sieve given a Boolean formula, or (2) characterize a given segjueriegers.
The latter is a rather difficult, although rich potential applications, rule-discovery problem:
any finite sequence of relative integers may be consideradgieat number of ways as a
non-periodical part of a periodical structure.

8.2. Tabulated sieves

A first implementation osieves in SYTER (Bel 1989a) has been realised with the aid of
tables that are precomputed atdred on disk. Numeric tables are the main support for
structures in SYTER. Instead of producing a particular sound event by dtliatjached
elementary procedure, it is necessary to define all its parametdvaréateristic set of metric
variables that allow its generation by a general-purpose hook-oqpddles) (Bel 1989b).
Discrete events,e. time structures, are produced if at least one of the parameters has been
changed significantly. Tabulated sieves come in response to such a need.

Given I, an interval of real numbers, and a finite increasing sequence G defihed on
tabulated sievés any mapping f of | to itself such that:

|For any x belonging to I, f(x) belongs to G
|For any pair x1, x2 belonging to I, x1 < x2 => f(>&(x2)

A typical exemple of set-up of two tabulated sieves, one governing pitch aothéreone
durations, is the following:

— 18 —
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time t

duration sieve u

t'=u(t)

to timbre, etc.

pitch table p

amplitude table a

h = p(t) = p(u(t))

amplitude output a(u(t))

pitch sieve v

| pitch output h' = v(h) = v(p(u(t)))

In this set-up, the tabulated duration sieve may be for instance:

Fig. 6

u(t)

| l2 12213 | 3 |2 2] 2] s | 3|

0 3 5 7 9 11 15 17 19 21 24 27
Fig.7

and the pitch tabulated sieve:

— 19 —
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v(h)

sol5

mi5

re#s

si4 i

ré#3 fa3 mi5 sol5
Fig.8

(We used simple units of duration and a conventional semitonic system exémgple.
Indeed, any general system, e.g. microtonal, may be described in the same way.)

Both tabulatesieves have been built from compound sieves: divisions on the horizontal
axisof the time sieve, and of the vertical axis of the pitch sieve, respectively, belong to
pseudo-periodiocal sequences, whilsons of the remaining axis are equal. This is only
one among infinitely many ways ohbedding a compound sieve into a tabulated sieve (Bel
1989a).

9. Polymetric structures

9.1. Representation

A polymetric structure may be defined recursively as follows:

Syntax

— any sequence is a polymetric structure;

— if A and B are polymetric structures, {A,B} is a polymetric structure;

— if A, B and C are polymetric structures, {{A,B},C,..Jnay be notated
{A{B,C},...} or {A,B,C,...}.

Semantic

{A,B} is meaningful if and only if that A and B have identical on-setting and off-setting
dates.

The use of curled brackets is consistent with the one we introduced in sequences:

— 20 —
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| — for any sequence S, {S} = S is a polymetric structure;

— for any sequence@ duration dJ QF, {S,d} may be interpreted as the simultaneity
of sequence S with a silence whose duration is exactly d.

In other words the following notations are equivalent:

abcd={abcd4}={abcd, ___ }
where the latter is a polymetric structure.

The semantic definition suggests that there maynbkaningless polymetric structures.
This is obviouslythe case with {3,5} or {a b c, 5/4, 9/8}; but it is less evident whether or
not it is possible to assign a meaning to structures likb & d e}, {/{3 a b, d e f},
{I2ab,/3cde, 1}{/3 abc, /5d e}, etc. For this we need conventional constraints
allowing a machine to assign the ‘simplest’ meaning to structures \ahécimot entirely
described. We first decide that ‘simple’ transformatians those that do not distort
rhythmic patternsThis rules out the transformation calleabdification mobildoy Boulez
(1963:57-8), nothat we believe such a transformation should be ignored, but because it
requires explicit parametersansymbolic representation. Another principle is thatraple
interpretation is one in which many events have identical on-setting symbolic dates.

