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Time and musical structures

Bernard Bel

ABSTRACT

A theoretical model is introduced, by the aid of which descriptions of sequential and
concurrent processes may be built taking account of the sophistication and generality of
contemporary musical concepts.  This is achieved through an independent and unrestricted
mapping between physical time and a symbolic set of dates.  Sequential structures are
considered first, then the nature of this mapping and its practicle implementation in a real-
time synthesizer are discussed.  Polymetric structures are introduced and a method is
outlined for mapping events to symbolic dates when concurrent processes are incompletely
described.

Keywords: representation of time, concurrent processes, polyrhythm, computer music.

1. Introduction
Time is probably the most complex dimension of music, altogether one which has been

neglected in many formal models of music representation.  Even so, machines playing music
from scores require complete information about time in order to compute durations and
delays.  Such a discrepancy between the amount of information available on scores and the
accuracy required in performance has led to models of timing in computer music that are
more based on ad-hoc procedures than on analytical/compositional musical concepts.

Ideas introduced here evolved from the need to formalize a model of music in a domain
which is highly structured yet uneasy to describe in terms of fixed categories1.  The aim of
the study was to simulate improvisation/evaluation processes in rule-based music
composition (see Laske 1989:49-ff regarding rule-based composition).  The need for
efficient synthesis/recognition algorithms led us to develop an ad-hoc model of
transformational grammars, the Bol Processor,  in which constraints on duration, tempo,
etc. can be comprehensively formalized (Kippen & Bel 1989).  More recently, we started
developing the BP as a tool for computer-aided composition2, using a MIDI interface
connected to a SYTER real-time interactive digital synthesizer3.

The main new concepts that needed to be imbedded in the Bol Processor model were the
structure of time (Xenakis 1963) and concurrent processes (polyphony in a broad
meaning).  The structure of time may be represented — independently of musical structures
_________________________________________

1 North Indian tabla drumming, in collaboration with ethnomusicologist Jim Kippen.  Initial work was
supported by International Society for Traditional Arts Research (ISTAR), the National Centre for the
Performing Arts (NCPA, Bombay) and the Ford Foundation.

2  Concurrent processes are still under discussion within the ‘OC’ study group at Laboratoire Musique et
Informatique de Marseille.  This paper should not, therefore, be considered as a final statement on the
matter.
3 SYTER was designed by J.F. Allouis at INA-GRM (Paris) and built by Digilog (Les Milles, France).  This
system is currently used for research in Marseille by Laboratoire Musique et Informatique and by the team
of J.C. Risset at Laboratoire de Mécanique et Acoustique.
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— as a mapping between symbolic time (similar to Jaffe's basic time:1985) and physical
time.  This approach is well-adapted to structural descriptions (e.g. automata or formal
grammars) in which it is not desirable to encode a priori information about durations and
tempo.

Changes in the structure of time do not affect coincidences stamped by symbolic dates.
Therefore it is also possible to define polyrhythmic structures based on symbolic time
without falling again into the complicated computation of delays.  The end of this paper is a
presentation of an algorithm inferring a polymetric structure from incomplete (sometimes
ambiguous or contradictory) information.

Several theoretical models of concurrent processes have been applied to descriptions of
polyphonic structures in music.  Trace languages — a generalization of string languages —
(Zielonka 1987, Mazurkiewicz 1984a-b) based on relations of (time-) dependency and
independency defined on pairs of individual ‘events’ have been used by Chemillier (1987).
Although this description of parallel structures bears some resemblance with trace languages
and their application to music (Chemillier 1987, Chemillier & Timis 1988), a comparative
study is beyond the scope of this paper (Bel 1990).

2. Musical events, symbols and ‘meaning’
Understanding the process by which a trained listener is able to identify and relate musical

events is a central problem addressing both psychoacoustics and the psychology of music.
Intuitively, a musical event is a segment of sound to which some musical ‘meaning’ may be
assigned.  A set of interrelated musical events is called a musical component.  Formally,
given a set of events E and a set of components C, P(E) ⊇  C.  There are at least two features
specific to music perception, as opposed to speech:

— several events/components may meaningfully (partially or totally) overlap each other;
— only very few events/components are prelabelled (e.g. notes, silences, chords, etc. in
Western classical music).

The process by which a human listener is able to identify and follow several ‘voices’ on a
single sound track has been simulated by models performing pattern recognition on
appropriate representations of sound (supposedly similar to the listening process4).  The next
step, i.e. the segmentation of each ‘voice’, is a trade between ‘evident’ qualitative or
quantitative changes, and some ‘meaning’ attached to particular sound segments.  A typical
qualitative change is a sudden change of perceived pitch, amplitude, etc.  A meaning-oriented
change is for instance the perception of distinct notes in a portamento, where the task of
listening is driven either by the overall feeling of a ‘tonal system’ (a scale, a mode, etc.) or
by the awareness of a ‘rhythmic system’ (e.g. a tempo)5.  The narrow link between
understanding and parametric change has been pointed out by Minsky (1986), and its context
sensitivity by Smoliar (1989:61) in his interpretation of Ross Lee Finney's “law of the
balance of parameters”:

_________________________________________

4 A comprehensive survey of recent developments in psychoacoustics and sound modelling may be found in
Risset (1989).
5 Inverted commas are compulsory here, as in many parts of this paper: the denotation of musical concepts
varies considerably from one musical system to the next.
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This law basically observes that the only parametric changes which matter, be they with regard to
pitch, tempo, dynamics, or timbre, are those which make a difference which can be perceived in their
context.

Both ethnomusicologists and contemporary musicians have contributed to build the
hypothesis that few categories of musical events/components are consistently shared within a
group of listeners6.  The most significant features characterizing groups of listeners,
therefore, are not so much a share of musical concepts than discriminative procedures
developed by musical training.  Categories and concepts, within one group, remain context-
sensitive partly because several procedures may compete with each other (e.g. tonal versus
rhythmic identification as mentioned above).  For this reason it is unrealistic to claim the
existence of abstract and universal models of music based on fixed hierarchies of musical
components: the existence of clear-cut categories of musical concepts is an ethnocentric
illusion imposed on Western musicians by standardized notation7-8.

 Musical ‘meaning’, therefore, is not a simple category assignment: sound events do not
possess any potential interpretation unless they are structurally related, be it through a real,
imaginery, permanent or temporary structure activated by the process of listening.  Any
labelling of musical components/symbols, therefore, reflects the (real, imaginery, potential,
expected etc.) relations these components display in mutual interactions9.

