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0. General introduction

The set Kn+1 of convex bodies of (n + 1)-Euclidean vector space Rn+1 is
usually equipped with Minkowski addition and multiplication by non-negative
real numbers which are respectively defined by:

(i) ∀(K,L) ∈ (Kn+1)
2
, K + L = {u+ v |u ∈ K, v ∈ L} ;

(ii) ∀λ ∈ R+,∀K ∈ Kn+1, λ.K = {λu |u ∈ K } .

Of course, (Kn+1,+, .) does not constitute a vector space since we cannot sub-
tract convex bodies in Kn+1. Now, in the same way as we construct the group
of integers from the set of natural numbers, we can construct the real vector
space (Hn+1,+, .) of formal differences of convex bodies of Rn+1 from (Kn+1,+, .).
Moreover, we can: 1. consider each formal difference of convex bodies of Rn+1 as
a (possibly singular and self-intersecting) hypersurface of Rn+1, called a hedgehog;
2. extend the mixed volume V : (Kn+1)

n+1
→ R to a symmetric (n+ 1)−linear

form on Hn+1. Thus, the development of hedgehog theory can be seen as an
attempt to extend certain parts of the Brunn-Minkowski theory to Hn+1. For
n ≤ 2, it goes back to a paper by H. Geppert [4] who introduced hedgehogs un-
der the German names stützbare Bereiche (n = 1) and stützbare Flächen (n = 2).
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Two principles and some applications

The relevance of hedgehog theory can be illustrated by the following two
principles: 1. The study of convex bodies or hypersurfaces by splitting them
judiciously (that is, according to the problem under consideration) into a sum of
hedgehogs in order to reveal their structure; 2. The geometrization of analytical
problems by considering real functions on the unit sphere Sn of Rn+1 as support
functions of hedgehogs or of more general hypersurfaces (‘multi-hedgehogs’ [6]).

The first principle permitted the author to disprove the following A.D. Alexan-
drov’s uniqueness conjecture [11]:

Conjecture (C) [1]. If S is a closed convex surface of class C2
+ of R

3 (that
is, a C2-surface of R3 with positive Gauss curvature) whose principal curvatures
k1 and k2 satisfy the following inequality

(k1 − c) (k2 − c) ≤ 0,

with some constant c > 0, then S must be a sphere of radius 1/c.

Since the problem is to compare S with a sphere Σ of radius 1/c, the idea was
to consider the hedgehog H = S−Σ and to split S into the sum Σ+H. This ap-
proach gave the following reformulation of conjecture (C) in terms of hedgehogs:

Conjecture (H). If H is a hedgehog of R3 with a C2 support function whose
curvature function (that is, whose product of the principal radii of curvature) is
non-positive all over the unit sphere S2, then H is (reduced to) a single point.

Formulations (C) and (H) are equivalent. In particular, if H is any counter-
example to (H) and Σ any sphere with a large enough radius, then S = Σ+H is a
counter-example to (C). The author gave an explicit counter-example to (H) and
thus disproved conjecture (C) [11]. Later, G. Panina gave new counter-examples
to conjecture (H) by constructing first ‘hyperbolic polytopal hedgehogs’ and then
by using smoothening techniques [19].

Let us illustrate the second principle by two important problems. The first
one is the Minkowski problem for hedgehogs. The classical Minkowski problem is
that of the existence, uniqueness and regularity of closed convex hypersurfaces of
Rn+1 whose Gauss curvature is prescribed on Sn as a function of the normal. For
C2
+-hypersurfaces (that is, C

2-hypersurfaces with positive Gauss curvature), this
well-known problem is equivalent to the question of solutions of certain Monge-
Ampère equations of elliptic type. Using a limiting process, Minkowski proved
[17] that: If K is a continuous positive function on Sn of Rn+1 satisfying the
following integral condition
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∫

Sn

u

K(u)
dσ(u) = 0, (1)

where σ is the spherical Lebesgue measure on Sn, then K is the Gauss curvature
(in the sense of Gauss’ definition) of a unique (up to translation) closed con-
vex hypersurface H (the uniqueness is coming from the equality condition in a
Minkowski’s inequality [21]). The strong solution is due to Pogorelov [20] and
Cheng and Yau [3] who proved independently that: if K is of class Cm (Sn;R),
(m ≥ 3), then the support function of H is of class Cm+1,α for every α ∈ ]0, 1[.
This classical Minkowski Problem has a natural extension to hedgehogs, that is to
Minkowski differences of closed convex hypersurfaces. But for non-convex ones,
this generalized Minkowski problem is equivalent to the question of solutions of
certain Monge-Ampère PDE’s of non-elliptic type for which there was no global
result. This geometrization permitted the author to give non-trivial examples of
Monge-Ampère PDE’s of mixed type with no solution [13] (resp. with non-unique
solutions [12]) on S2. Besides, the fact that conjecture (H) is false can be formu-
lated as follows (which disproves a conjecture of Koutroufiotis and Nirenberg [5]):

There exists a non-linear function f : R3 → R whose restriction to S2, say h,
is C2 and satisfies the inequality

h2 + h∆2h+∆22h ≤ 0,

where ∆2 is the spherical Laplacian and ∆22 the Monge-Ampère operator, that is
the sum and the product of the eigenvalues of the Hessian of h = f|S2.