The following conventions are based on these principles:

— if a sequence does not contain any tempo indication, its tempo may be attaibuted
arbitrary value;

— if A, B and C an arbitrary polymetric structures, in the structéardB} C’ the
tempos of A and C are identical unless explicitly indicated;

— if two sequences A and B containing tempo indications appéhe same polymetric
structure, any change of the tempo of A must be reflected proportionathye tempo of

B;

— the default tempo value is 1.

For example,
S=abc/2de/3fgh=/1abc/2de/3fgHdefault value)

S=/3abcd=/1/3abcd
(this sequence starts with default tempo 1 but this value is immediately changed.)

Let us now consider {at, d e}. The tempos of ‘a b ¢’ and that of ‘d € may be given
arbitrary values although there is only a set of vathes will assign a meaning to the
structure, e.g.{/{3abc,/2de}, {/{15abc,/10d e}, ...etc.

Consequently, if {A, ..., Ay is a polymetric structure, the structure is always
meaningful when less than twsubstructures contain tempo indications. If there are
indications in several substructures it is necessary to check consistenityerelfare no
tempo indications the global temmd the structure is ambiguous. To resolve such an
ambiguity we introduce two additional rules:

9.2. Homogeneity rules

‘ — if A, B and C an arbitrarpolymetric structures, in the structure ‘A {B} C’ the global
tempo of B is the same as those of A and C unless explicitly indicated,;
| — the global tempo of {/{pA4, ..., /iy Ay} is the largest p

Using these rules we may for instance interpret the structure:
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S=ab{cd,efg}hij

in which the global tempo is arbitrary. Le$ find the lowest possible tempo. We first
consider {c d, e f g} which has infinitely many interpretations:

{cd,efg}={/2cd,/3efglor{/dcd,/6efg}or{/6cd,/9efqg}or...etc.

If we keep the first interpretation, tigdobal tempo of S may be either 2 or 3. The second
rule imposes 3:

S=/3ab{/2cd,/3efg}/3hij=/3ab{/2cd,/3efg}hij
=/6a_b_{6c__d__,/6e_f_g_}th_i_j_
=/6a_b_{c__d__,e_f_g }th_i_j_
The second homogeneity rule allows the choice of an arbitrarily large integealle.qg.
multiples of 3 in the exampkhown. This means that the global tempo of ¥4, ..., /'
A}, and consequently that of ‘A {BE’, may be adjusted to match, whenever possible,

another tempo imposed by constraints in a larger structure.

10. An algorithm for interpreting polymetric structures

The following is the maipart of an algorithm implemented in HypeA8Hor producing
polymetric sound structures.

Let S be a polymetric structure.
The aims of the algorithm are:

— determine whether or not the structure may be assigned a meaning;

— if yes, calculate its symbolic fractional length;

— determine whether or not the structure contains explicit tempo indications;
— rewrite the structure with a unique global tempo.

S may be interpreted as a sequence of structures:

S=§ ... S,
in which each Sis either a sequence of terminal symbolsa grolymetric structure {4
s Ak

The main procedure POLY calls two subroutines: SEQU for the evaluation of strict
sequences, and SIMUL for the evaluation of simultaneous structuges.{AA.}.

POLY, SEQU and SIMUL have identical outputs:

— ‘ok’ which remains true as long as the structure is consistent with constraints;

— ‘P’ and ‘Q’ such that (P,Q) is the fractional length of the structure;

— ‘scale’ which is the needed increase of the global tempo;

— ‘length’, the symbolic duration of the substructure;

— ‘globaltempo’, the global tempo of the substructure;

— 'OUT’, an array which contains the substructure rewritten with a unique global tempo.

The structure is parsed from leftright. Imbricated structures may cause recursive calls
to POLY, SEQU or SIMUL, but the pointer to the symbol currently readg®bal variable.