A musical component x ∈ C has a finite number of descriptive features.  The variables
attached to features may be nominal, ordinal, preordinal, graduated, metric, statistical or
probabilistic (Vecchione 1989:9-10).  Let B1, B2, ... Bn be the sets of possible values for
variables y1, y2, ... yn, and f an injective mapping such that f(x) = (y1, y2, ... yn), the
values taken by all variables relative to x.  In this viewpoint (concept elaboration), musical
‘meaning’ is less a hierarchical description of C than any interesting structure of f(C),
‘interest’ being the matter of producing an explanation under some particular viewpoint.

3. Representing sequences of events
Throughout this paper we will use lower-case characters for labelling discrete events

although in real music descriptions it is more convenient to deal with strings or iconic
representations.

One of the essential descriptive features of musical events/components is their time-span
interval.  The following three categories may be distinguished:

— (1) events with fixed duration, e.g. saying the sentence: “Hello, my name is John” at
given speed;
— (2) events with undetermined duration, e.g. a stroke on a drum, a fermata;
— (3) events with no intrinsic duration, e.g. depressing a key on an electronic organ
keyboard;

_________________________________________

6  The contribution of musical semiotics to this awareness should not be underestimated, see for instance
Molino (1988).
7 Indeed there are many other art-music systems giving importance to notation, but most of them do not
claim consistency nor completeness.
8 This argument comes in support to Smoliar's (1989) provokative paper on music modeling.
9 This issue is crucial because of new developments of formal music theory adressing several branches of AI
based on different approaches to ‘symbols’.  See for instance Newell (1980) and Leman (1989).
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Events belonging to the first two categories are entirely put in time when the on-setting
date is known, but for any event of the third category it is necessary to know two parameters:
its on-setting and off-setting dates (or any of the two plus its duration).

Intuitively, a string of symbols is meant to represent a sequence of events.  For instance,
consider the sketch ‘abcd’ where:

a = ‘John opens the door and comes in’
b = ‘John says: “Hi, my name is John”’
c = ‘Bill gets up’
d = ‘John and Bill shake hands’

‘abcd’ may be thought of as a strict sequence, but in a real situation overlappings or gaps
between two (or more) events would possibly take place.  The reason for calling ‘abcd’ a
sequence is the awareness of a strict ordering of on-setting dates: we know for sure that Bill
did not get up before John started talking.  If we consider all possible relative positions of the
time-span intervals of two events, say X and Y, we obtain the following set mentioned by
Allen & Kautz (1985), Van Benthem (1983:58-79) and Vecchione (1984:150ff).  Following
Vecchione's notation:

X

α −α

−β1β1

β3 −β3

β4 −β4

γ −γ

δ −δ

β2 −β2

( )X

YY

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y Fig. 1
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If ‘XY’ is meant to be a sequence, acceptable configurations are α , β1, β2, β3, β4, γ or

δ.  Configurations α  and β1 may also be excluded as they denote simultaneous events in a
strict or broad sense10.

If we consider events belonging to the second category, whose off-setting date is
irrelevant, β2, β3, β4, γ and δ may be viewed as equivalent.  With events of the third

category we should call ‘sequential’ only pairs of events that verify γ or δ.

For all categories it may be argued that δ is not a strict sequence: it is always possible to
define an ‘empty’ event, a silence filling the gap, if any, between the off-setting date of X
and the on-setting date of Y.

Events of categories (1) and (2) have either predetermined or imprecise durations,
therefore no off-setting date needs to be computed.  As to events of category (3), we will
consider that the off-setting date of each event coincides with the on-setting date of the next
event.  For consistency we may  append a ‘NIL’ event to the end of every sequence.

In this view, the duration of an event in a sequence is the time-span interval between its
on-setting date and the on-setting date of the next event in the sequence.  We use the same
word ‘duration’ whatever category the event belongs to.  In category (3) this concept is
consistent with common-sense ‘duration’.  In category (2), we may consider that a
‘punctual’ event extends its ‘effect’ until the next event in the sequence starts, as it may be
observed in homophonic drumming sequences.  In category (1), however, using a word like
‘duration’ is arguable because it relates to the time elapsed till the next event takes place, not
the actual duration of the current event.  Nevertheless it is acceptable in sound sequences to
the extent that the on-setting of a new event pulls attention away from the remaining part of
the previous event.

There are two reasons for using the same definition of ‘duration’ in the three categories.
One is that it allows synchronizing sequences containing events irrespective of their
categories.  The second one is that in computer music there is rarely a test verifying that an
event of category (1) has come to its end.  If the duration of the event, or its maximum
possible value, is known, then a machine or a human composer is able to fix on-setting dates
depending on which configurations (β1, β2, β3, β4 or γ) are acceptable in a sequence.  A
test on the completion of an event would be part of a handshake procedure synchronizing
processes.  If several sequences are competing with each other, handshake interruptions may
refer to events occurring in either sequence.  Models for the management of
asynchronous/synchronous parallel processes (see the literature relative to automated
machinery: Petri networks, etc.) are beyond the scope of this paper: we will only envisage
sequences synchronized by the internal clock of the system: a typical situation is a sequencer
hooked to a synthesizer via its MIDI interface.

4. Symbolic dates
The relevant time features of events in a sequence are their mappings to an index (their

position in the string) and to on-setting dates:

_________________________________________

10 The use of these time operators/predicates in formal representations of music has been discussed by
Vecchione (1984-5), Risch (1988) and Bel (1989c).  A similar approach has been proposed by Oppo (1984).
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S —θ—> D

S —ρ—> N

where S denotes a sequence, D a strictly ordered (enumerable) set of (on-setting) symbolic

dates, N  the set of positive integers, and ρ(x) the position of event x in the string
describing S.

Intuitively, a symbolic date is a reference such as “the third quaver after the 27th bar”
where physical date might be “4137 milliseconds after the violin started”.  This may also be
related to what Boulez calls “temps strié” as opposed to “temps lisse” (Boulez 1963:104-
ff).

Both θ and ρ are uni-valued functions.  ρ is a bijective mapping, θ is injective: given two

distinct events X and Y, the meaning of property θ(X) = θ(Y) would be that X and Y have

identical on-setting dates, i.e. either configuration α(X,Y) or β1(X,Y) is verified, which we
assumed is not acceptable in a sequence .  Consequently, X and Y must belong to distinct
sequences S1 and S2 such that  θ1(X) = θ2(Y) (see for instance events c and e on fig.2

below).