The Sturm-Hurwitz theorem states that any continuous periodic real function
expandable in a Fourier series has at least as many zeros as its first nonvanishing
harmonics. It has many geometrical consequences such as the 4-vertex theorem
(see for instance [22]). The second problem is the search for Sturm-Hurwitz type
theorems (in particular in higher dimensions). For C2-functions, the author gave
a geometrical interpretation and a new proof of the Sturm-Hurwitz theorem by
considering plane N-hedgehogs, (n ∈ N∗). A plane N -hedgehog is defined as the
envelope of a family of cooriented lines having exactly N cooriented support
lines with a given normal vector; N is simply the number of full rotations of the
coorienting normal vector so that plane 1-hedgehogs are just plane hedgehogs [14].

Which notion of index for studying hedgehogs in R3 ?

As we have just seen, hedgehogs have already given first interesting results for
both problems. But we shall see that for going further it is necessary to introduce
specific tools for studying their geometry in dimensions greater than 2. In the first
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results mentioned above, an essential role was played by the following relationship
between the winding number ih (x) of an N -hedgehog Hh ⊂ R2 around a point
x ∈ R2−Hh and the number of cooriented support lines of Hh through x (i.e. of
zeros of hx : [0, 2Nπ[→ R, θ 
→ h(θ)− 〈x, u (θ)〉, where u (θ) = (cos θ, sin θ)):

ih(x) = N −
1

2
nh(x) ,

where h denotes the support function of the N-hedgehog. Given any hedgehog
Hh ⊂ R3, we can still define the index ih (x) of a point x ∈ R3−Hh with respect
to Hh (for instance as an algebraic number of intersection). But, as we shall see,
it can no longer play the same role. In the particular case where Hh ⊂ R3 is pro-
jective (that is modeled on P2 (R) = S2/(antipodal relation)), this ih-index gives
no information neither on Hh nor on zeros of hx (u) = h(u) − 〈x, u〉 , (u ∈ S2).
This paper introduces an jh-index for hedgehogs of R3 that can in certain re-
spects play the same role as the ih-index does in R2. This new index induces a
series of new notions (of interior, exterior, algebraic volume, etc) that permit us
to describe the geometry of hedgehogs of R3 (including projective ones). Besides,
it also induces a natural notion of transverse orientation (which may switch on
certain curves of self-intersection) involved in the multiplicity of solutions of the
Minkowski problem.

1. Generalities on hedgehogs

As we said, hedgehog theory consists of: 1. considering the Brunn-Minkowski
theory in the vector space Hn+1 of formal differences of convex bodies of Rn+1;
2. constructing geometrically any formal difference K − L of convex bodies
K,L ∈ Kn+1 as a (possibly singular and self-intersecting) hypersurface of Rn+1.
In the case of convex hypersurfaces (or convex bodies) of class C2

+ (that is, of
C2-hypersurfaces with positive Gauss curvature), this can be done easily. As
you can see Figure 1, we can subtract two such hypersurfaces by subtracting
the points corresponding to a same outer normal to obtain a (possibly singular)
hypersurface that we shall call a hedgehog.

Figure 1. Geometrical differences of two convex hypersurfaces of class C2
+

4



Let us recall how such hedgehogs can be defined directly. As is well-known,
every convex body K ⊂ Rn+1 is determined by its support function

hK : S
n −→ R, u 
−→ sup {〈x, u〉 |x ∈ K } ,

(note that hK (u) may be interpreted as the signed distance from the origin to
the support hyperplane with normal u). In particular, every closed convex hy-
persurface of class C2

+ is determined by its support function h (which must be
of class C2 on Sn [21, p. 111]) as the envelope Hh of the family of hyperplanes
with equation 〈x, u〉 = h(u). This envelope Hh is described analytically by the
two following equations

{
〈x, u〉 = h(u)
〈x, . 〉 = dhu(.)

,

of which the second is obtained from the first by performing a partial differen-
tiation with respect to u. From the first equation , the orthogonal projection
of x onto the line spanned by u is h (u)u and from the second one its orthog-
onal projection onto u⊥ is the gradient of h at u. Therefore, for each u ∈ Sn,
xh (u) = h(u)u+ (∇h) (u) is the unique solution of this system.

Now, the envelope Hh is in fact well-defined for any C2-function h on Sn

(even if h is not the support function of a convex hypersurface). Its natural
parametrization xh : S

n → Hh, u 
→ h(u)u + (∇h) (u) can always be interpreted
as the inverse of its Gauss map, in the sense that: at each regular point xh (u) of
Hh, u is normal to Hh. We say that Hh is the hedgehog with support function h.
Note that xh depends linearly on h.

It is also interesting to note that we can still define an envelope Hh for any
function h ∈ C1 (Sn;R). But in general, such an envelope does not represent the
difference of two convex bodies. In fact, such a hedgehog can even be fractal [10].

