The Dirichlet problem for some nonlocal diffusion equations

Abstract : We study the Dirichlet problem for the non-local diffusion equation $u_t=\int\{u(x+z,t)-u(x,t)\}\dmu(z)$, where $\mu$ is a $L^1$ function and $``u=\varphi$ on $\partial\Omega\times(0,\infty)$'' has to be understood in a non-classical sense. We prove existence and uniqueness results of solutions in this setting. Moreover, we prove that our solutions coincide with those obtained through the standard ``vanishing viscosity method'', but show that a boundary layer occurs: the solution does not take the boundary data in the classical sense on $\partial\Omega$, a phenomenon related to the non-local character of the equation. Finally, we show that in a bounded domain, some regularization may occur, contrary to what happens in the whole space.
Type de document :
Article dans une revue
Differential and integral equations, Khayyam Publishing, 2007, 20, pp.1389-1404
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00132526
Contributeur : Emmanuel Chasseigne <>
Soumis le : mercredi 30 mai 2007 - 15:25:54
Dernière modification le : vendredi 15 février 2019 - 01:22:22
Document(s) archivé(s) le : mardi 21 septembre 2010 - 12:36:23

Fichiers

DirNonLocal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Emmanuel Chasseigne. The Dirichlet problem for some nonlocal diffusion equations. Differential and integral equations, Khayyam Publishing, 2007, 20, pp.1389-1404. 〈hal-00132526v2〉

Partager

Métriques

Consultations de la notice

321

Téléchargements de fichiers

155