Simultaneity (of on-setting dates), i.e. synchronization, is the main feature to consider
when associating several sequences in a concurrent process.  In this model, therefore, we
envisage simultaneity as a high-level property imbedded in the mappings θ of sequences to
the set of symbolic dates.

The set of dates D is not necessarily unique: in fact, each musical component may have its
own local symbolic time..

5. Symbolic versus physical time

The set(s) of symbolic dates D  is (are) mapped to physical time, i.e. the set of rational

numbers Q .  Each such mapping φ is a restriction to D of a more general mapping that we
call the structure of time.    The following is a mapping of two sequences represented by
strings ‘abcd’ and ‘efg’:

—  7  —
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Structure
of time

D
Symbolic

dates

ρ2ρ1
S1 a     b     c    d   NIL               e    f    g    NIL

t1  t2  t3  t4  t5  t6  t7  t8  t9  t10  t11  t12  t13  t14 ...

θ2 Rhythmic
structure

θ1

(sec.)

Q

Physical time0

N1 2 3 4 5

Ordering
of events in

sequences

S2

φ

Fig.2

Ιn many common-sense descriptions, φ is a bijective mapping with additional property:

di < dj <=> φ(di) < φ(dj).  If we consider ∆(di,dj) = | φ(dj) - φ(di) |, the absolute value of the

difference, ∆ is a distance on D and it is easy to prove that (D,∆) is a metric  space11.

(D,∆) is also Euclidian  if the following property holds:

j - i = l - k  => φ(dj) - φ(di) = φ(dl) - φ(dk)

To simplify we will talk about metric time and Euclidian time.  Informally, when (D,∆)
is Euclidian it contains explicit information about the durations of events.  On the other
hand, metric (non-Euclidian) time may be used for expressing accelerando and ritardando.

In general, φ is a multi-valued injective mapping with no restriction on ordering: events
mapped to the same symbolic date may be performed more than one single time; events in
sequences may also come in an order varying from one occurrence to the next, etc.  An
essential constraint remains that events with identical symbolic dates must be performed
together regardless of the structure of time.  Conversely, an injective mapping prevents two

_________________________________________

11 i.e. ∀ i,j,k, D(di ,dj ) + D(dj ,dk) ≥ D(di ,dk)

—  8  —
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events, X and Y, from being performed simultaneously unless their symbolic dates are
identical: φ(di) = φ(dj) => di = dj.  Several models of structure of time are discussed in §8.

The composition of the two mappings (φ .θ) is the in-time structure of the sequence, i.e.
the mapping that permits its actual performance.  Structure of time and in-time structures are
two concepts borrowed from Xenakis (1963, 1971, 1972:57), which we find essential as
they deal with a set of dates not necessarily structured as a Euclidian space12.

6. Rhythmic structure

The rhythmic structure of any sequence S is function θ itself.

In the same way ρ1 and ρ2 represent the bijective mappings ordering events in sequences

S1 and S2, we may call ρT the bijective mapping ordering the set of dates D.  For any

sequence Si ,  (ρi
-1

 . θi  . ρT)  is a monotonously increasing function.  This is equivalent to
saying that any two events having consecutive labels in a string must be in relative position
β2, β3, β4, or γ.  This could be expected since the on-setting symbolic dates reflect the left-
to-right ordering of the string.

To compare rhythmic patterns in two sequences one needs to eliminate their (symbolic)
time offset.  Let Oi = ρT (θi (ρi

-1(1))) be the origin of sequence Si.  For the two examples on
fig.2, O1 = 3 (‘a’ is mapped to t3) and O2 = 6 (‘e’ is mapped to t6).  Let us compare the
image sets of functions:

Ri(k) = ρT (θi (ρi
-1(k))) - Oi, where k ∈ N

Each image set of a Ri function characterizes a rhythmic pattern independently on the
symbolic date when the sequence started (and, needless to say, on the physical durations of
events when non-Euclidian time is used).  For example we get the following sets of values:

 Sequence S1 = ‘abcd’:

ρT (θ1 (ρ1
-1(k))) = {3,5,6,7,8}  ==>  R1(k) = ρT (θ1 (ρ1

-1(k))) - O1 = {0,2,3,4,5}

 Sequence S2 = ‘efg’:

ρT (θ2 (ρ2
-1(k))) = {6,9,11,12}  ==>  R2(k) = ρT (θ2 (ρ2

-1(k))) - O1 = {0,3,5,6}

Trying to match R1(k) with R2(k) does not yield any information except strict identity or
difference.  Approximate matching is more conveniently performed on lists of symbolic
durations Ii(k) defined as follows:

Given ni, the length of the string representing a sequence Si,
for any k such that 0 < k < ni,
Ii(k) =  Ri(k+1) -Ri(k).

_________________________________________

12 We do not claim that the terminology in this paper is faithful to Xenakis.  Interestingly, although Xenakis
had introduced three structures in his early work (1963:190-1,200, 1971): in-time (structure en-temps), out-
time structures (structure hors-temps) and structure of time (structure temporelle), in 1972 he did not seem
to be concerned any more with the structure of time.

—  9  —



B. Bel:  Time and musical structures

In the example above, I1(k) = (2,1,1,1) and I2(k) = (3,2,1).  We call these durations
‘symbolic’ because they are built on the set of symbolic dates.  Although I1(1) = I2(2) = 2 in
this example, point to events (‘a’ in ‘abcd’ and ‘f’ in ‘efg’) with identical symbolic durations,
their physical durations may be unrelated.

The meaning of two sequences with identical lists of symbolic durations is that all the
(on-setting) dates of the corresponding events would be identical if the sequences were
performed from the same time origin.

Rhythmic patterns, therefore, are invariant with respect to translations on symbolic
time13.  For example, if the first sequence whose symbolic dates were (3,5,6,7,8) is shifted
to the left by two ‘units’, we obtain the list of dates (1,3,4,5,6) which has exactly the same
pattern.  Unless the set of dates is Euclidian, this does not apply to changes of the physical
starting date: if a sequence is delayed or repeated it must be ‘adapted’ to the local time
structure, using the φ function.

7. Notating symbolic durations

If we consider the Cartesian product S xN we can represent events together with their
symbolic durations considering the function:

S —ψ—> S xN  such that ψ(x) = (x, I(ρ(x)))

For instance, ψ(S1) = ((a,2),(b,1),(c,1),(d,1)) and ψ(S2) = ((e,3),(f,2),(g,1)).