Gauss curvature of hedgehogs with a C2 support function

Before defining general hedgehogs as differences of arbitrary convex bodies,
let us describe briefly hedgehogs with a C2 support function. As we saw, such
hedgehogs may be singular. As the parametrization xh can be regarded as the
inverse of the Gauss map, the Gauss curvature Kh of Hh is given by 1 over the
determinant of the tangent map of xh:

∀u ∈ Sn, Kh(u) = 1/det [Tuxh] .

Therefore, the singularities of Hh are exactly the points where this curvature Kh

becomes infinite.
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An important point for our study is that the so-called ‘curvature function’
Rh := 1/Kh is well-defined and continuous all over the unit sphere, including at
the singular points, so that the Minkowski problem arises naturally for hedgehogs.

From an analytical point of view, we get exactly the same formulas as in the
convex case. In particular [3], the curvature function can be given by

Rh (u) = det [Hij (u) + h (u) δij] , (2)

where δij are the Kronecker symbols and (Hij (u)) the Hessian of h at u with
respect to an orthonormal frame on the unit sphere Sn.

Example of projective hedgehogs

Concerning the spherical image of the classical models of the real projective
plane in R3 (as the Boy surface or the Roman surface), Hilbert and Cohn-Vossen
wrote in their book Geometry and the imagination: “Unfortunately, the way
in which it is distributed over the unit sphere has not yet been studied”. For
‘projective hedgehogs’ Hh ⊂ Rn+1, that is for hedgehogs with an antisymmetric
support function h, pair of antipodal points on the unit sphere Sn correspond to
a same point on the hypersurface Hh. So, not too singular projective hedgehogs
Hh ⊂ R3 can be regarded as models of the real projective plane whose Gauss
map is a bijection from the model onto the real projective plane. An interesting
example is given by the following hedgehog version of the Roman surface: Hh,
where h (x, y, z) = x (x2 − 3y2) + 2z3, (x, y, z) ∈ S2 ⊂ R3. This projective hedge-
hog is represented on Figure 2. As the Roman surface, it has a threefold axis of
symmetry and three lines of self-intersection whose end points are singular points
of the same topological type as Whitney umbrellas without the handle.

Figure 2. A projective hedgehog version of the Roman surface
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Parallel hypersurfaces

Hedgehogs with a C2 support function can also be seen as parallel hyper-
surfaces to closed convex hypersurfaces of class C2

+. Let Hh ⊂ Rn+1 be such a
convex hypersurface and let xh be its parametrization for which u is the outer
unit normal at xh (u). By definition, the parallel hypersurface at distance t from
Hh is obtained by associating to each xh (u), the point xh (u) + tu. In fact, this
parallel hypersurface is just the hedgehog with support function h+ t. Of course,
outer parallel hypersurfaces remain convex but ‘inner’ ones may be singular. So,
any hedgehog with a C2 support function can be seen as an inner or outer ‘wave
front’ at distance t from a convex hypersurface.

Generic singularities

Hedgehogs with a C∞-smooth support function are actually wave fronts in the
sense of contact geometry. Therefore, they have only Legendre singularities. The
generic singularities of hedgehogs are cusp points in 2-space, cuspidal edges and
swallowtails in 3-space. Swallowtails are the cusp points of cuspidal edges. Note
that we can distinguish two types of swallowtails (negative or positive) according
to the sign of the Gauss curvature on the tail. More precisely, for an open dense
subset Ω of C∞ (S2;R) for the C4 topology, we have: for every h ∈ Ω, all the
singularities of Hh ⊂ R3 are equivalent to one of the three models represented on
Figure 3 and Hh satisfies the following counting formula on S2 [6]:

r+ − r− =
q+ − q−

2
+ 1

where q− is the number of negative swallowtails, q+ the number of positive ones,
r− the number of hyperbolic regions and r+ the number of elliptic ones.

Let us mention the following problem raised by R. Langevin, G. Levitt and
H. Rosenberg in [6]:

Is there exists a projective hedgehog Hh ⊂ R3 whose singular locus is reduced
to one (or several) immersed cuspidal edge(s) (without any swallowtail) ?

Figure 3. Generic singularities of hedgehogs in R3
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General hedgehogs as differences of arbitrary convex bodies

Now, let us see briefly the way of defining geometrically general hedgehogs
of Rn+1 as differences of arbitrary convex bodies. As addition of convex bodies
corresponds to addition of their support sets with same normal (which are lower-
dimensional convex bodies), subtraction of convex bodies must correspond to
subtraction of these support sets. So, the idea is simply to proceed by induction
on the dimension replacing support sets by support hedgehogs.

More precisely, the method is the following: First. In dimension one, convex
bodies are segments that can be subtracted as oriented segments; Second. In
dimension n+1, support sets of a convex body can be regarded as convex bodies
of an Euclidean space of dimension n. Thus, if differences of convex bodies have
already been defined in dimension n, then they can again be defined in dimension
n+ 1 as collections of differences of support sets (that is of support hedgehogs).
Fore precise definitions and more details, we refer the reader to [16].

Figure 4 represents a polygonal hedgehog obtained by subtracting two squares.