16 An HyperCard™ and C-languagersion of the Bol Processor (Kippen & Bel 1989) with MIDI interface
implemented on the Apple™ Macintosh. HyperBP is available as shareware from the author.
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The original structure is not copied in recursive calls. Variables ‘saatk*fixtempo’ are
also global.

POLY starts assuming that the global tempo is 1. This tempo is explicitly mentioned
the output array ‘OUT".

SEQU reads the next symbol and increments the current fractional duratiorbasighef
the current tempo.If SEQU reads a tempo indication, the current tempo is adjusted and
‘fixtempo’ is set to true.

SIMUL works in several stages. Suppose that the substructure,is.{AA}.

— call POLY for the evaluation of each A if ‘ok’ turns to false, abort; if ‘scale’ is
increased by a fact@while parsingd;, multiply by s all tempo indicators in ‘OUT’ and
the fractional lengths of J-Afor all j <1 ; let fixtempol[i], p[i], q[i], scale[i] and
globaltempoli] be the resulting outputs;

— determindi such that either fixtempolii] isue or, if fixtempoli] is false for ali then
(p[ii],q[ii]) is maximum,; in this process the check for consistency is performdubtkf
fixtempo[i] and fixtempo[j] are true, then it is necessary that (p[il,q[i]) = (p[jl.ali])
otherwise ‘ok’ is set to false and POLY is aborted,;

— determine a set of integer coefficients: (r[1],..., r[n]) such that:

0§ 0{1,n}, (p[il, r{i]-qlil) = (p[iil, s.qiil)
= fractional length of the substructure

=(P.Q)

This last part of procedure SIMUL is explained now.
The relation above may be written as follows:

nioga,ny, -0l _ s-qli]

piT — plil]
Let L be the lowest common multiple (LCM) of p[i] for all O {1,n}, and
let p'[i] = L/ p[i]. If we multiply byL both sides of the equation we obtain:

rlil.ali].p’[i] = s.qfii].p'[ii]
LetM be the LCM of (q[i].p'[i]) forall i 00 {1,n}, and let '[i] = M / (q[i].p[i]). If we
divide byM both sides of the equation , we obtain:
. r[i] S
Uit{1,n}, = e+ = =7
Wk T o
The lowest values of r[i] ansisatisfying this relation are:
) rlil = q'fi] -
s =qTii] = M/ (q[ii].pTii]) = M.L / (p[ii].q[ii])
Thevalue ofs is also the rate by which variable ‘scale’ is increased. The output value of
‘globaltempo’ is (M * p[ii] / L).

A feature which is not presented here is the handling of undeterminedfgapsxample,
ifX='abcde and Y % g h’, and if the configuration of time-span intervals between X

and Y isp4 (see 83), the corresponding structure is notated:

{abcde? ?fgh}

— 23 —
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in which ‘?” denotes undetermined gaps. HyperBP findsmallest gaps compatible with
tempo constraints for which the maximum number of on-setting dates matatesitiother
in both strings, e.g. {abcde _, fg h} Other solutions may be found if more
explicit information is given.

11. Examples of interpretations

ab{ab,cde}cd
=/3ab{/2ab,/3cde}/3cd=/6a_b_{a__b__,c_d_e }c_d_
Duration 7/1 Scale 3

ab{/1 ab,cde}cd
=/2ab{/2ab,/3cde}/2cd=/6a__b_{a__b__,c_d_e }c_d_
Duration 6/1 Scale 2

ab{/2 ab,/3 cde}cd
=/2 ab{/4 ab, /6 cde} /2 cd

{a {bc,def},ghijk}
= {/12 a { /8 bc, /12 def}, /15 ghijk}

=/120{fa_ oo C ...etc
Duration 5/1 Scale 15
a d e L NIL
b ¢ NL
h [ k NIL

/3 ab {ab,cde} cd
=/9ab{/6ab,/9cde}/9cd=/18a b {a b ,cdel}cd
Duration 7/3 Scale 3

— 24 —
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