Since in each couple the first argument is an alphanumeric string and the second one a
positive integer, every couple may be unambiguously represented as an (unordered) set.  In
addition, we may also leave out commas wherever they indicate concatenation, plus the pair
of brackets bordering the list.  The notation obtained:

 ψ(S1) = {a,2} {b,1} {c,1} {d,1} = {2,a} {b,1} {1,c} {d,1} = ... etc.
and

ψ(S2) = {e,3} {f,2} {g,1} = {3,e} {2,f} {g,1} = ... etc.

will be useful in polymetric structures (see infra).

Another notation system, designed by North Indian drummers (Kippen 1988:xvi-xxiii), is
based on the idea that no symbolic duration is ever smaller than 1.  Default duration is
conventionally ‘1’.  An event X with symbolic duration n may be represented by appending
(n-1) prolongational gaps to the right of its label.  In a drumming sequence prolongational
gaps are equivalent to silences: the time-span between two strokes is filled with the resonance
of the first stroke, if any.  However, if we deal with events of category (3) (see §3), it is also
necessary to dispose of an empty event (e.g. a ‘note-off’ in MIDI terminology) distinct from
the prolongational silence.  Silences may be notated with hyphens, and prolongational gaps
with underline characters.  Using this system,

_________________________________________

13 A similarity function is easily defined for comparing the rhythmic patterns of two sequences: given I1(k)
and I2(k), find the maximum common subsequence and calculate its length.  If pattern expansions are
considered relevant, search for common subsequences with identical duration ratios.

—  10  —
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ψ(S1) = {a,2} {b,1} {c,1} {d,1} = a _  b c d
and

ψ(S2) = {e,3} {f,2} {g,1} = e _  _  f _  g

The advantage of this system is twofold14:

— it facilitates the pronunciation of rhythmic sentences: speak symbols or clap ‘_ ’ on
metronome beats;
— when durations are 1 the representation is simple string notation, i.e. ψ(S) = S.

We may notate:

ψ(S1) = {a,2} {b c d,3} = {a,2} b c d = {{a,2} {b c d,3},5} = ...etc.

We will see later how an expression like {b c d,5} may be notated without brackets.  A
useful minor extension of the system is the use of integers in replacement of strings of ‘_ ’.
The following notations are equivalent:

a b _  _  _  c  = a b {_  _  _ ,3} c = a b {3} c = a b 3 c

Each of the last two transformations illustrates extensions of the system: the set represented
in curled brackets may have less (or more) than two elements, and brackets may be omitted
for sets with only one element.  Conversely,

a b c d = {a} {b} {c d} = {a,1} {b,1} {c d,2}

demonstrates that duration may be omitted in a bracket when it is exactly the length of the
string.

Also note identical following expressions:

a = {a} = {a,1} = {a _ ,1} = {a _  _  _  _ ,1} = ...etc.

a b c = {a b c} = {a b c,3} = {a _  b _  c _ ,3} = {a _  _  b _  _  c _  _ ,3} = ...etc.

7.1. Tempo indications

  The reader may feel impatient to know how {b c d,5} can be interpreted.  In the absence of
explicit information the symbolic durations of b, c and d should be identical. In terms of
physical or Euclidian durations this is easy to achieve by stating that the duration of each
event shall be 5/3.  The next paragraph will indicate necessary changes in the structure of
the set of dates D.  Let us, for the time being, indicate this transformation with ‘/3’.  We
obtain:

{b c d,5} = /3 {b c d,15} = /3 {b,5} {c,5} {d,5} = /3 b_ _ _ _ c_ _ _ _ d_ _ _ _

in which ‘/3’ indicates a change in the division of each beat (this concept will be introduced
in §7.2).  A change presupposes of course that the default division was 1.  Another method
for solving that problem is based on the last remark of the preceding paragraph:

{b c d,5} = {b_ _ _ _ c_ _ _ _ d_ _ _ _ ,5} = /3{b_ _ _ _ c_ _ _ _ d_ _ _ _ ,15}
= /3{b_ _ _ _ c_ _ _ _ d_ _ _ _ } = /3 b_ _ _ _ c_ _ _ _ d_ _ _ _

  The following three examples indicate transformations dealing with multiple changes of
tempo.  (The same process is illustrated by Boulez, 1963:56, example 14):
_________________________________________

14 Both prolongational-gap and curled-bracket systems have been implemented in the most recent version of
the Bol Processor.

—  11  —



B. Bel:  Time and musical structures

{a b,3} {c d,2} = /2 {a b,6} /1 {c d,2} = /2 {a,3} {b,3} /1 {c,1} {d,1}
= /2 a_ _ b_ _  /1 c d = /2 a_ _ b_ _  /2 c_ d_  = /2 a_ _ b_ _ c_ d_  = /2  a_ _ b_ _ c_ d_

{a b c,3} /2 {d e,2} /1{f,1} = {a b c} /2 {d e} /1{f} = a b c /2 d e /1 f
= /2 a_ b_ c_ def_  = /2 a_   b_   c_   de  f_

{a b c,2} {d e,5} = /3 {a b c,6} /2 {d e,10} = /6 {a b c,12} /6 {d e,30}
= /6 {a,4} {b,4} {c,4} {d,15} {e,15} =

/6 a_ _ _ b_ _ _ c_ _ _ d_ _ _ _ _ _ _ _ _ _ _ _ _ _ e_ _ _ _ _ _ _ _ _ _ _ _ _ _
= /6 a_ _ _ b_   _ _ c_ _ _   d_ _ _ _ _   _ _ _ _ _ _   _ _ _ e_ _   _ _ _ _ _ _   _ _ _ _ _ _

= /6 a_ _ _ b_    _ _ c_ _ _    d_ _ _ _ _    6   _ _ _ e_ _    6   6

In the final expressions the tempo was unique along the whole sequence.  Consequently,
tabulations or spaces could be used to indicate beats.  This makes it clear (first example) that
the on-setting date of b is exactly the off-beat of the second beat.  The same with e in the last
example.

A minor syntax modification is necessary to introduce fractional gaps.  We notate:

{a b c,3} /2{_ ,3} /1 {d e,2} = a b c /2 _  _  _  /1 {d e,2} = a b c  /2 _  _  _  /1 d e
= /2 a _  b _  c _  _  _  _  d _  e _  = /2 a _  b _  c _  3 d _  e _

but an equivalent description is:

a b c  /2 _  _  _  /1 d e = (a b c  /2  3  /1 d e =) a b c 3/2 /1 d e = a b c 3/2 d e

The second expression is illegal because spaces have no syntactic value in our system: ‘/2
3’ would be wrongly interpreted as ‘/23’.  Correct expressions are the last two ones: ‘3’ has
become the numerator of the ratio; consequently, the tempo after ‘3/2’ remains the same one
as in ‘abc’.