Figure 4. A polygonal hedgehog, difference of two squares

2.1. The Minkowski problem.

As already recalled, the classical Minkowski problem is to prescribe the Gauss
curvature of convex hypersurfaces in (n + 1)-Euclidean vector space Rn+1.
Main results on the classical Minkowski problem have been summarized in the
introduction. Now, let us consider theMinkowski problem extended to hedgehogs.

Extension of the Minkowski problem to hedgehogs

In this section, ‘hedgehog’ will mean ‘hedgehog with a C2 support function’.
As already noticed in Section 1, the curvature function Rh := 1/Kh of a hedgehog
Hh ⊂ Rn+1 is well-defined and continuous all over the unit sphere Sn, including at
the singular points, so that the Minkowski problem arises naturally for hedgehogs.
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What can we expect for hedgehogs ? For n = 1, the curvature function
depends linearly on the support function so that the problem is simple even for
general hedgehogs [16]. But in higher dimensions the problem is very difficult
and we shall only consider the case n = 2. From (2), the curvature function
Rh := 1/Kh of a hedgehog Hh ⊂ R

3 is then given by

Rh = (λ1 + h) (λ2 + h) = h2 + h∆2h+∆22h,

where ∆2 denotes the spherical Laplacian and ∆22 the Monge-Ampère operator
(in other words, ∆2h and ∆22h are respectively the sum and the product of the
eigenvalues λ1, λ2 of the Hessian of h).

So, the equation we are dealing with is the following

h2 + h∆2h+∆22h = 1/K.

Its type is given by the sign of 1/K. Thus, the classical Minkowski problem boils
down to the study of Monge-Ampère equations of elliptic type since closed convex
hypersurfaces of class C2

+ have a positive Gauss curvature. But for non-convex
hedgehogs (which must have hyperbolic regions), we have to deal with Monge-
Ampère equations of mixed type on S2 (a class of equations for which there is no
global result but only local ones by C.S. Lin [7] and C. Zuily [23]).

What (necessary and sufficient) conditions must a continuous function on S2

satisfy to be the curvature function of a hedgehog ? Of course, integral condition
(1) is still necessary. It just expresses that any hedgehog of R3 is a closed surface.
But it is no longer sufficient: for instance −1 satisfies this condition and cannot
be the curvature function of a hedgehog Hh ⊂ R

3 since there is no compact
surface with negative Gauss curvature in R3. Can the curvature function of a
hedgehog Hh ⊂ R3 be non-positive all over the unit sphere ? As recalled in the
introduction, this problem is in fact equivalent to the study of A.D. Alexandrov’s
uniqueness conjecture (C) and the answer is positive.

However the answer is negative in the case where the support function is
analytic on S2. Indeed, A.D. Alexandrov (1966) [2] and H.F. Münzner (1967)
[18] proved conjecture (C) in the case of analytic surfaces. But in the general
case, no progress was made for almost 30 years.

The crucial fact is the existence of a (non compact) cross-cap hedgehog whose
curvature function is defined and non-positive on S2 minus a semi-great-circle. By
fitting 4 cross-caps together with a central part, the author constructed a closed
surface to which he gave an appropriate saddle form to obtain a non-trivial hedge-
hog whose curvature function is non-positive all over S2 [11]. Such a hedgehog is
a counter-example to conjecture (H) since it is not reduced to a point. By adding
a large enough sphere to it, we get a counter-example to conjecture (C) .
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It is important to note that the notion of index ih (x) of a point x with respect
to a hedgehog Hh ⊂ R2, that is of winding number of Hh around x, played an
important role in the way the author studied conjecture (H) through orthogonal
projection techniques adapted to hedgehogs [11, Theorem 1].

Discrete version

The Minkowski Problem for hedgehogs has of course a discrete version con-
cerning polytopal hedgehogs. In [12], the author presented a discretization of the
previous counter-example to conjecture (H) [which is composed of a central part
(Figure 5.a) and 4 discrete cross-caps (Figure 5.b)] whose spherical representation
on S2 is shown on Figure 5.c. It is an example of hyperbolic polytopal hedgehog.
What does that mean ? As any plane hedgehog Hh ⊂ R2 (that is, any difference
of plane convex bodies, smooth or not), a polygonal one can be regarded as an
oriented rectifiable curve [16] whose algebraic area is defined as the integral

a (h) =

∫

R2−Hh

ih (x) dλ (x) ,

where ih (x) is the index of x with respect to Hh and λ the Lebesgue measure
on R2. A polytopal hedgehog of R3 (that is a difference of two convex polytopes
of R3) is said to be hyperbolic if all its faces are plane hedgehogs with no positive
area (that is, whose ih-index is everywhere non-positive). Of course, such faces
may be convex curves: it depends on the orientation.

Figure 5. Discretization of the counter-example to (H)

Monge-Ampère equations of mixed type

Here are examples of Monge-Ampère equations of mixed type with no solution
that concern functions changing sign cleanly (as in the only known local results
on such PDE’s by C.S. Lin [7] and C. Zuily [23]) : For every fixed v ∈ S2, the

10



following smooth function R (u) = 1 − 2 〈u, v〉2 satisfies integral condition (1)
but is not a curvature function on S2 [13]. The proof makes use of orthogonal
projection techniques adapted to hedgehogs.

