L-embedded Banach spaces and measure topology

Abstract : An L-embedded Banach spaace is a Banach space which is complemented in its bidual such that the norm is additive between the two complementary parts. On such spaces we define a topology, called an abstract measure topology, which by known results coincides with the usual measure topology on preduals of finite von Neumann algebras (like $L_1([0,1])$). Though not numerous, the known properties of this topology suffice to generalize several results on subspaces of $L_1([0,1])$ to subspaces of arbitrary L-embedded spaces.
Type de document :
Article dans une revue
Israël Journal of Mathematics, The Hebrew University Magnes Press, 2015, 205, pp.421-451
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00131645
Contributeur : Import Arxiv <>
Soumis le : samedi 17 février 2007 - 16:14:21
Dernière modification le : jeudi 3 mai 2018 - 15:32:06

Lien texte intégral

Identifiants

Collections

Citation

Hermann Pfitzner. L-embedded Banach spaces and measure topology. Israël Journal of Mathematics, The Hebrew University Magnes Press, 2015, 205, pp.421-451. 〈hal-00131645〉

Partager

Métriques

Consultations de la notice

119