In a fractional gap the denominator of the ratio may be interpreted a relative change of
tempo.  The following transformations:

a b /2 c d e f 4/3 g h = a b /2 c d e f {_ ,4/3} g h = a b /2 c d e f /2 {_ ,4/3} /2 g h
= a b /2 c d e f {_ ,4/6} /2 g h = a b /2 c d e f /6 {_ ,4} /2 g h
= a b /6 c _  _  d _  _  e _  _  f _  _  /6 {_ ,4} /6 g _  _  h _  _

= a b /6 c _  _  d _  _  e _  _  f _  _  {_ ,4} g _  _  h _  _
= /6 a _  _  _  _  _  b _  _  _  _  _  c _  _  d _  _  e _  _  f _  _  4 g _  _  h _  _

are correct, whereas the following one

a b /2 c d e f 4/3 g h  =?  a b /2 c d e f /3 {_ ,4} /2 g h
=?  a b /6 c _  _  d _  _  e _  _  f _  _  /6 {_ ,8} /6 g _  _  h _  _

=?  /6 a _  _  _  _  _  b _  _  _  _  _  c _  _  d _  _  e _  _  f _  _  8 g _  _  h _  _

is wrong.

7.2. Fractional symbolic dates and durations

Fractional gaps point to the idea that time could be measured with integer ratios instead of
integers.  Consequently, /3 {a b c,2} =  /1 {a b c, 2/3}.  In other words, the set of symbolic
dates should now be ordered with a mapping to the set of positive rational numbers Q+.  Any
symbolic date is a ratio p/q, or equivalently a pair of integers (p,q). To compare ratios we use
the equivalence class ‘=’ building Q+ on N x N* :

∀ p ∈ N , ∀ k,q ∈ N* ,  (p,q) = (k.p,k.q)

Strict ordering ‘<’ is defined as follows:
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∀ p,r ∈ N , ∀ q ∈ N* , (p,q) < (r,q)  <=> p < r

∀ p,r ∈ N , ∀ q,s ∈ N* , (p,q) < (r,s)

<=> ∃ p',r' ∈ N , ∃  q',s' ∈ N* , (p,q) = (p',q') and (r,s) = (r',s') and (p',q') < (r',s')

Symbolic durations are computed from symbolic dates using the classical subtraction
operation, a partial mapping of (Q+ x Q+) to Q+:

∀ p,r ∈ N , ∀ q ∈ N*  such that p ≤ r,
(r,q) - (p,q) = (r-p,q)

with the additional property:

∀ A,B,C ∈ Q+, B < A, C < A, C < B, A - B = (A - C) - (B - C)

The rest of the theory (durations, rhythmic patterns, etc.) is unchanged.  Evidently the
size of the set of dates D may grow considerably larger than it was the case with integer
dates.  One may argue that, since for every sequence it is possible to have a unique tempo
(e.g. the lowest common multiple — LCM — of all tempos appearing in the sequence), it is
possible to use a unique tempo for all sequences (the LCM of all individual tempos) and
report the change of scale into the structure of time φ.  The method is acceptable but it has
two drawbacks:

— the global tempo may be a very large number resulting in cumbersome notation of
sequences;
— the system is not incremental: what if a new sequence is introduced, the tempo of
which is not a divider of the global tempo?

In order to deal with D it is helpful to structure it with an equivalence relation.  A very
simple structure is the following: every rational number A = (p,q) has a unique representation

ξ A = i +
n
d

such that

i,n∈ N , d ∈ N* , (i.d+n,d) = (p,q), n < d and n/d is a ratio in its lowest terms.

Let µ be the mapping of Q+ to itself yielding (n,d) from (p,q) in the above relation. The

equivalence relation ‘≈’ on D :

∀ t1,t2 ∈ D, t1 ≈ t2 <=> µ(ρT(t1)) = µ(ρT(t2))

may be interpreted as a (not necessarily Euclidian) pulse.  Rational number (n,d) = ξ(t) is a
label for each class.  For instance, (0,1) is the label for dates falling exactly on beats, (1,2)
may be called the off-beat, (3,4) the third quarter, etc.  These class labels are assigned
automatically when a new sequence is analysed: if N is the global tempo of the sequence,
the classes through which the symbolic dates of events in S may be related are those with
labels (p,q) such that (p,q) = (n,M) for every positive integer n < M. The following
example will clarify this process.  Consider the sequence:

{a b c,2} {d e,5} =
/6 a_ _ _ b_ _ _ c_ _ _ d_ _ _ _ _ _ _ _ _ _ _ _ _ _ e_ _ _ _ _ _ _ _ _ _ _ _ _ _

= /6 a_ _ _ b_   _ _ c_ _ _   d_ _ _ _ _   _ _ _ _ _ _   _ _ _ e_ _   _ _ _ _ _ _   _ _ _ _ _ _

in which M = 6.  The possible values for (n,M) are:
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(0,6) = (0,1)
(1,6)
(2,6) = (1,3)
(3,6) = (1,2)
(4,6) = (2,3)
(5,6)

Every event in the sequence is assigned a class:

Event Symbolic date t ξ(t) Class label µ(t)

a (0,6) = (0,1) 0 + 0/1 (0,1)
- (1,6) 0 + 1/6 (1,6)
- (2,6) = (1,3) 0 + 1/3 (1,3)
- (3,6) = (1,2) 0 + 1/2 (1,2)
b (4,6) = (2,3) 0 + 2/3 (2,3)
- (5,6) 0 + 5/6 (5,6)

...

c (8,6) = (4,3) 1 + 1/3 (1,3)

...

d (12,6) = (2,1) 2 + 0/1 (0,1)

...

e (27,6) = (9,2) 4 + 1/2 (1,2)

...

Only four classes are needed for structuring D: (0,1), (1,3), (1,2) and (2,3).  Other
classes such as (1,6) and (5,6) may be introduced later.  A structural representation of this
sequence is the following:
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.

.

Equivalence
classes

Symbolic
dates

D

S

Rhythmθ

(sec.)