Now here is a non-trivial example of an equation with non-unique solutions:
these two non-isometric hedgehogs ofR3 have a smooth (but not analytic) support
function and the same curvature function R ∈ C (S2;R): Hf and Hg, where
f(x, y, z) = exp(−1/z2) and g(x, y, z) = sgn(z) exp(−1/z2), ((x, y, z) ∈ S2 ⊂ R3).
Note that the second one is projective. Of course, if a function f ∈ C2 (S2;R) is
a solution of the Monge-Ampère equation

h2 + h∆2h+∆22h = R,

where R ∈ C (S2;R) satisfies the integral condition

∫

S2

uR (u) dσ(u) = 0,

then it is also the case of g = −f . But then these two solutions correspond to
isometric hedgehogs. In the case where these hedgehogs bound a convex body,
one of these hedgehogs will be transversally oriented towards the interior and the
other one towards the exterior.

In the convex case, the uniqueness comes from the equality condition in a
well-known Minkowski’s inequality [21]. But this inequality cannot be extended
to hedgehogs [6] and we lose the uniqueness.

2.2. The Sturm-Hurwitz theorem

Another important problem is that of the existence of Sturm-Hurwitz type
theorems in dimensions > 2. The classical Sturm-Hurwitz theorem states that
any continuous real function of the form

h (θ) =
+∞∑

n=N

(an cosnθ + bn sinnθ)

for some sequences of real numbers (an) and (bn), has at least as many zeros as
its first nonvanishing harmonics:

# {θ ∈ [0, 2π[ |h (θ) = 0} ≥ 2N.

For C2-functions, we can give a geometrical interpretation and a geometrical
proof by considering the 2Nπ-periodic function h (θ/N) as the support function
of an ‘N-hedgehog’Hh ⊂ R2 that is, of the envelope of a family of cooriented lines
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having exactly N cooriented support lines with a given normal u ∈ S1 [14]. The
integer N is just the number of full rotations of the coorienting normal vector.
Figure 6.a shows a plane projective hedgehog and Figure 6.b a plane 3-hedgehog.

Figure 6. A projective hedgehog and a 3-hedgehog

Here is a geometrical interpretation of the Sturm-Hurwitz theorem in terms
of hedgehogs in the case of C2-functions [14].

Hedgehog version of the Sturm-Hurwitz theorem. If Hh ⊂ R2 is an
N-hedgehog whose support function satisfies

h(Nθ) =
+∞∑

n=N

(an cosnθ + bn sinnθ) ,

for some sequences of real numbers (an) and (bn), then Hh has no ‘positive area’
(that is, ih (x) ≤ 0 for all x ∈ R2 −Hh).

3. Usefulness and limitations of the usual index

The above hedgehog version of the Sturm-Hurwitz theorem is based on the
following relationship between the index ih (x) of x with respect to Hh and the
number of zeros of hx (θ) = h(θ)−〈x, u(θ)〉, where u (θ) = (cos θ, sin θ) ([9], [14]).

Theorem [14]. Let Hh ⊂ R2 be an N-hedgehog whose support function h is
of class C2 on S1. This N-hedgehog Hh satisfies:

∀x ∈ R2 −Hh, ih(x) = N −
1

2
nh(x) , (3)

where nh (x) is the number of cooriented support lines through x (i.e. the number
of zeros of hx : [0, 2Nπ[→ R, θ 
−→ h(θ)−〈x, u(θ)〉, where u (θ) = (cos θ, sin θ)).
Note that relationship (3) permits us to define ih (x) ∈ Z∪ {−∞} for any x ∈ R2.
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The geometrical proof of the Sturm-Hurwitz theorem given in [14] consists
in proving the above hedgehog version using the two following key points: 1.
The evolute of Hh ⊂ R2 is the N-hedgehog with support function (∂h) (θ) =
h′
(
θ − π

2

)
; 2. For every x ∈ R2, we have: i∂h (x) ≤ ih (x).

Remark. The ih-index can be defined for any plane hedgehog Hh ⊂ R2 (i.e.
for any difference K − L of two plane convex bodies). See [16] for applications.

Conclusion. This notion of index of a point x with respect to anN-hedgehog
Hh ⊂ R2 and its relationship with the number of zeros of the support function hx
played an essential role in the way the author: 1. geometrized the Sturm-Hurwitz
theorem and gave a proof of it [14]; 2. studied conjecture (H) through orthogonal
projection techniques [11].

What about the index in higher dimensions ?

Of course, this notion of index ih (x) can be extended in higher dimensions.
Given a hedgehogHh ⊂ Rn+1, (n ≥ 1), the ih-index of x ∈ Rn+1−Hh with respect
to Hh can be defined as the degree of the map

U(h,x) : S
n → S

n, u 
−→
xh(u)− x

‖xh(u)− x‖
,

and interpreted as the algebraic intersection number of an oriented half-line
with origin x with the hypersurface Hh equipped with its transverse orientation
(number independent of the oriented half-line for an open dense set of directions).
It can be given by

ih(x) =
1

ωn

∫

Sn

(h(u)− 〈x, u〉)Rh(u)

‖xh(u)− x‖n+1
dσ (u) ,

where ωn is the surface area of the unit ball of Rn+1, σ the spherical Lebesgue
measure on Sn and Rh the curvature function of Hh.

Remark. Many notions from the theory of convex bodies carry over to
hedgehogs, and quite a number of classical results find their counterparts. Of
course, certain adaptations are necessary. In particular, areas and volumes have
to be replaced by their algebraic versions, which can also attain negative values.
For example, the (algebraic (n+1)-dimensional) volume of a hedgehogHh ⊂ Rn+1

can be defined by
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V (h) :=

∫

Rn+1−Hh

ih (x) dλ (x) ,

where λ denotes the Lebesgue measure on Rn+1, and satisfies

V (h) =
1

n+ 1

∫

Sn

h(u)Rh(u)dσ(u),

where Rh is the curvature function of Hh and σ the spherical Lebesgue measure
on Sn. In [8], the author studied the extension to hedgehogs of classical geomet-
rical inequalities for convex bodies, such as Brunn-Minkowski, Minkowski and
Alexandrov-Fenchel type inequalities.

The ih-index remains natural in higher dimensions but it is no longer relevant
for studying our two problems even in dimension 3. It appears that we need new
specific tools for studying hedgehogs in higher dimensions and that the parity
of the dimension might be an important datum. To understand it, consider the
case of projective hedgehogs of R3, that is the case of hedgehogs Hh ⊂ R3 whose
support function is antisymmetric on S2. Recall that ih(x) can be regarded as the
algebraic intersection number of almost every oriented half-line with origin x with
Hh equipped with its transverse orientation. Therefore, if Hh is projective, then
the map x 
→ ih (x) is identically equal to 0 on R3 −Hh so that it gives no infor-
mation neither onHh nor on zeros of the function hx (u) = h(u)−〈x, u〉 , (u ∈ S2).

Index of Hh ⊂ R3 at a point x and sign of hx (u) = h(u)− 〈x, u〉

Let Hh ⊂ R3 be a hedgehog whose support function h is of class C2 on S2.
For every x ∈ R3, define hx ∈ C2 (S2;R) by hx (u) := h(u) − 〈x, u〉 , (u ∈ S2):
hx (u) may be interpreted as the signed distance from x to the support hy-
perplane cooriented by u. This function hx is such that: ∀u ∈ S2, xhx (u) =
hx (u)u + (∇hx) (u) = xh (u) − x. Thus, for every x ∈ R3 −Hh, (∇hx) (u) �= 0
whenever hx (u) = 0. Consequently, we can state the following.

Remark. For every x ∈ R3−Hh, the set h−1x ({0}) consists of a finite num-
ber of disjoint simple smooth closed curves of S2 on which hx changes sign cleanly.

Theorem 1. Let Hh ⊂ R3 be a hedgehog with support function h ∈ C2 (S2;R).
For every x ∈ R3, define hx ∈ C2 (S2;R) by hx (u) := h(u) − 〈x, u〉 , (u ∈ S2):
hx (u) may be interpreted as the signed distance from x to the support hyperplane
cooriented by u. We have: ∀x ∈ R3 −Hh,

ih (x) = r+h (x)− r−h (x) ,
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where r−h (x) (resp. r+h (x)
)
denotes the number of connected components of

S2 − h−1x ({0}) on which hx is negative (resp. positive).

Sketch of the proof. Let x ∈ R3 − Hh. Let ch (x) denote the number of
connected components of h−1x ({0}) ⊂ S2, that is the number of spherical curves
corresponding to points of Hh at which the support plane passes through x.
Note that:

ch (x) = r−h (x) + r+h (x)− 1.

The proof is based on the two following lemmas.

Lemma 1. The map x 
→ ih (x)−
(
r+h (x)− r−h (x)

)
is constant on R3 −Hh.

Sketch of the proof of Lemma 1. The first step consists in proving that
the map x 
→ ih (x) −

(
r+h (x)− r−h (x)

)
is constant on each connected com-

ponent Ω of R3 − Hh by noticing that x 
→ r−h (x), x 
→ r+h (x) and thus
x 
→ ch (x) are constant on Ω. The second one consists in proving that the
map x 
→ ih (x) −

(
r+h (x)− r−h (x)

)
remains constant as x crosses Hh transver-

sally at a regular point m (by distinguishing the case where m is elliptic and the
one where m is hyperbolic). �

Lemma 2. If the Euclidean norm of x is sufficiently large, then ch (x) = 1.

Sketch of the proof of Lemma 2. Lemma 2 essentially follows from the fact
that the natural parametrization xh : S

2 → Hh, u 
→ h(u)u + (∇h) (u) can be
interpreted as the inverse of the Gauss map of Hh. �

Lemma 2 implies that r−h (x) = r+h (x) = 1 when the Euclidean norm of x is
sufficiently large. Thus Theorem 1 follows from Lemma 1. �

4. New notion of index in R3 and applications

Now, here is a more appropriate notion of index for studying hedgehogs of R3.

Definition. Let Hh ⊂ R
3 be a hedgehog with support function h ∈ C2 (S2;R).