Q

Physical time0

Structure
of time

(not represented)

φ

(0,1)

(1,3)
(1,2)
(2,3)

Symbolic date ordering Q

(0,1) (2,3) (4,3) (2,1) (9,2) (7,1)

a      b      c      d      e    NIL

ρ
Τ

Symbolic durations

2/3 2/3 2/3 5/2 5/2

Fig.3

This method for structuring the set of symbolic dates is not unique but it is general enough
for representing and matching rhythmic patterns in sequences whatever the structure of time.

8. Structure of time: a computational approach
In a digital synthesizer, ‘physical time’ is either the direct output of a sawtooth generator,

or an output adjusted manually or automatically (in response to instructions contained in a
symbolic sequence S itself).

The structure of time φ may be represented with any algebraic formula, or explicitly.
Explicit representations are implemented in tables whereas formulae refer to procedures.  In
real-time synthesis, φ-1 is required for converting physical time to symbolic dates: one single

table or procedure is needed if φ is injective (see §5).

Several ‘cascade’ mappings are almost necessarily involved, i.e. φ  = φ1 . φ2 . ...φn.
Jaffe (1985:40) only considered strictly increasing functions, but he introduced multiple
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mappings for different voices and methods with view of merging them in the actual
performance (ibid:44-ff).  In SYTER implementations, any φi

−1 is not necessarily
monotonous nor even continuous:

x

reverse+linear

linear linear

reverse+ non linear
linear

Φ i (x)
-1

Fig.4

In this example, the same component is (partly) performed several times; in each
occurrence the flow of symbolic time is either ‘normal’ (linear and ‘clockwise’) or ‘modified’
(‘anticlockwise’, non linear, etc.).  Using several tables addressed by the same variable
linked to physical time, it is possible to split physical time to several local sets of symbolic
dates.  Example below shows a split to three sets of symbolic dates:

Component C

Component A

Component B

Time input

Fig.5
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Each table in the left part is a score or ‘history’ of component A, B or C.  This set-up
produces an effect similar to that of a conditional branching triggering A, B and C.  For each
component, one or more table(s) is (are) needed to define the structure of its ‘local time’:
component A has a continuous yet rubato-like overall structure, B has a discrete  ‘tempo’
structure, while C is performed in ‘linear’ time.  In the left part, straight segments have been
used to provoke repetitive performances of each component at different speeds.  Indeed more
complicated functions may be used to account for context-sensitive distortions of each
component's local time.

Each musical component may be in turn a set of components and/or musical events.  The
split to subcomponents may be the result of more conditional branchings, as above, or
sudden changes of the value or range of any sound parameter, as evidenced in the local time
structure of component B.  Every parameter may have its own ‘private’ local time structure,
and possible interactions with the musical output of the synthesizer itself or with other
human/mechanical performers15.

Time mappings and the manual/automatic control of the flow of physical time are highly
dependant on technical features of sound-making machines, and will not be further discussed
here.  An important problem, however, is the structure of local time in each component.

Time structures, like pitch structures in many traditional music systems, are often felt
intuitively as a trade between strict periodicity (a boring order) and chaos (often a structure
that is not immediately perceived).  One way of producing such structures is to rely on
automatic sequences, i.e. sequences generated by automata, or equivalently formal
grammars (Bel 1989d), constant length substitutions (Allouche & Mouret 1988), etc.  Since
it deals with nominative variables, this first method does not take directly into account
additive properties of time/pitch intervals.  Another approach is to build strictly periodic sets
of integers and combine them using set operations.  Since finite sets are needed, a prior
scaling (an arbitrary origin and a unitary vector) of the domain is necessary: for example, use
440Hz as an origin and 1 cent (frequency ratio 21/1200) as an elementary interval for pitch
scaling; similarly, define a time origin and an elementary pulse interval for time scaling.
Once the scale has been fixed (although independantly of it), sets of values may be built by
means of sieves.

8.1. Sieves

 Scales offer a wide scope for intuitively grasping the idea of musical structure because of
the predominance and relative complexity of pitch relations in many traditional music
systems.  Partly for this reason, sieves were first introduced by Xenakis (1963) as a
structural model of musical scales.  The concept we introduce here has been used for a
practical implementation in SYTER.

An elementary sieve is a congruence class on relative integers.  For example, class 3
modulo 5  is the set of relative integers x verifying property P(x):

There exists a relative integer k such that x = 5k+3
i.e.  x ≡ 3 [5] in standard mathematical notation.

The sieve generated by this formula is the following set:

53 = {... -12, -7, -2, 3, 8, 13, 18, ...}
_________________________________________

15 A stochastic control of on-setting times taking into account the density of events is found in Xenakis'
Achorripsis, 1956).
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where ‘53’ is the notation used by Xenakis.  P(x) is a boolean expression which we may
call ‘atomic’ as it relates to an elementary sieve.

Although the structure of an elementary sieve is infinite and strictly periodic, in practice
the domain of P(x) must be restricted: musical parameters such as pitch, time, intensity, etc.
are necessarily bound to limits.  Consequently, four parameters are necessary to define an
elementary sieve: its modulo and origin (class label or remainder of the Euclidian division),
and the two limits of its definition domain.

It is possible to manipulate these parameters to show more or less of the periodicity of the
infinite structure. For instance, taking a period larger than the domain may lead to a structure
containing one single value — or no value at all...  This makes it possible to introduce breaks
into the apparent periodicity of a compound sieve.

A compound sieve  is a set of integers built by union, intersection and complementation
of elementary sieves.  It may also be defined as a Boolean expression built on atomic
expressions with the aid of the three operators: and, or, not., e.g.:

32∧ 41

that is, no (32) or  41.

This set is calculated as follows: first build 41 = {... -11, -7, -3, 1, 5, 9, 13, ...} and 32 =
{... -10, -7, -4, -1, 2, 5, 8, 11, 14, ...}, then take only those elements that belong to 41 and
not to 32: {... -11, -3, 1, 9, 13, ...}

It is possible to approach the problem of sieves from two practicle viewpoints: (1)
generate a sieve given a Boolean formula, or (2) characterize a given sequence of integers.
The latter is a rather difficult, although rich in potential applications, rule-discovery problem:
any finite sequence of relative integers may be considered in a great number of ways as a
non-periodical part of a periodical structure.

8.2. Tabulated sieves

A first implementation of sieves in SYTER (Bel 1989a) has been realised with the aid of
tables that are precomputed and stored on disk.  Numeric tables are the main support for
structures in SYTER.  Instead of producing a particular sound event by calling its attached
elementary procedure, it is necessary to define all its parameters (a characteristic set of metric
variables that allow its generation by a general-purpose hook-up of modules) (Bel 1989b).
Discrete events, i.e. time structures, are produced if at least one of the parameters has been
changed significantly.  Tabulated sieves come in response to such a need.