For every x ∈ R3, define hx ∈ C2 (S2;R) by hx (u) := h(u) − 〈x, u〉 , (u ∈ S2):
hx (u) may be interpreted as the signed distance from x to the support hyperplane
cooriented by u. For every x ∈ R3 −Hh, define the jh-index of x with respect to
Hh by:

jh (x) := 1− ch (x) ,
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where ch (x) denotes the number of connected components of h−1x ({0}) ⊂ S2,
that is the number of spherical curves corresponding to points of Hh at which the
support plane passes through x.

In certain respects, this jh-index can play in R3 the same role as the ih-index
does in R3 (compare the definition of jh (x) with the relationship between the
ih-index of x with respect to Hh ⊂ R2 and the number of zeros of the function
hx (u) = h(u)− 〈x, u〉,(u ∈ S1)).

Let Hh ⊂ R3 be a hedgehog with a C2-support function. When the Euclidean
norm of x ∈ R3 is sufficiently large, ch (x) must be equal to 1 (see Lemma 2) and
thus jh (x) to 0. In other words, the map x 
→ jh (x) is identically equal to 0
on the unbounded connected component of R3 − Hh. Note that we may have
jh (x) = 0 on a bounded connected component of R3 −Hh.

Remark. The value of jh (x) must obviously decrease as x crosses Hh

transversally at an elliptic point from locally convex to locally concave side.

Additional definitions. Here are some additional definitions to describe the
geometry of hedgehogs of R3. The interior (resp. the exterior) ofHh ⊂ R3 relative
to its jh-index, or jh-interior (resp. jh-exterior) of Hh, will be defined by:

Jh = {x ∈ R3 −Hh |jh (x) �= 0}

(resp. Fh = {x ∈ R3 −Hh |jh (x) = 0}) .

Recall that the interior (resp. exterior) of Hh relative to the ih-index is usually
defined by

Ih = {x ∈ R3 −Hh |ih (x) �= 0}

(resp. Eh = {x ∈ R3 −Hh |ih (x) = 0}) .

For all x ∈ R3 −Hh, jh (x) = 1− ch (x) = 0 implies ih (x) = r+h (x)− r−h (x) = 0.
Therefore Ih ⊂ Jh. This inclusion may be strict as shown by the example of non-
trivial projective hedgehogs of R3 (see geometrical applications below): indeed,
for such a hedgehog Hh ⊂ R3, we have Ih = ∅ and Jh �= ∅.

Recall that we defined the convex interior of a plane hedgehog Hh ⊂ R2 as
the following convex subset of R2 [9]:

Ch =
{
x ∈ R2 −Hh |ih(x) = 1

}
.

Similarly, we define the convex interior of a hedgehog Hh ⊂ R3 as the following
convex subset of R3:
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Ch =
{
x ∈ R3 −Hh |jh(x) = 1

}

(The method to prove the convexity of Ch is absolutely the same in both cases).
This new notion of index also implies a new notion of (algebraic) volume. The

volume of Hh relative to its jh-index, or jh-volume of Hh, will be defined as the
real number:

VJ (h) :=

∫

R3−Hh

jh (x) dλ (x) ,

where λ denotes the Lebesgue measure on R3.

Remark. We may define a mixed volume VJ : C
2 (S2;R)

3
−→ R as the

symmetric map

VJ :C
2 (S2;R)

3
−→ R,

(h1, h2, h3) 
−→ VJ (h1, h2, h3) =
1
3!

3∑
k=1

(−1)3+k
∑

i1< ...<ik

VJ (hi1 + . . .+ hik) .

But this mixed volume VJ : C
2 (S2;R)

3
−→ R does not satisfy

VJ (λ1h1 + . . . + λmhm) =
m∑

i1,i2,i3=1

λi1 λi2λi3 VJ (hi1 , hi2 , hi3),

for all h1, . . . , hm ∈ C2 (S2;R) and all λ1, . . . , λm ∈ R.

Case of polytopal hedgehogs

Of course, we can extend the definition of the jh-index to hedgehogs of R3

whose support function is not of class C2 on S2. In particular, we can define it for
any polytopal hedgehog Hh ⊂ R3 (that is for any difference P −Q of two convex
polytopes of R3) and the conclusion of Theorem 1 still holds for such a hedgehog.

Examples of geometrical applications

As an example of application, let us see some geometrical consequences for
projective hedgehogs of R3. By convention, we shall say that x = xh (u) is a
simple point of a projective hedgehog Hh ⊂ R3 if −u and u are the only two
elements of S2 that are mapped to x by the parametrization xh : S

2 → Hh.
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Theorem 2. Let Hh ⊂ R3 be a projective hedgehog whose (antisymmetric)
support function is of class C2 on S2. The following properties are satisfied:

(i) For every x ∈ R3−Hh, we have jh (x) = 1− ch (x) ≤ 0. In particular, the
jh-volume of Hh is non-positive: VJ (h) ≤ 0;

(ii) Let xh (u) be a simple elliptic point of Hh adherent to the jh-exterior.
Then Hh turns its convexity towards its jh-interior at xh (u) (in other words,
there exists a neighbor of xh (u) in R3 in which the support plane with equation
〈x, u〉 = h (u) does not intersect the jh-exterior of Hh);

(iii) Hh is included in the convex hull of its singularities;

(iv) The jh-volume of Hh is negative if Hh is not reduced to a single point.