Given I, an interval of real numbers, and a finite increasing sequence G defined on I, a
tabulated sieve is any mapping f of I to itself such that:

For any x belonging to I, f(x) belongs to G
For any pair x1, x2 belonging to I, x1 < x2 => f(x1) ≤ f(x2)

A typical exemple of set-up of two tabulated sieves, one governing pitch and the other one
durations, is the following:
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pitch table  p

time t

duration sieve  u

pitch sieve  v

t'= u(t)

h = p(t') = p(u(t))

pitch output h' = v(h) = v(p(u(t)))

to timbre, etc.

amplitude table a

amplitude output a(u(t))

Fig. 6

In this set-up, the tabulated duration sieve may be for instance:
u(t)

t

2 2 2 3 3 2 2 2 3 3

0 5 7 9 11 15 17 19 21 24 273 31

Fig.7

and the pitch tabulated sieve:
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ré#3

fa#3
sol3

la3

si3
do4

ré#4

fa#4
sol4

la4

si4
do5

ré#5

ré#3

sol5

sol5fa3

fa3

mi5

mi5

v(h)

h

Fig.8

(We used simple units of duration and a conventional semitonic system in this example.
Indeed, any general system, e.g. microtonal, may be described in the same way.)

Both tabulated sieves have been built from compound sieves: divisions on the horizontal
axis of the time sieve, and of the vertical axis of the pitch sieve, respectively, belong to
pseudo-periodiocal sequences, while divisons of the remaining axis are equal.  This is only
one among infinitely many ways of imbedding a compound sieve into a tabulated sieve (Bel
1989a).

9. Polymetric structures

9.1. Representation

A polymetric structure may be defined recursively as follows:

Syntax

— any sequence is a polymetric structure;

— if A and B are polymetric structures, {A,B} is a polymetric structure;

— if A, B and C are polymetric structures, {{A,B},C,...} may be notated
{A,{B,C},...} or {A,B,C,...}.

Semantic

{A,B} is meaningful if and only if that A and B have identical on-setting and off-setting
dates.

The use of curled brackets is consistent with the one we introduced in sequences:
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— for any sequence S, {S} = S is a polymetric structure;
— for any sequence S of duration d ∈ Q+, {S,d} may be interpreted as the simultaneity
of sequence S with a silence whose duration is exactly d.

In other words the following notations are equivalent:

a b c d = {a b c d,4} = {a b c d, _ _ _ _}

where the latter is a polymetric structure.

The semantic definition suggests that there may be meaningless polymetric structures.
This is obviously the case with {3,5} or {a b c, 5/4, 9/8}; but it is less evident whether or
not it is possible to assign a meaning to structures like {a b c, d e}, {/3 a b, d e f},
{/2 a b, /3 c d e, 1}, {/3 a b c, /5 d e}, etc.  For this we need conventional constraints
allowing a machine to assign the ‘simplest’ meaning to structures which are not entirely
described.  We first decide that ‘simple’ transformations are those that do not distort
rhythmic patterns.  This rules out the transformation called modification mobile by Boulez
(1963:57-8), not that we believe such a transformation should be ignored, but because it
requires explicit parameters in a symbolic representation.  Another principle is that a simple
interpretation is one in which many events have identical on-setting symbolic dates.

The following conventions are based on these principles:

— if a sequence does not contain any tempo indication, its tempo may be attributed an
arbitrary value;
— if A, B and C an arbitrary polymetric structures, in the structure ‘A {B} C’ the
tempos of A and C are identical unless explicitly indicated;
— if two sequences A and B containing tempo indications appear in the same polymetric
structure, any change of the tempo of A must be reflected proportionally on the tempo of
B;
— the default tempo value is 1.

For example,

S = a b c /2 de /3 f g h = /1 a b c /2 d e /3 f g h(default value)

S = /3 a b c d = /1 /3 a b c d
(this sequence starts with default tempo 1 but this value is immediately changed.)

Let us now consider {a b c, d e}.  The tempos of ‘a b c’ and that of ‘d e’ may be given
arbitrary values although there is only a set of values that will assign a meaning to the
structure, e.g. {/3 a b c, /2 d e}, {/15 a b c, /10 d e}, ...etc.

Consequently, if {A1, ..., An} is a polymetric structure, the structure is always
meaningful when less than two substructures contain tempo indications.  If there are
indications in several substructures it is necessary to check consistency.  If there are no
tempo indications the global tempo of the structure is ambiguous.  To resolve such an
ambiguity we introduce two additional rules:

9.2. Homogeneity rules

— if A, B and C an arbitrary polymetric structures, in the structure ‘A {B} C’ the global
tempo of B is the same as those of A and C unless explicitly indicated;
— the global tempo of {/p1 A1, ..., /pn An} is the largest pi.

Using these rules we may for instance interpret the structure:
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S = a b {c d, e f g} h i j

in which the global tempo is arbitrary.  Let us find the lowest possible tempo.  We first
consider {c d, e f g} which has infinitely many interpretations:

{c d, e f g} = {/2 c d, /3 e f g} or {/4 c d, /6 e f g} or {/6 c d, /9 e f g} or ...etc.

If we keep the first interpretation, the global tempo of S may be either 2 or 3.  The second
rule imposes 3:

S = /3 a b {/2 c d, /3 e f g} /3 h i j = /3 a b {/2 c d, /3 e f g} h i j
= /6 a _ b _ {/6 c _ _ d _ _, /6 e _ f _ g _} h _ i _ j _

 = /6 a _ b _ {c _ _ d _ _,  e _ f _ g _} h _ i _ j _

The second homogeneity rule allows the choice of an arbitrarily large integer, e.g. all
multiples of 3 in the example shown.  This means that the global tempo of {/p1 A1, ..., /pn
An}, and consequently that of ‘A {B} C’, may be adjusted to match, whenever possible,
another tempo imposed by constraints in a larger structure.

10. An algorithm for interpreting polymetric structures
The following is the main part of an algorithm implemented in HyperBP16 for producing

polymetric sound structures.

Let S be a polymetric structure.

The aims of the algorithm are:

— determine whether or not the structure may be assigned a meaning;
— if yes, calculate its symbolic fractional length;
— determine whether or not the structure contains explicit tempo indications;
— rewrite the structure with a unique global tempo.