Proof of Theorem 2. Property (i). Since hx is antisymmetric (and non
identically equal to zero) on S2, it must change sign on S2, so that ch (x) ≥ 1.

Property (ii). From (i), as x crossesHh transversally at xh (u) in the direction
of its jh-interior, jh (x) must decrease from 0 to −2 (knowing that the jh-index of
a projective hedgehogHh ⊂ R3 takes its values in 2Z since the parametrization xh
describes the surface twice). In other words, x is then crossing Hh transversally
at xh (u) from locally convex to locally concave side.

Property (iii) is an immediate consequence of property (ii).
Property (iv). A nontrivial projective hedgehog Hh ⊂ R3 must have elliptic

points (see [11]) so that its jh-index cannot be identically equal to 0 on R3−Hh.�

Remarks. 1. Property (iii) already appeared in [9].

2. Properties (i)−(iv) have to be compared with the corresponding properties
of plane projective hedgehogs (for which, of course, ih is replacing jh) [9].

3. It is not difficult to check that properties (i) − (iv) still hold for any
hedgehog Hh ⊂ R3 whose support function h satisfies

∫

S2

h (u) dσ(u) = 0,

where σ denotes the spherical Lebesgue measure on S2 (that is, whose integral
of mean curvature is equal to 0 [8]). As a consequence, if Hh ⊂ R3 is such a
hedgehog (with a sufficiently smooth support function) having only generic sin-
gularities, then no negative swallowtail of Hh can be visible from the jh-exterior.

This example of projective hedgehogs shows that this jh-index is more appro-
priate than the ih-index for studying the geometry of hedgehogs in R3.
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Transverse orientation relative to the jh-index

This new notion of index induces a natural notion of transverse orientation
(which may switch on certain curves of self-intersection) for any hedgehog Hh of
R3 with a C2-support function: at each simple regular point xh (u) of Hh, orient
the normal line in the direction of decreasing values of jh (x) and then define
εh (u) ∈ {−1, 1} in order that

νh (u) = εh(u) sign[1/Kh(u)]u

be the corresponding unit normal, where Kh(u) is the Gauss curvature of Hh

at xh (u). For other u ∈ S2, let εh (u) = 0.

Unless otherwise stated, from now on ‘transverse orientation’ will mean ‘trans-
verse orientation relative to the jh-index’.

Case of convex (resp. projective) hedgehogs

Remark. For any hedgehog Hh ⊂ R
3 with a C2-support function, con-

sider the hedgehog H
h̃
⊂ R3 with support function h̃ (−u) = −h (u), (u ∈ S2).

These two hedgehogs Hh and Hh̃
have the same geometrical realization: ∀u ∈ S2,

x
h̃
(−u) = xh (u). For every u ∈ S2, the support hyperplane of Hh cooriented

by u is the support hyperplane of H
h̃
cooriented by −u, so that: ∀u ∈ S2,

ε
h̃
(−u) = −εh (u). In the case of a nonsingular hedgehog Hh ⊂ R3, which must

bound a convex body K, Hh is transversally oriented towards the exterior of K.
Moreover, in this case, for any interior point x of K, we have: εh = sign (hx),
where hx (u) := h(u) − 〈x, u〉, (u ∈ S2). In the case of a projective hedgehog

Hh ⊂ R3, we have h̃ = h and thus: ∀u ∈ S2, εh (−u) = −εh (u).

Switches of transverse orientation on a hedgehog of R3

It follows that non-trivial projective hedgehogs ofR3 necessary present switches
of transverse orientation on certain curves of self-intersection. For instance, in
the example Hh ⊂ R3 of a projective hedgehog version of the Roman surface
represented in Figure 2, the transverse orientation switches on the three curves
of self-intersection.

Integral condition

The jh-volume of a hedgehog Hh ⊂ R3 can be given by:
∫

S2

εh (u)h (u)
u

Kh(u)
dσ(u) = 0,
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where σ denotes the spherical Lebesgue measure on S2 and Kh the Gauss cur-
vature of Hh. From the translation invariance of this algebraic volume, we get
immediately the following integral condition (which has to be compared with
integral condition (1)):

∫

S2

εh (u)
u

Kh(u)
dσ(u) = 0.

On εh functions and the non-uniqueness in the Minkowski problem

In the following example of non-uniqueness in the Minkowski problem, it is
interesting to note that these two non-isometric hedgehogs which have the same
curvature function on S2 correspond to different εh functions: Hf and Hg, where
f(x, y, z) = exp(−1/z2) and g(x, y, z) = sgn(z) exp(−1/z2), ((x, y, z) ∈ S2 ⊂ R3).
In the same order of ideas, if two hedgehogs Hf and Hg are two hypersurfaces
bounding the same centrally symmetric convex body K ⊂ R3 but equipped with
opposite (usual) transverse orientations, then they have the same curvature func-
tion but opposite εh functions. This suggests that the study of the multiplicity of
solutions in the Minkowski problem for hedgehogs should take into account these
εh functions.
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