S may be interpreted as a sequence of structures:

S = S1 ... Sm

in which each Si is either a sequence of terminal symbols, or a polymetric structure {A1,
..., An}.

The main procedure POLY calls two subroutines: SEQU for the evaluation of strict
sequences, and SIMUL for the evaluation of simultaneous structures {A1, ..., An}.

POLY, SEQU and SIMUL have identical outputs:

— ‘ok’ which remains true as long as the structure is consistent with constraints;
— ‘P’ and ‘Q’ such that (P,Q) is the fractional length of the structure;
— ‘scale’ which is the needed increase of the global tempo;
— ‘length’, the symbolic duration of the substructure;
— ‘globaltempo’, the global tempo of the substructure;
— ‘OUT’, an array which contains the substructure rewritten with a unique global tempo.

The structure is parsed from left to right.  Imbricated structures may cause recursive calls
to POLY, SEQU or SIMUL, but the pointer to the symbol currently read is a global variable.

_________________________________________

16 An HyperCard™ and C-language version of the Bol Processor (Kippen & Bel 1989) with MIDI interface
implemented on the Apple™ Macintosh.  HyperBP is available as shareware from the author.
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The original structure is not copied in recursive calls.  Variables ‘scale’ and ‘fixtempo’ are
also global.

POLY starts assuming that the global tempo is 1.  This tempo is explicitly mentioned in
the output array ‘OUT’.

SEQU reads the next symbol and increments the current fractional duration on the basis of
the current tempo.  If SEQU reads a tempo indication, the current tempo is adjusted and
‘fixtempo’ is set to true.

SIMUL works in several stages.  Suppose that the substructure is {A1, ..., An}.

— call POLY for the evaluation of each Ai  ; if ‘ok’ turns to false, abort;  if ‘scale’ is
increased by a factor s while parsing Ai, multiply by s all tempo indicators in ‘OUT’ and
the fractional lengths of Aj for all j < i  ;  let fixtempo[i], p[i], q[i], scale[i] and
globaltempo[i] be the resulting outputs;

— determine ii  such that either fixtempo[ii] is true or, if fixtempo[i] is false for all i then
(p[ii],q[ii]) is maximum;  in this process the check for consistency is performed: if both
fixtempo[i] and fixtempo[j] are true, then it is necessary that (p[i],q[i]) = (p[j],q[j])
otherwise ‘ok’ is set to false and POLY is aborted;

— determine a set of integer coefficients: (r[1],..., r[n]) such that:
∀ i ∈ {1,n}, (p[i], r[i].q[i]) = (p[ii], s.q[ii])

= fractional length of the substructure
= (P, Q)

This last part of procedure SIMUL is explained now.

The relation above may be written as follows:

∀ i∈ {1,n},
r[i].q[i]

p[i]
=

s.q[ii]
p[ii]

Let L be the lowest common multiple (LCM) of p[i] for all i ∈ {1,n}, and
let p'[i] = L / p[i].  If we multiply by L both sides of the equation we obtain:

r[i].q[i].p'[i] = s.q[ii].p'[ii]

Let M be the LCM of (q[i].p'[i]) for all i ∈ {1,n}, and let q'[i] = M / (q[i].p'[i]).  If we
divide by M both sides of the equation , we obtain:

∀ i∈ {1,n},
r[i]
q'[i]

=
s

q'[ii]

The lowest values of r[i] and s satisfying this relation are:

r[i] = q'[i]
s = q'[ii] = M / (q[ii].p'[ii]) = M.L / (p[ii].q[ii])

The value of s is also the rate by which variable ‘scale’ is increased.  The output value of
‘globaltempo’ is (M * p[ii] / L).

A feature which is not presented here is the handling of undetermined gaps.  For example,
if X = ‘a b c d e’ and Y = ‘f g h’, and if the configuration of time-span intervals between X
and Y is β4 (see §3), the corresponding structure is notated:

{ a b c d e ?, ? f g h}
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in which ‘?’ denotes undetermined gaps.  HyperBP finds the smallest gaps compatible with
tempo constraints for which the maximum number of on-setting dates match with each other
in both strings, e.g. {a b c d e _, _ _ _ f g h}.  Other solutions may be found if more
explicit information is given.

11. Examples of interpretations

 ab{ab,cde}cd

= /3 ab { /2 ab, /3 cde} /3 cd = /6 a _ b _ {a _ _ b _ _, c _ d _ e _} c _ d _

Duration 7/1 Scale 3

a _ b _ a _ _ b _ _ c _ d _NIL

c _ d _ e _ NIL

ab{/1 ab,cde}cd

= /2 ab { /2 ab, /3 cde} /2 cd = /6 a _ _ b _ _ {a _ _ b _ _, c _ d _ e _} c _ d _

Duration 6/1 Scale 2

a _ _ b _ _ a _ _ b _ _ c _ _ d _ _NIL

c _ d _ e _ NIL

ab{/2 ab,/3 cde}cd

= /2 ab { /4 ab, /6 cde} /2 cd

= /12 a _ _ _ _ _ b _ _ _ _ _ {a _ _ b _ _ , c _ d _ e _ } c _ _ _ _ _ d _ _ _ _ _

Duration 5/1 Scale 1

a _ _ _ _ _ b _ _ _ _ _ a _ _ b _ _ c _ _ _ _ _ d _ _ _ _ _NIL

c _ d _ e _ NIL

{a {bc,def},ghijk}

= { /12 a { /8 bc, /12 def}, /15 ghijk}

= /120 {a_ _ _ _ _ _ _ _ _ {b_ _ _ _ _ _ _ _ _ _ _ _ _ _c ...etc.

Duration 5/1 Scale 15

a _ _ _ _ _ _ _ _ _ d _ _ _ _ _ _ _ _ _ e _ _ _ _ _ _ _ _ _ f _ _ _ _ _ __ _ _ NIL

b _ _ _ _ _ _ _ _ _ _ _ _ _ _ c _ _ _ _ _ _ _ _ _ _ __ _ _ NIL

g _ _ _ _ _ _ _ h _ _ _ _ __ _ i _ _ _ _ _ _ _ j _ _ _ _ _ _ _ k _ _ _ __ _ _ NIL

/3 ab {ab,cde} cd

= /9 ab { /6 ab, /9 cde} /9 cd = /18 a_b_{a_ _ b_ _, c_d_e_} c_d_

Duration 7/3 Scale 3
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a _ b _ a _ _ b _ _ c _ d _NIL

c _ d _ e _ NIL
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